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Abstract. In this paper, we discuss the inverse problem for electrical net-
works, and give sufficient conditions for an electrical network to have an n-to-

one correspondence for some positive integer n. We also discuss some of the
problems that have come up so far in constructing an n-to-one correspondence

and show how to avoid these problems.

1. Definitions

Convention. By a graph, we shall always mean a graph with no loops, but
which may have multiple edges.

Definition 1. A graph with boundary is a graph G = (V, E) with a set of vertices
designated boundary nodes, the rest are called interior nodes. The set of boundary
nodes will be denoted ∂V and the interior nodes will be denoted intV .

Definition 2. An electrical network Γ = (G, γ) is a graph G = (V, E) with
boundary and a function γ : E → R+ called the conductivity function. For any
edge e ∈ E the conductance of the edge e is γ(e).

Definition 3. A linear fractional transformation is function from R to R which
is a ratio of two linear functions.

Notation. If x = (x1, x2, x3, . . . , xn) ∈ Rn and y = (y1, y2, . . . , ym) ∈ Rm we
will use (x, y) for (x1, x2, . . . , xn, y1, y2, . . . , ym).

2. Introduction

The purpose of this paper is to explore the correspondence between the Kirchhoff
matrix for an electrical network and its response matrix. For some graphs this cor-
respondence is neither one-to-one nor infinite to one. We give sufficient conditions
for a network to have an n-to-one correspondence for a natural number n.

2.1. The Forward Problem and The Inverse Problem. We now discuss the
forward problem for electrical networks, and introduce the inverse problem. A more
detailed discussion is given in [2].

Suppose Γ = (G, γ) is an electrical network, with n vertices, 1, 2, ..., n (we often
use numbers to denote vertices) we shall use γi,j for the sum of the conductances
over all edges from vertex i to j. If i and j are not adjacent we say γi,j = 0.
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Definition 4. Suppose Γ = (G, γ) is an electrical network with n vertices. The
Kirchhoff matrix K is an m × m matrix defined as follows.

(1) Ki,j = −γi,j , if i 6= j
(2) Ki,i =

∑
i 6=j γi,j

Suppose we are given a function u defined on the vertices of G, after labeling the
vertices we may regard u as a vector in the obvious way. The physical interpretation
of K is that (Ku)i is the resulting current into the network due to u out of node
i. Suppose now we are given an electrical network Γ = (G, γ) with G = (V, E) and
a function φ : ∂V → R+. The forward problem is to find a function u : V → R+

such that u = φ on ∂V and (Ku)i = 0 for all i ∈ intV . As discussed in [2] the
forward problem has a unique solution for every electrical network with a boundary
node in each connected component. Let Γ = (G, γ) be an electrical network and
K its Kirchhoff matrix. Let A, B, C be sub-matrices corresponding to boundary
to boundary connections, boundary to interior connections, and interior to interior
connections, respectively. Then K has the following block structure

K =

[
A B

BT C

]
.

As proved in [2], the matrix C is always invertible and the solution to the forward
problem is (A−BC−1BT )u. We will use Λγ to denote A−BC−1BT and call it the
network response. If G has no boundary vertices, then Λγ = K. The ij-th entry of
Λγ will be denoted λi,j. The inverse problem is to recover K from Λγ , specifically
we wish to see if the map sending γ to Λγ is one to one. For some networks, this
correspondence is neither one-to-one nor infinite-to-one but is instead n-to-one for
some n ∈ N with n bigger than 1. The first example discovered was in [3]. We
now discuss the amalgamation and the star-K transformation, which will help us
understand the possibility of an n-to-one correspondence.

2.2. Graph Amalgamation. We will often need to construct a graph by gluing it
from smaller pieces, we usually do this by labeling vertices on each smaller piece and
then gluing together vertices which have the same labels. We now define precisely
what we mean by such a gluing process.

Definition 5. Let G1 = (V1, E1), G2 = (V2, E2), . . . , Gn = (Vn, En) be graphs
whose vertex sets are disjoint, Let

V =

n⋃

i=1

Vi.

