
Introduction
Progress

Benchmarks
Future Plans

Sage-Symbolics
Making a new system for performing Calculus and

Physics

Gary Furnish

August 6, 2008

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Introduction

Sage needs a strong system for performing calculus in order to
effectively compete with Mathematica and Maple.

Sage currently uses Maxima through a pexpect interface.

However pexpect is slow, especially for performing numerous
small calculations.

It is hard to extend Maxima as it is written in lisp.

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Introduction

Sage needs a strong system for performing calculus in order to
effectively compete with Mathematica and Maple.

Sage currently uses Maxima through a pexpect interface.

However pexpect is slow, especially for performing numerous
small calculations.

It is hard to extend Maxima as it is written in lisp.

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Introduction

Sage needs a strong system for performing calculus in order to
effectively compete with Mathematica and Maple.

Sage currently uses Maxima through a pexpect interface.

However pexpect is slow, especially for performing numerous
small calculations.

It is hard to extend Maxima as it is written in lisp.

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Introduction

Sage needs a strong system for performing calculus in order to
effectively compete with Mathematica and Maple.

Sage currently uses Maxima through a pexpect interface.

However pexpect is slow, especially for performing numerous
small calculations.

It is hard to extend Maxima as it is written in lisp.

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Introduction

Sage needs a strong system for performing calculus in order to
effectively compete with Mathematica and Maple.

Sage currently uses Maxima through a pexpect interface.

However pexpect is slow, especially for performing numerous
small calculations.

It is hard to extend Maxima as it is written in lisp.

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Design Goals

Sage-Symbolics should be very fast.

Sage-Symbolics should be maintainable.

Sage-Symbolics should present a good platform to build more
complicated symbolic algorithms off of.

Most importantly, it must be easy to use.

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Design Goals

Sage-Symbolics should be very fast.

Sage-Symbolics should be maintainable.

Sage-Symbolics should present a good platform to build more
complicated symbolic algorithms off of.

Most importantly, it must be easy to use.

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Design Goals

Sage-Symbolics should be very fast.

Sage-Symbolics should be maintainable.

Sage-Symbolics should present a good platform to build more
complicated symbolic algorithms off of.

Most importantly, it must be easy to use.

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Design Goals

Sage-Symbolics should be very fast.

Sage-Symbolics should be maintainable.

Sage-Symbolics should present a good platform to build more
complicated symbolic algorithms off of.

Most importantly, it must be easy to use.

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Design Goals

Sage-Symbolics should be very fast.

Sage-Symbolics should be maintainable.

Sage-Symbolics should present a good platform to build more
complicated symbolic algorithms off of.

Most importantly, it must be easy to use.

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

More Design Goals

However, given an opportunity to start from scratch, we have
a rare chance to do it right.

Sage has a great mathematical type system (Coercion).

It contains a built in knowledge of Rings, Modules, etc.

We can use this to our advantage to design a significantly
more powerful symbolic manipulation platform.

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

New Frontier

Mathematica and Maple don’t have something analagous to
Coercion.

Poor native differential geometry support in most general
purpose CAS’s.

No easy way to do noncommutative symbolics.

No way to add new operations as first class objects.

Should we care?

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

New Frontier

Mathematica and Maple don’t have something analagous to
Coercion.

Poor native differential geometry support in most general
purpose CAS’s.

No easy way to do noncommutative symbolics.

No way to add new operations as first class objects.

Should we care?

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Physics

Quantum Field Theory – Indexed and Tensorial expressions

Quantum Mechanics – Noncommutative Expressions

General Relativity – Differential Geometry

Needs are only served by special case programs or code.

No general purpose enviroment for all needs.

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

More Design Goals

Noncommutative symbolic manipulations the natural starting
point.

Commutative symbols are a special case

Calculus is just a small fraction of what we have to support

Support for arbitrary types of symbols... let X be a matrix

Still has to be fast.

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Progress

Noncommutative operations “just work”

So do most calculus operations

Native support for unevaluated functions.

Native derivation

Symbolic Matricies (but no RREF yet)

Global Non-recursive pattern matching

Fast (But it could be even faster)

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Maxima Interface

Still using Maxima for complicated operations

Integrals, Factorization, Summation, Laplace

Assumptions don’t work yet, but are getting there.

The Maxima interface is faster then it used to be.

