Sage-Symbolics
Making a new system for performing Calculus and Physics

Gary Furnish

August 6, 2008
Introduction

Sage needs a strong system for performing calculus in order to effectively compete with Mathematica and Maple. Sage currently uses Maxima through a pexpect interface. However, pexpect is slow, especially for performing numerous small calculations. It is hard to extend Maxima as it is written in lisp.
Sage needs a strong system for performing calculus in order to effectively compete with Mathematica and Maple.
Sage needs a strong system for performing calculus in order to effectively compete with Mathematica and Maple.

Sage currently uses Maxima through a pexpect interface.
Sage needs a strong system for performing calculus in order to effectively compete with Mathematica and Maple.

Sage currently uses Maxima through a pexpect interface.

However pexpect is slow, especially for performing numerous small calculations.
Sage needs a strong system for performing calculus in order to effectively compete with Mathematica and Maple.

Sage currently uses Maxima through a pexpect interface.

However pexpect is slow, especially for performing numerous small calculations.

It is hard to extend Maxima as it is written in lisp.
Design Goals

Sage-Symbolics should be very fast.

Sage-Symbolics should be maintainable.

Sage-Symbolics should present a good platform to build more complicated symbolic algorithms off of.

Most importantly, it must be easy to use.
Design Goals

- Sage-Symbolics should be very fast.
Design Goals

- Sage-Symbolics should be very fast.
- Sage-Symbolics should be maintainable.
Sage-Symbolics should be very fast.
Sage-Symbolics should be maintainable.
Sage-Symbolics should present a good platform to build more complicated symbolic algorithms off of.
Design Goals

- Sage-Symbolics should be very fast.
- Sage-Symbolics should be maintainable.
- Sage-Symbolics should present a good platform to build more complicated symbolic algorithms off of.
- Most importantly, it must be easy to use.
However, given an opportunity to start from scratch, we have a rare chance to do it right.

- Sage has a great mathematical type system (Coercion).
- It contains a built in knowledge of Rings, Modules, etc.
- We can use this to our advantage to design a significantly more powerful symbolic manipulation platform.
Mathematica and Maple don’t have something analogous to Coercion.

Poor native differential geometry support in most general purpose CAS’s.

No easy way to do noncommutative symbolics.

No way to add new operations as first class objects.
Mathematica and Maple don’t have something analogous to Coercion.

Poor native differential geometry support in most general purpose CAS’s.

No easy way to do noncommutative symbolics.

No way to add new operations as first class objects.

Should we care?
Quantum Field Theory – Indexed and Tensorial expressions
Quantum Mechanics – Noncommutative Expressions
General Relativity – Differential Geometry
Needs are only served by special case programs or code.
No general purpose environment for all needs.
More Design Goals

- Noncommutative symbolic manipulations the natural starting point.
- Commutative symbols are a special case
- Calculus is just a small fraction of what we have to support
- Support for arbitrary types of symbols... let X be a matrix
- Still has to be fast.
Progress

- Noncommutative operations “just work”
- So do most calculus operations
- Native support for unevaluated functions.
- Native derivation
- Symbolic Matricies (but no RREF yet)
- Global Non-recursive pattern matching
- Fast (But it could be even faster)
Maxima Interface

- Still using Maxima for complicated operations
- Integrals, Factorization, Summation, Laplace
- Assumptions don’t work yet, but are getting there.
- The Maxima interface is faster then it used to be.
- Unevaluated functions work better
f = 5*x*y*z + y**10*x
expand(f + int(10000*random())) * (f + int(10000*random()))
Sympy: 12.9 ms Symbolics: 4.25 ms Maxima: 57.4 ms
- \(f = 5x^3yz + y^{10}x \)
- \(\text{expand}(f + \text{int}(10000*\text{random}()) * (f + \text{int}(10000*\text{random}()))) \)
 - Sympy: 12.9 ms
 - Symbolics: 4.25 ms
 - Maxima: 57.4 ms
- \(\text{expand}(f*(f+1) * (f + \text{int}(10000*\text{random}())) * (f + \text{int}(10000*\text{random}())) * (f + \text{int}(10000*\text{random}()))) \)
 - Sympy: 76.4 ms
 - Symbolics: 41.4 ms
 - Maxima: 47.1 ms
- `expand(f*(f+1) * (f+\text{int}(10000*\text{random}())) * (f+\text{int}(10000*\text{random}())) * (f+\text{int}(10000*\text{random}())) * (f+\text{int}(10000*\text{random}())) * (f+\text{int}(10000*\text{random}())))`

- Sympy: 379ms Symbolics: 113 ms Maxima: 93ms
- expand\((f^2 + f) \times (f + \text{int}(10000 \times \text{random}())) \times (f + \text{int}(10000 \times \text{random}()))\)

- Sympy: 379ms Symbolics: 113 ms Maxima: 93ms

- expand\((f^2 + f) \times (f + \text{int}(10000 \times \text{random}())) \times (f + \text{int}(10000 \times \text{random}()))\)

- Symbolics: 171ms Maxima: 126 ms Mathematica: 4ms
Sympy: 379ms Symbolics: 113 ms Maxima: 93ms
Sympy: 171ms Maxima: 126 ms Mathematica: 4ms
Maxima through Sage
Sympy with caching enabled
Sympy with caching disabled performs really poorly
Sympy Core faster then symbolics right now*
Analysis

- Profilers: Memory initialization expensive
- Use pools, help some via TPALLOC
- Real problem is cython autogenerated TPNEW
- Modify Cython to emit better code and link symbolics at once
- Alternatively hand written C TPNEW functions
Noncommutative algebra detection code
Solution: Separate Noncommutative and Commutative multiplication classes
Noncommutative algebra detection code

Solution: Separate Noncommutative and Commutative multiplication classes

Excessive memory creation:

Change multiplication class for commutative rings to store constant separately

Change multiplication classes to store powers without an additional class
Not a flaw in the design – a consequence of wanting noncommutative symbolics from the start
Can be fixed without too much trouble
1-3 order of magnitude speedup should be possible from these changes.
Near Term Goals (Next month)

- Write enough of an assumption engine so that Maxima assumptions work again (necessary for many integrals)
- Finish trig default simplifications
- Minimal piecewise function support (to current level of support)
- Symbolic polynomials should use libSingular
- Separate out noncommutative and commutative cases for multiplication
- Optimize memory creation overhead if necessary for merge
- Write doctests, start formal review process

Gary Furnish
Sage Symbolics
Near Term Goals (Next month)

- Write enough of an assumption engine so that Maxima assumptions work again (necessary for many integrals)
- Finish trig default simplifications
- Minimal piecewise function support (to current level of support)
- Symbolic polynomials should use libSingular
- Separate out noncommutative and commutative cases for multiplication
- Optimize memory creation overhead if necessary for merge
- Write doctests, start formal review process
Future Plans

- Switch all simplification to new pattern matching engine
- Full differential geometry support
- Optimize memory creation overhead (running theme)
- More advanced algorithms for addition/multiplication?
- Basic integration algorithms
Now I will show some demos of what I have done.
Questions?