Suppose L is a set,whose elements we shall call labels, such that |L| ≤ |V | and that
φ : V → L is a surjective function satisfying φ(v) 6= φ(w) if v is adjacent to w. We
shall call φ a labeling function (or a labeling function on G1, G2, . . . , Gn). We define
a new graph G as follows, the vertex set is {φ−1(a) : a ∈ L}. For each a, b ∈ V let
Ba,b be the set of all edges between v and w for all nodes v ∈ φ−1(a), w ∈ φ−1(b).
We then declare that for each a, b ∈ L there should be |Ba,b| edges between φ−1(a)
and φ−1(b) in G. We call G a the connected direct sum of the Gi with respect to
φ and write

G =

(
n∑

i=1

Gi

)

φ

,
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Suppose G is a graph with boundary and a ∈ L. If |φ−1(a)| = 1 then we declare
|φ−1(a)| to be a boundary node if and only if the unique element in |φ−1(a)| is. If
|φ−1(a)| > 1 we shall have to declare whether |φ−1(a)| is a boundary node or not.

Definition 6. Suppose Γ1 = (G1, γ1), Γ2 = (G2, γ2), . . . , Γn = (Gn, γn), with Gi =
(Vi, Ei) for all i ∈ 1, 2, . . . , n, and Vi ∩ Vj = if i 6= j. For each i and for each edge
e ∈ Ei we shall use γ(e) for γi(e). Let L be a set such that |L| ≤ |

⋃n
i=1 Vi|, and let

φ be a labeling function on G1, G2, . . . , Gn. Let G be the connected direct sum of
the Gi with respect to φ. We define a new conductivity function γ̃ as follows.

For each pair of vertices φ−1(v), φ−1(w) in G let Bv,w be the set of all edges
between φ−1(v) and φ−1(w) in G, and let Av,w be the set of all edges between
elements of φ−1(v), φ−1(w). By definition there exists a bijection f : Bv,w → Av,w.
For each e ∈ Bv,w we now define γ̃(e) = γ(f(e)).We call Γ = (G, γ̃) the connected

direct sum of the Γi with respect to φ and write

Γ =

(
n∑

i=1

Γi

)

φ

.

We will sometimes drop any explicit reference to the labeling function if it is
clear from the context. We thus sometimes speak of the connected direct sum of
Gi and write G =

∑n
i=1 Gi, th similar conventions for networks. Whenever we talk

about gluing graphs, or networks, together by labeling vertices we will mean in the
sense of the preceding. This topic is discussed more in [1] and [8], there this process
is called ”amalgamation.”

2.3. The Star-K Transformation. The star-K transformation allows us to re-
gard the response matrix of an electrical network as an electrical network itself.
The reader is encouraged to go to [9] for more details.
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Figure 1. The four-star S4 transformed into the complete graph
on 4 vertices, K4.

Given n ∈ N the n-star, denoted Sn, is a graph with one central vertex, which is
adjacent to n other vertices, none of which are adjacent to each other. To regard
Sn as an electrical network the central vertex is interior, every other vertex is a
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boundary vertex. The complete graph on n vertices, denoted Kn is a graph with n
vertices which are all adjacent to each other. For Kn to be an electrical network we
have all of its vertices be boundary vertices. The star-K transformation is a way to
take a graph which is ”composed” of star graphs, and replace them with complete
graphs.

Suppose we start with Sn and a conductivity function γ on Sn , we then replace
Sn with Kn and define a new conductivity function µ on Kn by µi,j = −λi,j . In
general we cannot reverse the operation, but in [9] it is proved we can under a
simple condition, called the quadrilateral condition. Let µi,j = −λi,j , then Kn

comes from Sn if and only if for any four distinct vertices i, j, k, l

(1) µi,jµk,l = µi,kµj,l.

That is, the products of conductances on opposite sides of a quadrilateral in a
complete graph which came from a star graph are equal.

c

e

a

b

f

d

1

2 3

4

Figure 2. The quadrilateral condition is that ab = cd = ef .

Suppose the quadrilateral condition is satisfied and let {1, 2, . . . , n} be the bound-
ary vertices of Sn and denote the interior vertex by n + 1. Then

(2) γi,n+1 =


∑

i 6=j

µi,j


+

µi,jµi,k

µj,k

this is well defined by the quadrilateral condition. (See [9]). It is also proved in [9]
that if we know the original graph we can calculate the conductances on the new
graph by

(3) µi,j =
γi,n+1γj,n+1∑n

k=1 γk,n+1

We also describe the inversion, which is another graph we can apply the star-
K transformation to. The inversion is drawn below on the left and its star-K
transformed graph is drawn on the right.
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Using the quadrilateral rule, we deduce that α2 =
µ3,4α1

µ1,2
.

