THE NEUMANN-TO-DIRICHLET MAP DETERMINES CONNECTION STRUCTURE FOR CIRCULAR PLANAR NETWORKS

NATE BOTTMAN

Fix a circular planar network $\Gamma = (G, \gamma)$, where the underlying graph G is an ordered pair (V, E), where V is disjointly partitioned as $\partial V \cup \text{int } V$. Let **H** denote the Neumann-to-Dirichlet map, which maps a boundary voltage to the unique normalized boundary current. Consider the two following theorems.

Theorem 1. Let $P = (p_1, \ldots, p_k)$ and $Q = (q_1, \ldots, q_k)$ be two sequences of boundary nodes. Define

$$\mathbf{L} = \begin{pmatrix} (\eta_{p_1q_1} - \eta_{p_1q_k}) - (\eta_{p_kq_1} - \eta_{p_kq_k}) & \dots & (\eta_{p_1q_{k-1}} - \eta_{p_1q_k}) - (\eta_{p_kq_{k-1}} - \eta_{p_kq_k}) \\ \vdots & \ddots & \vdots \\ (\eta_{p_{k-1}q_1} - \eta_{p_{k-1}q_k}) - (\eta_{p_kq_1} - \eta_{p_kq_k}) & \dots & (\eta_{p_{k-1}q_{k-1}} - \eta_{p_{k-1}q_k}) - (\eta_{p_kq_{k-1}} - \eta_{p_kq_k}) \end{pmatrix}.$$

If \mathbf{L} is singular, there does not exist a connection between P and Q.

Proof. To start off, some notation: let $S = \partial V \setminus (P \cup Q)$. Assume that **L** is singular. Then there exists $\mathbf{x} = \begin{pmatrix} x_1 & \dots & x_{k-1} \end{pmatrix}^T \neq 0$ such that $\mathbf{L}\mathbf{x} = \mathbf{0}$. It follows that

$$\begin{pmatrix} (\eta_{p_1q_1} - \eta_{p_1q_k}) - (\eta_{p_kq_1} - \eta_{p_kq_k}) & \dots & (\eta_{p_1q_{k-1}} - \eta_{p_1q_k}) - (\eta_{p_kq_{k-1}} - \eta_{p_kq_k}) \\ \vdots & \ddots & \vdots \\ (\eta_{p_{k-1}q_1} - \eta_{p_{k-1}q_k}) - (\eta_{p_kq_1} - \eta_{p_kq_k}) & \dots & (\eta_{p_{k-1}q_{k-1}} - \eta_{p_{k-1}q_k}) - (\eta_{p_kq_{k-1}} - \eta_{p_kq_k}) \\ 0 & \dots & 0 \end{pmatrix} \mathbf{x} = \mathbf{0}.$$

Next, it follows that

$$\begin{pmatrix} \eta_{p_1q_1} - \eta_{p_1q_k} & \dots & \eta_{p_1q_{k-1}} - \eta_{p_1q_k} \\ \dots & \ddots & \dots \\ \eta_{p_kq_1} - \eta_{p_kq_k} & \dots & \eta_{p_kq_{k-1}} - \eta_{p_kq_k} \end{pmatrix} \mathbf{x} = \alpha \mathbf{e},$$

where $\alpha = (\eta_{p_k q_1} - \eta_{p_k q_k} \dots \eta_{p_k q_{k-1}} - \eta_{p_k q_k}) \mathbf{x}$ and **e** is the ones vector of appropriate length. Finally, it follows that

$$\begin{pmatrix} \eta_{p_1q_1} & \dots & \eta_{p_1q_k} \\ \vdots & \ddots & \vdots \\ \eta_{p_kq_1} & \dots & \eta_{p_kq_k} \end{pmatrix} \mathbf{y} = \alpha \mathbf{e},$$

where

It follows that there exists
$$\mathbf{y} \neq 0$$
 such that $\mathbf{H}(P; Q) \mathbf{y} = \alpha \mathbf{e}$, with the property that the element sum over \mathbf{y} is zero.

