THE NEUMANN-TO-DIRICHLET MAP DETERMINES CONNECTION STRUCTURE FOR CIRCULAR PLANAR NETWORKS

NATE BOTTMAN

Fix a circular planar network $\Gamma=(G, \gamma)$, where the underlying graph G is an ordered pair (V, E), where V is disjointly partitioned as $\partial V \cup$ int V. Let \mathbf{H} denote the Neumann-to-Dirichlet map, which maps a boundary voltage to the unique normalized boundary current. Consider the two following theorems.

Theorem 1. Let $P=\left(p_{1}, \ldots, p_{k}\right)$ and $Q=\left(q_{1}, \ldots, q_{k}\right)$ be two sequences of boundary nodes. Define

$$
\mathbf{L}=\left(\begin{array}{ccc}
\left(\eta_{p_{1} q_{1}}-\eta_{p_{1} q_{k}}\right)-\left(\eta_{p_{k} q_{1}}-\eta_{p_{k} q_{k}}\right) & \cdots & \left(\eta_{p_{1} q_{k-1}}-\eta_{p_{1} q_{k}}\right)-\left(\eta_{p_{k} q_{k-1}}-\eta_{p_{k} q_{k}}\right) \\
\vdots & \ddots & \vdots \\
\left(\eta_{p_{k-1} q_{1}}-\eta_{p_{k-1} q_{k}}\right)-\left(\eta_{p_{k} q_{1}}-\eta_{p_{k} q_{k}}\right) & \cdots & \left(\eta_{p_{k-1} q_{k-1}}-\eta_{p_{k-1} q_{k}}\right)-\left(\eta_{p_{k} q_{k-1}}-\eta_{p_{k} q_{k}}\right)
\end{array}\right) .
$$

If \mathbf{L} is singular, there does not exist a connection between P and Q.
Proof. To start off, some notation: let $S=\partial V \backslash(P \cup Q)$. Assume that \mathbf{L} is singular. Then there exists $\mathbf{x}=\left(\begin{array}{lll}x_{1} & \ldots & x_{k-1}\end{array}\right)^{T} \neq 0$ such that $\mathbf{L x}=\mathbf{0}$. It follows that

$$
\left(\begin{array}{ccc}
\left(\eta_{p_{1} q_{1}}-\eta_{p_{1} q_{k}}\right)-\left(\eta_{p_{k} q_{1}}-\eta_{p_{k} q_{k}}\right) & \cdots & \left(\eta_{p_{1} q_{k-1}}-\eta_{p_{1} q_{k}}\right)-\left(\eta_{p_{k} q_{k-1}}-\eta_{p_{k} q_{k}}\right) \\
\vdots & \ddots & \vdots \\
\left(\eta_{p_{k-1} q_{1}}-\eta_{p_{k-1} q_{k}}\right)-\left(\eta_{p_{k} q_{1}}-\eta_{p_{k} q_{k}}\right) & \ldots & \left(\eta_{p_{k-1} q_{k-1}}-\eta_{p_{k-1} q_{k}}\right)-\left(\eta_{p_{k} q_{k-1}}-\eta_{p_{k} q_{k}}\right)
\end{array}\right) \mathbf{0}=\mathbf{0}
$$

Next, it follows that

$$
\left(\begin{array}{ccc}
\eta_{p_{1} q_{1}}-\eta_{p_{1} q_{k}} & \ldots & \eta_{p_{1} q_{k-1}}-\eta_{p_{1} q_{k}} \\
\ldots & \ddots & \ldots \\
\eta_{p_{k} q_{1}}-\eta_{p_{k} q_{k}} & \ldots & \eta_{p_{k} q_{k-1}}-\eta_{p_{k} q_{k}}
\end{array}\right) \mathbf{x}=\alpha \mathbf{e}
$$

where $\alpha=\left(\begin{array}{lll}\eta_{p_{k} q_{1}}-\eta_{p_{k} q_{k}} & \cdots & \eta_{p_{k} q_{k-1}}-\eta_{p_{k} q_{k}}\end{array}\right) \mathbf{x}$ and \mathbf{e} is the ones vector of appropriate length. Finally, it follows that

$$
\left(\begin{array}{ccc}
\eta_{p_{1} q_{1}} & \ldots & \eta_{p_{1} q_{k}} \\
\vdots & \ddots & \vdots \\
\eta_{p_{k} q_{1}} & \ldots & \eta_{p_{k} q_{k}}
\end{array}\right) \mathbf{y}=\alpha \mathbf{e}
$$

where

$$
\mathbf{y}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{k-1} \\
-\sum_{j=1}^{k-1} x_{j}
\end{array}\right)
$$

It follows that there exists $\mathbf{y} \neq 0$ such that $\mathbf{H}(P ; Q) \mathbf{y}=\alpha \mathbf{e}$, with the property that the element sum over \mathbf{y} is zero.