Suppose we have networks Γ1 = (G1, γ1), Γ2 = (G2, γ2), . . . , Γn = (Gn, γn) where
each Gi is a star or an inversion for i ∈ {1, 2, 3 . . . , n} and let V =

⋃n
i=1 Vi. For

each i, let Γ̂i = (Ĝi, γ̂i) be the star-K transformed network and let φ be a labeling
function on G1, G2, . . . , Gn, such that |φ−1(φ(a))| = 1 for all interior nodes a (i.e.
we are not gluing interior nodes together). We can apply the star-K transformation

to Γ = (
∑n

i=1 Γi)φ
, as follows. For each i, let Ĝi = (V̂i, Êi) and let V̂ =

⋃n
i=1 V̂i. We

may regard V̂i as a subset of the vertex set for Gi ,we then restrict the domain of φ

to V̂ , we also restrict the codomain of φ, if necessary, to obtain a surjective function

φ̂. We then set Γ̂ =
(∑n

i=1 Γ̂i

)
φ̂

.Then Γ̂ is the star-K transformed network. Let

γ̂ be the conductivity function for Γ̂ and letΛ be the response matrix for Γ. Under
these conditions it is still true that γ̂i,j = −Λi,j, by construction the quadrilateral
rule holds for each K.

A graph G with boundary which can be constructed by gluing stars and inver-
sions together as above, will be called star-based, and the collection {Gi} will be
called a star-basis for G.

Note that in general this transformation leads to multiple edges. Suppose we
do not know the original Kirchhoff matrix, and that for two nodes i, j there are n
edges between i and j we then pick n variables α1, α2, . . . , αn and place one on each
edge in the transformed graph and call them partial conductances. We are then
required to solve for the α1 requiring that

∑n

i=1 αi = µi,j, and that they are all
positive. If we do know the original Kirchhoff matrix, then for any edge e between
i and j we can calculate the partial conductance on e by γ̂(e).

Example 1. Triangle − in − Triangle Graph
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1

2 3

4

5

6

7 8

9

α4α1

α2

α3

1

2 3

4

5

6

Using the quadrilateral rule, α2 = (µ1,2µ5,6)/(α1). Using the double edge α3 =
µ2,6 − (µ1,2µ5,6)/(α1). Continuing, we see that the α4 must be

µ1,4µ3,5

µ2,3 −
µ3,6µ2,4

µ2,6 −
µ1,2µ5,6

α1

.

Therefore
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(4) µ1,5 = α1 +
µ1,4µ3,5

µ2,3 −
µ3,6µ2,4

µ2,6 −
µ1,2µ5,6

α1

.

If we clear denominators in (4) the continued fraction can be written as a lin-
ear fractional transformation. We then clear denominators again to see that α1

satisfies a quadratic polynomial, this can lead to a two-to-one correspondence for
appropriate values of conductances. Note that this polynomial is only determined
by our choice of starting with α1. If instead we start α4 and determined α1 by
going clockwise around the graph our equation would be

(5) µ1,5 = α4 +
µ1,6µ2,5

µ2,6 −
µ3,6µ2,4

µ3,4 −
µ1,4µ3,5

α1

If we do the same process with (5) as we did with (4) we will in general have a
different quadratic equation.

There are other examples of n-gon in n-gon networks which have the same be-
havior, see [5].

In order to be valid partial conductances, it is necessary and sufficient for each
partial conductance to be positive and to satisfy (1). Condition (1) has already
been discussed. To see that it is sufficient that each partial conductance be positive
we use (2); for necessity (3).

Suppose Γ = (G, γ) is an electrical network constructed by gluing stars together
as described above, let N be the number of edges in G and let M be the number of
edges in its star-K transformed graph, not counting multiple edges. We may regard
the conductivity function γ as an element of RN and the response matrix as an
element of RM .