Unevaluated functions work better

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

f = 5*x*y*z +y**10*x

expand(f+int(10000*random())) * (f+int(10000*random())))

Sympy: 12.9 ms Symbolics: 4.25 ms Maxima: 57.4 ms

expand(f*(f+1) * (f+int(10000*random())) *
(f+int(10000*random())) * (f+int(10000*random())))

Sympy: 76.4 ms Symbolics: 41.4 ms Maxima: 47.1 ms

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

f = 5*x*y*z +y**10*x

expand(f+int(10000*random())) * (f+int(10000*random())))

Sympy: 12.9 ms Symbolics: 4.25 ms Maxima: 57.4 ms

expand(f*(f+1) * (f+int(10000*random())) *
(f+int(10000*random())) * (f+int(10000*random())))

Sympy: 76.4 ms Symbolics: 41.4 ms Maxima: 47.1 ms

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

expand(f*(f+1) * (f+int(10000*random())) *
(f+int(10000*random())) * (f+int(10000*random())) *
(f+int(10000*random())) * (f+int(10000*random())) *
(f+int(10000*random()))

Sympy: 379ms Symbolics: 113 ms Maxima: 93ms

expand(f*(f+1) * (f+int(10000*random())) * (f+int(10000 *
random())) * (f+int(10000*random())) *
(f+int(10000*random())) * (f+int(10000*random())) *
(f+int(10000*random())) * (f+int(10000*random())))

Symbolics: 171ms Maxima: 126 ms Mathematica: 4ms

Maxima through Sage

Sympy with caching enabled

Sympy with caching disabled performs really poorly

Sympy Core faster then symbolics right now*

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

expand(f*(f+1) * (f+int(10000*random())) *
(f+int(10000*random())) * (f+int(10000*random())) *
(f+int(10000*random())) * (f+int(10000*random())) *
(f+int(10000*random()))

Sympy: 379ms Symbolics: 113 ms Maxima: 93ms

expand(f*(f+1) * (f+int(10000*random())) * (f+int(10000 *
random())) * (f+int(10000*random())) *
(f+int(10000*random())) * (f+int(10000*random())) *
(f+int(10000*random())) * (f+int(10000*random())))

Symbolics: 171ms Maxima: 126 ms Mathematica: 4ms

Maxima through Sage

Sympy with caching enabled

Sympy with caching disabled performs really poorly

Sympy Core faster then symbolics right now*

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

expand(f*(f+1) * (f+int(10000*random())) *
(f+int(10000*random())) * (f+int(10000*random())) *
(f+int(10000*random())) * (f+int(10000*random())) *
(f+int(10000*random()))

Sympy: 379ms Symbolics: 113 ms Maxima: 93ms

expand(f*(f+1) * (f+int(10000*random())) * (f+int(10000 *
random())) * (f+int(10000*random())) *
(f+int(10000*random())) * (f+int(10000*random())) *
(f+int(10000*random())) * (f+int(10000*random())))

Symbolics: 171ms Maxima: 126 ms Mathematica: 4ms

Maxima through Sage

Sympy with caching enabled

Sympy with caching disabled performs really poorly

Sympy Core faster then symbolics right now*

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Analysis

Profilers: Memory initialization expensive

Use pools, help some via TPALLOC

Real problem is cython autogenerated TPNEW

Modify Cython to emit better code and link symbolics at once

Alternatively hand written C TPNEW functions

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Analysis

Noncommutative algebra detection code

Solution: Seperate Noncommutative and Commutative
multiplication classes

Excessive memory creation:

Change multiplication class for commutative rings to store
constant seprately

Change multiplication classes to store powers without an
additional class

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Analysis

Noncommutative algebra detection code

Solution: Seperate Noncommutative and Commutative
multiplication classes

Excessive memory creation:

Change multiplication class for commutative rings to store
constant seprately

Change multiplication classes to store powers without an
additional class

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Analysis

Not a flaw in the design – a consequence of wanting
noncommutative symbolics from the start

Can be fixed without too much trouble

1-3 order of magnitude speedup should be possible from these
changes.

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Near Term Goals (Next month)

Write enough of an assumption engine so that Maxima
assumptions work again (necessary for many integrals)

Finish trig default simplifications

Minimal piecewise function support (to current level of
support)

Symbolic polynomials should use libSingular

Seperate out noncommutative and commutative cases for
multiplication

Optimize memory creation overhead if necessary for merge

Write doctests, start formal review process

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Near Term Goals (Next month)

Write enough of an assumption engine so that Maxima
assumptions work again (necessary for many integrals)

Finish trig default simplifications

Minimal piecewise function support (to current level of
support)

Symbolic polynomials should use libSingular

Seperate out noncommutative and commutative cases for
multiplication

Optimize memory creation overhead if necessary for merge

Write doctests, start formal review process

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Future Plans

Switch all simplification to new pattern matching engine

Full differential geometry support

Optimize memory creation overhead (running theme)

More advanced algorithms for addition/multiplication?

Basic integration algorithms

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Demoes

Now I will show some demoes of what I have done.

Gary Furnish Sage Symbolics

Introduction
Progress

Benchmarks
Future Plans

Questions

Questions?

Gary Furnish Sage Symbolics

	Introduction
	Progress
	Benchmarks
	Future Plans