This work implies that

$$
\left(\begin{array}{lll}
\mathbf{H}(P ; P) & \mathbf{H}(P ; S) & \mathbf{H}(P ; Q)
\end{array}\right)\left(\begin{array}{c}
\mathbf{0} \\
\mathbf{0} \\
\mathbf{y}
\end{array}\right)=\alpha \mathbf{e}
$$

This equation in turn implies that

$$
\left(\begin{array}{ccc}
\mathbf{H}(P ; P) & \mathbf{H}(P ; S) & \mathbf{H}(P ; Q) \\
\mathbf{H}(P ; S)^{T} & \mathbf{H}(S ; S) & \mathbf{H}(S ; Q) \\
\mathbf{H}(P ; Q)^{T} & \mathbf{H}(S ; Q)^{T} & \mathbf{H}(Q ; Q)
\end{array}\right)\left(\begin{array}{c}
\mathbf{0} \\
\mathbf{0} \\
\mathbf{y}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{0} \\
\mathbf{z}_{1} \\
\mathbf{z}_{2}
\end{array}\right)+\alpha \mathbf{e}
$$

where $\mathbf{z}_{1}=\mathbf{H}(S ; Q) \mathbf{x}-\alpha \mathbf{e}$ and $\mathbf{z}_{2}=\mathbf{H}(Q ; Q)-\alpha \mathbf{e}$. That is,

$$
\mathbf{H}\left(\begin{array}{c}
\mathbf{0} \\
\mathbf{0} \\
\mathbf{y}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{0} \\
\mathbf{z}_{1} \\
\mathbf{z}_{2}
\end{array}\right)+\alpha \mathbf{e}
$$

Note that since the element sum over \mathbf{y} is zero, we have shown that the potential $\left(\begin{array}{lll}\mathbf{0} & \mathbf{z}_{1} & \mathbf{z}_{2}\end{array}\right)^{T}+\alpha \mathbf{e}$ solves the Neumann problem for the input current $\left(\begin{array}{lll}\mathbf{0} & \mathbf{0} & \mathbf{y}\end{array}\right)^{T}$. Since no normalization is required for the Dirichlet problem, it follows that the potential $\left(\begin{array}{lll}\mathbf{0} & \mathbf{z}_{1} & \mathbf{z}_{2}\end{array}\right)^{T}$ induces the current $\left(\begin{array}{lll}\mathbf{0} & \mathbf{0} & \mathbf{y}\end{array}\right)^{T}$. It follows that the vector $\left(\begin{array}{ll}\mathbf{z}_{1} & \mathbf{z}_{2}\end{array}\right)^{T}$ is nonzero: if it was the zero vector, the input potential $\left(\begin{array}{lll}\mathbf{0} & \mathbf{z}_{1} & \mathbf{z}_{2}\end{array}\right)^{T}$ would be constant, which would imply that the output current $\left(\begin{array}{lll}\mathbf{0} & \mathbf{0} & \mathbf{y}\end{array}\right)^{T}$ is constant, which would imply that \mathbf{y} is the zero vector.

This work shows that the equation

$$
\boldsymbol{\Lambda}\left(\begin{array}{c}
\mathbf{0} \\
\mathbf{z}_{1} \\
\mathbf{z}_{2}
\end{array}\right)=\left(\begin{array}{l}
\mathbf{0} \\
\mathbf{0} \\
\mathbf{y}
\end{array}\right)
$$

holds, which implies that

$$
\boldsymbol{\Lambda}(P, S ; S, Q)\binom{\mathbf{z}_{1}}{\mathbf{z}_{2}}=\mathbf{0}
$$

Since $\left(\begin{array}{ll}\mathbf{z}_{1} & \mathbf{z}_{2}\end{array}\right)^{T}$ is nonzero, it follows that $\boldsymbol{\Lambda}(P, S ; S, Q)$ is singular. The connection-determinant formula implies that there does not exist a connection between P and Q.

Theorem 2. Let $P=\left(p_{1}, \ldots, p_{k}\right)$ and $Q=\left(q_{1}, \ldots, q_{k}\right)$ be two sequences of boundary nodes. Define \mathbf{L} in the previous fashion. If \mathbf{L} is nonsingular, there exists a connection between P and Q.

Proof. Let's prove the contrapositive of the claim. Assume that there does not exist a connection between P and Q. Note that the proof of the previous claim is reversible; that is, under the assumption that there does not exists a connection between P and Q, the previous argument implies that \mathbf{L} is singular. The contrapositive follows.

The title of this paper is now justified.