Fix a response matrix Λ = (λi,j) for Γ. Suppose β and α are partial conduc-
tances, and that for some linear fractional transformation li, we have β = li(α). We
thus have a function gβ : (R+)N+1 → R , continuous in a neighborhood of (α, Λ),
so that β = gβ(α, Λ). Each of the entries in the response matrix may be written as
rational functions of the conductances in the original graph. Thus for each partial
conductance β we can find a function fβ : RN+1 → R continuous in a neighborhood
(α, γ), so that β = fβ(α, γ).

3. Polynomial Relations and Multiple Solutions

As seen above, sometimes we can use the quadrilateral conditions and partial
conductances to write an entry in the response matrix µi,j as a function of a partial
conductance α. We wish to discuss this situation in general, so we must come up
with a class of graphs we can apply this analysis to. We first define the notion
of a multiplexer. Intuitively, a multiplexer is what allows us to write some partial
conductances in a graph as a function of others.
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Definition 7. Given a graph with boundary G, a multiplexer is a partitioning of
all the subsets of size two of ∂V into two sets U and K, where U is called the
unknown set and K is called the known set. We require that

(1) For any function f : U → R+, if there exists a response matrix Λ1 such that
(Λ1)i,j = −f({i, j}) for all {i, j} ∈ U then there also exists a response matrix

Λ2 6= Λ1 with (Λ2)i,j = −f({i, j}) for all {i, j} ∈ U.

(2) For all {i, j} ∈ K, and for any negative real number λ there is at most one
response matrix Λ on G such that (Λ)i,j = λ.

If |U | = n we call this multiplexer an n-plexer.
Note that by (2) the graph is recoverable. Intuitively, (1) says that if we only

know entries corresponding to pairs in the unknown set we cannot recover all the
conductivities on the graph, while (2) says that if we known any entry corresponding
to a pair in the known set we can recover all the conductivities in the graph.
Multiplexers are described in more detail in [4].

We are now able to describe general conditions where we can generalize the
analysis of the triangle-in-triangle graph.

Definition 8. Let G be a star-based graph and let Gi be a star-basis for G, and

for each i let Pi be a multiplexer for Gi. Let Ĝ be the the star-K transformed graph
of G an suppose there exist two nodes a, b in Ĝ which have n edges e1, e2, . . . , en

between them which satisfy the following properties.
(1) For any positive real number β there is at most one conductivity function γ

on G such that γ̂(e1) = β.
(2) For each j ∈ {2, 3, . . . , n} there exists a sequence

e1 = ej,0, ej,1, . . . , ej,mj
= ej

of edges which satisfying the following. Let ej,k = {ak, bk} and ej,k+1 = {ak+1, bk+1}.
Either {ak+1, bk+1} = {ak, bk} and ei,k, ei,k+1 are the only edges between ak and
bk, or {ak, bk} is an element in the known set of one of the multiplexers Pl and
ak+1 6= ak, bk+1 6= bk, and ak, bk are vertices in Gl.

By (1) knowing a valid partial conductance on e1 allows us to recover all the
conductivities in G. By (2) for each k + 1 ∈ {1, 2, . . . , mj} there exist a unique
linear fractional transformation lj,k+1 such that for any valid partial conductance
α on ej,k a valid partial conductance on ej,k+1 is given by lj,k+1(α). Let

lj = lj,mj
◦ lj,mj−1 ◦ · · · ◦ lj,1.

By the preceding, if α is a partial conductance on e1 we conclude that µa,b

satisfies

µa,b = α + l1(α) + l2(α) + . . . + ln(α),

for i = 1, . . . , n, moreover if we know a root of this equation we can recover all
the conductivities in the graph. Clearing denominators and subtracting we see
that α must satisfy what is, in general, a polynomial p of degree n. We call p the
conductance polynomial of the original electrical network with respect to the edge
e1.

Note that the conductance polynomial depends on our choice of starting edge,
(this was noted in Example 1). However, if the choice of edge is irrelevant we may
abuse terminology and call p the conductance polynomial.
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The reader should see how the steps involved in this definition work in the
example of the triangle-in-triangle graph, or indeed, any of the n-gon in n-gon
graphs.