 $\mathbf{y} = \begin{pmatrix} x_1 \\ \vdots \\ x_{k-1} \\ -\sum_{i=1}^{k-1} x_i \end{pmatrix}.$

This work implies that

$$\begin{pmatrix} \mathbf{H}(P;P) & \mathbf{H}(P;S) & \mathbf{H}(P;Q) \end{pmatrix} \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{y} \end{pmatrix} = \alpha \mathbf{e}.$$

This equation in turn implies that

$$\begin{pmatrix} \mathbf{H}(P;P) & \mathbf{H}(P;S) & \mathbf{H}(P;Q) \\ \mathbf{H}(P;S)^{T} & \mathbf{H}(S;S) & \mathbf{H}(S;Q) \\ \mathbf{H}(P;Q)^{T} & \mathbf{H}(S;Q)^{T} & \mathbf{H}(Q;Q) \end{pmatrix} \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{y} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{z}_{1} \\ \mathbf{z}_{2} \end{pmatrix} + \alpha \mathbf{e},$$

where $\mathbf{z}_1 = \mathbf{H}(S; Q) \mathbf{x} - \alpha \mathbf{e}$ and $\mathbf{z}_2 = \mathbf{H}(Q; Q) - \alpha \mathbf{e}$. That is,

$$\mathbf{H}\begin{pmatrix}\mathbf{0}\\\mathbf{0}\\\mathbf{y}\end{pmatrix} = \begin{pmatrix}\mathbf{0}\\\mathbf{z}_1\\\mathbf{z}_2\end{pmatrix} + \alpha \mathbf{e}.$$

Note that since the element sum over \mathbf{y} is zero, we have shown that the potential $\begin{pmatrix} \mathbf{0} & \mathbf{z}_1 & \mathbf{z}_2 \end{pmatrix}^T + \alpha \mathbf{e}$ solves the Neumann problem for the input current $\begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{y} \end{pmatrix}^T$. Since no normalization is required for the Dirichlet problem, it follows that the potential $\begin{pmatrix} \mathbf{0} & \mathbf{z}_1 & \mathbf{z}_2 \end{pmatrix}^T$ induces the current $\begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{y} \end{pmatrix}^T$. It follows that the vector $\begin{pmatrix} \mathbf{z}_1 & \mathbf{z}_2 \end{pmatrix}^T$ is nonzero: if it was the zero vector, the input potential $\begin{pmatrix} \mathbf{0} & \mathbf{z}_1 & \mathbf{z}_2 \end{pmatrix}^T$ would be constant, which would imply that the output current $\begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{y} \end{pmatrix}^T$ is constant, which would imply that the output current $\begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{y} \end{pmatrix}^T$ is constant, which would imply that the output current $\begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{y} \end{pmatrix}^T$ is constant, which would imply that the output current $\begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{y} \end{pmatrix}^T$ is constant, which would imply that the output current $\begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{y} \end{pmatrix}^T$ is constant, which would imply that the output current $\begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{y} \end{pmatrix}^T$ is constant, which would imply that the output current $\begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{y} \end{pmatrix}^T$ is constant, which would imply that the output current $\begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{y} \end{pmatrix}^T$ is constant, which would imply that the output current $\begin{pmatrix} \mathbf{0} & \mathbf{0} & \mathbf{y} \end{pmatrix}^T$ is constant, which would imply that \mathbf{y} is the zero vector.

This work shows that the equation

$$egin{array}{c} \Lambda \left(egin{array}{c} 0 \ \mathbf{z}_1 \ \mathbf{z}_2 \end{array}
ight) = \left(egin{array}{c} 0 \ 0 \ \mathbf{y} \end{array}
ight)$$

holds, which implies that

$$\boldsymbol{\Lambda}(P,S;S,Q)\left(\begin{array}{c} \mathbf{z}_1\\ \mathbf{z}_2 \end{array}\right) = \mathbf{0}.$$

Since $\begin{pmatrix} \mathbf{z}_1 & \mathbf{z}_2 \end{pmatrix}^T$ is nonzero, it follows that $\mathbf{\Lambda}(P, S; S, Q)$ is singular. The connection-determinant formula implies that there does not exist a connection between P and Q.

Theorem 2. Let $P = (p_1, \ldots, p_k)$ and $Q = (q_1, \ldots, q_k)$ be two sequences of boundary nodes. Define **L** in the previous fashion. If **L** is nonsingular, there exists a connection between P and Q.

Proof. Let's prove the contrapositive of the claim. Assume that there does not exist a connection between P and Q. Note that the proof of the previous claim is reversible; that is, under the assumption that there does not exists a connection between P and Q, the previous argument implies that \mathbf{L} is singular. The contrapositive follows.

The title of this paper is now justified.