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Fix a circular planar network Γ = (G, γ), where the underlying graph G is an ordered pair (V,E), where V
is disjointly partitioned as ∂V ∪ int V . Let H denote the Neumann-to-Dirichlet map, which maps a boundary
voltage to the unique normalized boundary current. Consider the two following theorems.

Theorem 1. Let P = (p1, . . . , pk) and Q = (q1, . . . , qk) be two sequences of boundary nodes. Define

L =

 (ηp1q1 − ηp1qk
)− (ηpkq1 − ηpkqk

) . . .
(
ηp1qk−1 − ηp1qk

)
−
(
ηpkqk−1 − ηpkqk

)
...

. . .
...(

ηpk−1q1 − ηpk−1qk

)
− (ηpkq1 − ηpkqk

) . . .
(
ηpk−1qk−1 − ηpk−1qk

)
−
(
ηpkqk−1 − ηpkqk

)
 .

If L is singular, there does not exist a connection between P and Q.

Proof. To start off, some notation: let S = ∂V \ (P ∪Q). Assume that L is singular. Then there exists
x =

(
x1 . . . xk−1

)T 6= 0 such that Lx = 0. It follows that
(ηp1q1 − ηp1qk

)− (ηpkq1 − ηpkqk
) . . .

(
ηp1qk−1 − ηp1qk

)
−
(
ηpkqk−1 − ηpkqk

)
...

. . .
...(

ηpk−1q1 − ηpk−1qk

)
− (ηpkq1 − ηpkqk

) . . .
(
ηpk−1qk−1 − ηpk−1qk

)
−
(
ηpkqk−1 − ηpkqk

)
0 . . . 0

x = 0.

Next, it follows that  ηp1q1 − ηp1qk
. . . ηp1qk−1 − ηp1qk

. . .
. . . . . .

ηpkq1 − ηpkqk
. . . ηpkqk−1 − ηpkqk

x = αe,

where α =
(
ηpkq1 − ηpkqk

. . . ηpkqk−1 − ηpkqk

)
x and e is the ones vector of appropriate length. Finally,

it follows that  ηp1q1 . . . ηp1qk

...
. . .

...
ηpkq1 . . . ηpkqk

y = αe,

where

y =


x1

...
xk−1

−
∑k−1

j=1 xj

 .

It follows that there exists y 6= 0 such that H (P ;Q) y = αe, with the property that the element sum over
y is zero.

This work implies that

(
H (P ;P ) H (P ;S) H (P ;Q)

) 0
0
y

 = αe.
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This equation in turn implies that H (P ;P ) H (P ;S) H (P ;Q)
H (P ;S)T H (S;S) H (S;Q)
H (P ;Q)T H (S;Q)T H (Q;Q)

 0
0
y

 =

 0
z1

z2

+ αe,

where z1 = H (S;Q) x− αe and z2 = H (Q;Q)− αe. That is,

H

 0
0
y

 =

 0
z1

z2

+ αe.

Note that since the element sum over y is zero, we have shown that the potential
(

0 z1 z2

)T + αe

solves the Neumann problem for the input current
(

0 0 y
)T . Since no normalization is required for

the Dirichlet problem, it follows that the potential
(

0 z1 z2

)T induces the current
(

0 0 y
)T . It

follows that the vector
(

z1 z2

)T is nonzero: if it was the zero vector, the input potential
(

0 z1 z2

)T
would be constant, which would imply that the output current

(
0 0 y

)T is constant, which would imply
that y is the zero vector.

This work shows that the equation

Λ

 0
z1

z2

 =

 0
0
y


holds, which implies that

Λ (P, S;S,Q)
(

z1

z2

)
= 0.

Since
(

z1 z2

)T is nonzero, it follows that Λ (P, S;S,Q) is singular. The connection-determinant formula
implies that there does not exist a connection between P and Q. �

Theorem 2. Let P = (p1, . . . , pk) and Q = (q1, . . . , qk) be two sequences of boundary nodes. Define L in
the previous fashion. If L is nonsingular, there exists a connection between P and Q.

Proof. Let’s prove the contrapositive of the claim. Assume that there does not exist a connection between
P and Q. Note that the proof of the previous claim is reversible; that is, under the assumption that there
does not exists a connection between P and Q, the previous argument implies that L is singular. The
contrapositive follows. �

The title of this paper is now justified.
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