The reader may be worried that a valid partial conductance α may correspond
to a point where this denominator vanishes, but this cannot happen. Each li may
be written as a composition of linear fractional transformations li = S1 ◦S2 · · ·◦Sn.
Since α is a valid partial conductance implies that (Si ◦ Si+1 · · · ◦ Sn)(α) > 0 and

finite for all i. For any two linear fractional transformations S1(x) = a1x+b1

c1x+d1 and

S2(x) = a2x+b2

c2x+d2
,

(S1 ◦ S2)(x) =
a1(

a2x+b2

c2x+d2
) + b1

c1(
a2x+b2

c2x+d2
) + d1

.

If the denominator is not 0, then

(S1 ◦ S2)(x) =
(a1a2 + c2b1)x + b2a1 + d2b1

(a2c11 + d1c2)x + b2c1 + d1d2
.

If this expression is finite the new denominator cannot be 0. In our case we know
all the intermediate linear fractional transformations are positive and finite so the
denominator of li has to be nonzero for a valid partial conductance. Thus we can
clear denominators and conclude that a valid partial conductance must satisfy the
conductance polynomial.

This polynomial can have more than one root, of course, when this happens we
may have more than one choice for the partial conductance α. Each of these choices
will determine a sequence of partial conductances, either by the quadrilateral rule,
or by the use of a multiple edge. If all the partial conductances obtained this way
are positive, then we have a correspondence which is not one-to-one, but is still
finite-to-one. We must assume that in every star we cannot determine α from the
other entries in Λ, because if we know α we could determine the other entries and
the correspondence would be one-to-one. This is why we need to use a multiplexer
at every stage.

We now give sufficient conditions for all the partial conductances obtained from
every root of a conductance polynomial p to be positive. Our idea will be to
find values of conductances so that the polynomial p has a root of multiplicity
n; we will show that for coefficients ”nearby” our original polynomial there are
conductances which give an n-to-one correspondence. To make this precise associate
to every real polynomial p(x) = anxn +an−1x

n−1 + . . .+a0 its vector of coefficients
vp = (a0, a1, . . . , an), we can then make the notion of ”nearness” precise by using
standard Euclidean distance. Recall that for any ε ∈ R+ and x ∈ Rn+1 we use
Bε(x) for the ball of radius epsilon around x, i.e. Bε(x) = {y ∈ Rn+1 : |x−y| < ε}.

Theorem 1. Let p be a polynomial of degree n with real coefficients, and suppose p
has a root of multiplicity n. For any positive real number ε there exists vq ∈ Bε(vp)
so that q is a real polynomial with n distinct real roots, furthermore the roots of q
can be made arbitrarily close to the roots of p by making ε small enough.

Proof. Let ε be a given positive real number. By hypotheses p may be written as
p(x) = an(x − a)n for some a ∈ R. For any y ∈ Rn with y = (y1, y2, . . . , yn) let
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py(x) = an(x − (a + y1))(x − (a + y2)) · · · (x − (a + yn)). Let σi be the polynomial

σi(x1, x2, . . . , xn) =
∑

j1<j2<...<ji

xj1xj2 · · ·xji
,

and σ0 = 1.
The i-th coefficient of p is (−1)n−ianσn−i(a, a, . . . , a) and the i-th coefficient of

py is (−1)n−ianσn−i(a− y1, a− y2, . . . , a− yn). Since σn−i is continuous it follows
that

(−1)n−ianσn−i(a − y1, a − y2, . . . , a − yn) → (−1)n−ianσn−i(a, a, . . . , a)

as y → 0. Therefore vpy
→ vp as y → 0. So we can find a δ such that y ∈ Bδ(0)

implies that vpy
∈ Bε(vp). Choosing η ∈ Bδ(0) with distinct coordinates it follows

that q = pη has the desired properties. That the roots of q can be made close to
the roots of p follows. �

We now recall some terminology from mutltivariable calculus which we will need
in our next result.

Definition 9. Suppose U is an open subset of Rn and V is an open subset of Rm

and let T : U → V . Suppose all the first partial derivatives of T exist. For any
vector x ∈ Rn, we use xi for the i-th coordinate of x, and Tj for the function defined
by Tj(x) = (T (x))j . The differential of T , denoted, dT is a n × m variable matrix
defined by

(dT )ij =
∂Tj

∂xi

.

Define [dT (x)]i,j =
∂Tj

∂xi
(x).

The coefficients of our associated polynomial may be written as a rational func-
tion of entries in the response matrix. We also know that entries in the response
matrix may be written as rational functions of the conductivities in our network.
Composing we have a map which sends conductances on the network to coefficients
of the polynomial, for which we can calculate the differential. We use this fact in
then next result.

Theorem 2. Suppose we have an electrical network Γ = (G, γ),which satisfies the

conditions of Definition 8 and suppose its conductance polynomial has degree n. Let

N be the number of edges in G. We may then regard γ ∈ RN . Suppose we have a

vector of conductivities γ for which the conductance polynomial p has a root r of

multiplicity n. Let T : (R+)N → Rn be the map which sends conductances on G to

coefficients of the polynomial, assume that dT (γ) has rank n+1. Then there exists

a response matrix Λ which corresponds to n distinct Kirchhoff matrices.

Proof. Since dT has rank n + 1 there are n + 1 columns which are linearly in-
dependent, let e1, e2, . . . , en, en+1 be the edges which correspond to these n +
1 columns. We fix the other conductivities on Γ and let the conductivities on
e1, e2, . . . , en vary. This gives a new map T ′ which is locally invertible at γ′ =
(γ(e1), γ(e2), . . . , γ(en), γ(en+1). By the Inverse Function Theorem, we may select
an open subset U of (R+)n+1 containing γ′ which maps homeomorphically onto an
open subset V of Rn+1 containing vp. By Theorem 1 we may select a sequence
{vm} so that the polynomial pvm

corresponding to vm has n distinct positive real
roots, and vm → vp as m → ∞. Since V is open we may choose vm ∈ V for all m.
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Let {r1,m, {r2,m}, . . . , {rn,m} be the sequences of distinct roots of the polynomial
pvm

. Theorem 1 implies that ri,m → r as m → ∞.
Since T ′ is invertible, for each m we can find γm so that T ′(γm) = vm. Thus

γm = T ′−1(vm), and since vm → vp as m → ∞ we conclude that γm → γ′

as m → ∞, since T ′−1 is continuous. One of the partial conductances in the
transformed network must satisfy the original polynomial p, since p has only one
root the root of this polynomial must be a partial conductance on the network. As
described in section 2.3 for each β we can find a function fβ : Rn+2 → R, continuous
in a neighborhood of (r, γ′), so that β = fβ(r, γ′). Since fβ(r, γ′) > 0, we can find an
open set W ⊆ (R+)n+2 containing (r, γ′) so that (x, y1, y2, . . . , yn+1) ∈ W implies
that fβ(x, y1, y2, . . . , yn+1) > 0 .

Since γm → γ′ as m → ∞, and ri,m → r as m → ∞, we conclude that for each
i there is a large enough Ni so that m ≥ Ni implies that each partial conductance
which is a function of ri,m is positive. Picking m larger than all the Ni we conclude
r1,m, r2,m, . . . , rn,m correspond to all positive partial conductances. Since all the
roots are distinct we have constructed n different positive Kirchhoff matrices which
correspond to the same response matrix.

�

We close this section with some conditions that guarantee a polynomial with
exactly one root, recall that if p is a polynomial of degree n and if p has a root of
multiplicity n, then p′|p; thus we may hope for conditions that guarantee a root of
multiplicity n by using the division algorithm.

Theorem 3. Let n ∈ N and let p(x) = anxn +an−1x
n−1 +an−2x

n−2 + . . . a1x+a0

be a polynomial of degree n whose leading term is not zero. Then p has a root of

multiplicity n if and only if for all i ∈ {0, 1, . . . , n− 2} it is true that

(6) n(n − i)aian − (i + 1)an−1ai+1 = 0.

Proof. First suppose that p has a root of multiplicity n, so p′|p. By the division
algorithm,

p =

(
1

n
x +

an−1

n2an

)
p′ +

n−2∑

i=0

(
n − i

n
ai −

(i + 1)(an−1ai+1)

n2an

)
xi.

Therefore
(

n−i
n

ai −
(i+1)(an−1ai+1)

n2an

)
= 0 for all i ≤ n − 2 so equation (6) holds.

Conversely, suppose equation (6) holds. Then since an 6= 0, we know

(7) ai =
(i + 1)an−1ai+1

n(n − i)an

,

Let p̃(x) = an(x +
an−1

nan
)n, and denote its i-th coefficent by ãi, we claim that

p = p̃. We have that ãi is

(8)

(
n

i

)
an

an−i
n−1

an−i
n nn−i

=

(
n
i

)
an−i

n−1

a
n−(i+1)
n nn−i

.

By (7) we see an−2 =
(n−1)a2

n−1

2nan
=

( n

n−2)a2
n−1

n2an
which agrees with ãn−2. Assuming

that ai+1 = ãi+1, equations (7) and (8) imply that

ai =
(i + 1)an−1ai+1

n(n − i)an

=
(i + 1)an−1

n(n − i)an

( (
n

i+1

)
an−1

a
n−(i−2)
n nn−i−1

)
=

(
n

i+1

)
(i + 1)an−i

n−1

nn−i(n − i)a
n−(i+1)
n

.
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It is easy to see that
( n

i+1)(i+1)

(n−i) =
(
n
i

)
so ai = ãi. The claim holds by induction. �

4. Linear Fractional Transformations and How to Control Signs of

The Derivative

The method above was developed because the author had hoped to use it to
show that a certain network was three-to-one. This turned out to be false. Recall
from Section 2.3 that by repeated application of the Star-K transformation we end
up with an equation

(9) µi,j = α + l1(α) + l2(α) + . . . + ln(α),

for some linear fractional transformations l1, l2, . . . , ln, and some µi,j which is the
negative of an entry in the response matrix. Chad Klumb discovered (see [7]) that
all the solutions to this equation must lie in an interval where the right hand side
of (9) is continuous. So if each li has a positive derivative it cannot have n distinct
roots in any interval where the right hand side of (9) is continuous. We now show
how to control this behavior. For any 2 × 2 matrix

A =

[
a b
c d

]

associate the linear fractional transformation SA(x) = ax+b
cx+d

. It follows from Section
3 that SA◦SB = SAB . So we have a homomorphism from the group of 2×2 invertible
real matrices to the group of real linear fractional transformations. Also

S′
A(x) =

a(cx + d) − c(ax + b)

(cx + d)2
=

detA

(cx + d)2
.

Therefore sign(S′
A) = sign(detA). The continued fractions we have can be writ-

ten as compositions of linear fractional transformations. Using the homomorphism
we see that sign[(SA1

◦ SA2
· · · ◦ SAn

)′] = sign(det A1 detA2 · · ·det An). This al-
lows us to calculate the signs of the derivatives of our linear fractional trans-
formations without actually computing the composition. We simply account for
the sign at each stage. Suppose we express a partial conduction x in a four-
star as a function of the partial on an opposite edge l(x). This will take the
form l(x) = C/x for some positive constant C, and has a negative derivative.

x l(x)

1

2 3

4
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Expressing one conductance as a function of another across a double edge is a

transformation of the form l(x) = C−x and has a negative derivative.

x

l(x)

1

2

Writing one partial conductance as function of another across an inversion can be
written as l(x) = Cx for some postive constant C, (in our figure below l(x) =

µ1,3x

µ3,4
)

and thus has a positive derivative.

l(x)

x

1

4

2
5

3

These are the basic transformations we use so we can keep track of the signs
of the derivative easily. For instance, the linear fractional transformations l1, l2 in
the graph below (note that nodes numbered the same should be identified) always
have positive derivatives, this was the graph that the author worked on; which is
not three-to-one.
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x

l1(x) l2(x)

1 2

3 4

12

6

5

11
16

9

10

14

1

2

1

2

13

7

8

15

One simply counts the four-stars and double edges in pairs to see that we end
up with all positive derivatives. In fact if we start with any multiplexer for which
we can write all partial conductances in the unknown set as a linear function of
one partial conductance in the known set, and then attach four-stars, the same
reasoning applies and shows that we always get positive derivatives. So we know
why we need the inversions that Ilya used in [6], replacing a four-star with an
inversion switches the sign of the derivatives and allows negative derivatives, this
shows us why Ilya’s graph without inversion is not three-to-one. For each integer
n ≥ 3 we can now give examples of graphs Gn that have the possibility of being
n-to-one and avoid these problems with the derivatives. For simplicity we indicate
boundary nodes with solid dots, and interior nodes with open circles. We start
with an n + 1-star in the middle, its boundary nodes numbered 1, 2, . . . , n + 1 the
interior node to be numbered later. let Xi be the graph drawn in figure 3. For each
i − 1 ∈ {2, . . . (n − 1)/2} let Xi be the graph drawn in figure 4, the other nodes to
be numbered later. For all i − 1 ∈ {(n − 1)/2, (n − 1)/2 + 1, . . . , n} let Xi be the
graph drawn in figure 5.

For each of these graphs we number the nodes as in figure 3,4,5. Let N be the
number of remaining unnumbered boundary nodes and M the number of interior
nodes. Label the rest of the boundary nodes n + 4, n + 5, . . . , n + 3 + N and the
interior nodes n + 4 + N, . . . , n + 3 + N + M . We then set

Gn =

n∑

i=1

Xi.
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1

2

Figure 3.

1

i

n+2

n+3

Figure 4. Two four-stars glued together.

1

i

n+2

n+3

Figure 5. Two four-stars with an inversion.

If n is even we do the same but instead have one more graph which has an inversion.

We need at least two four-stars on every wing except one to prevent an edge
in series. Note that we use a complete bipartite graph for the multiplexer, that is
because it is the only n-plexer known to exist for all n , as discussed in [4]. It is not
hard to see that once we fix a partial conductance x on one of the {n + 2, n + 3}
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edges all the partial conductances on the {n + 2, n + 3} can be written as li(x) for
some linear fractional transformation li. It is not hard to verify that in the case
of odd n half the li is have positive derivatives, and the other half have negative
derivatives. For n even there is one more negative derivative. It may be the case
that this is not the best choice for the signs of the derivatives. This can be easily
changed by either deleting one of the inversions or by replacing one of the four-stars
with an inversion.

5. Future Research

One obvious direction for research is to try and find methods for deciding whether
or not the graphs described above are n-to-one. Another is to investigate the
behavior of the map T which sends conductances on the original graph to coefficients
of its associated polynomial. In order to prove Theorem 2 we needed the assumption
that dT had full rank. This assumption may be already satisfied, there does not
seem to be enough dependence of the equations on each other for the rank of dT
to not be full. One could also make refine Theorem 1 and find out which way
to move the coefficients to guarantee n distinct real roots. This may make the
rank hypothesis of Theorem 2 superfluous, because it is not necessary to move the
coefficients in an arbitrary direction just in the right direction.

If one can associate a polynomial p to an electrical network Γ which has the
properties that a root of p can be used to determine all the partial conductances
in Γ̂ and that the other partial conductances depend continuously on such a root,
then one can make an obvious generalization of Theorem 2. Therefore one further
direction for research would be to try and define the conductance polynomial in
further generality.

The idea for Theorem 2 came from Ernie Esser, and from our technique to
try to prove our graph was three-to-one. We put random conductivities on most
of the edges of our original graph but set some others to be variable. We then
try to solve equations to prove that it had values for which the polynomial had
a root of multiplicity three. In doing this we are studying a polynomial whose
coefficients vary, but in a continuous manner. One possibility for future research
is to try to understand more about how the roots of a polynomial vary when the
coefficients vary continuously. What can one say about the behavior of the roots
in this situation? All the author is aware of is the result of Theorem 1 and that if
the leading term never vanishes the roots vary continuously. This last fact can be
seen by using Rouche’s Theorem from Complex Analysis.

Theorems 2 and 1 has obvious generalizations, one is that if you have a poly-
nomial with all real roots, and no assumption on the multiplicities, there are poly-
nomials which have distinct roots, and whose coefficients are nearby the original
polynomial. One simply applies Theorem 1 and uses the fact that coefficients of
products of polynomials depend continuously on the original coefficients. One can
generalize Theorem 2 to say that if you have conductances for which all the roots of
the associated polynomial (whether they are distinct or not) correspond to positive
Kirchhoff matrices, and if dT has full rank; then there are conductances nearby
which correspond to n-distinct positive Kirchhoff matrices. The proof is the same
as before.
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A five-plexer
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Figure 6. A potentially five-to-one graph, nodes numbered the
same should be considered identical. Indicated are the signs of the
derivatives of the partial conductances on the (7, 8) edge.
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6-plexer
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Figure 7. A possibly six-to-one graph
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7-plexer
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Figure 8. A potentially seven-to-one graph.


