COMPLEXERS FROM STARS

LINDSAY ERICKSON

Abstract

A complexer is a plexer on a graph with an admittance function γ such that the positive real-valued entries in the response correspond exactly to the members of Π^{K}, the known set of the plexer's partition. A star network whose admittances conform to certain conditions becomes a complexer via a $\star-K$ transformation. This paper defines those conditions, thereby providing a way to cook up a complexer on a star by choosing an appropriate admittance function.

Contents

1. Simple Parallel Edges and their Admittances 1
2. Nifty Results from Complex Algebra 3
3. Complex-Valued $\star-K$ Transformations 5
4. Complexers 5
5. Cooking up Complexers on Stars 6
6. Unusual Small Partitions 9
7. Demonstrations 10
References 12

1. Simple Parallel Edges and their Admittances

In this paper I use $i=\sqrt{-1}$. All indices therefore appear as j, k, l.
Admittance is the periodic-voltage analogue of conductance. Admittances of circuit elements are represented on the complex plane as follows, with Y representing admittance and ω representing the angular frequency of the voltage across the circuit element:

For a resistor with resistance $R \in \mathbb{R}^{+}, Y=\frac{1}{R}$. It is independent of ω.
For a capacitor with capacitance $C \in \mathbb{R}^{+}, Y=i \omega C$
For an inductor with inductance $L \in \mathbb{R}^{+}, Y=\frac{1}{i \omega L}=\frac{-i}{\omega L}$.
I will consider networks where the potentials are periodic functions of one ω.
When circuit elements are combined in parallel or in series along an edge, that edge has a well-defined equivalent admittance (denoted $Y_{e q}$) according to two rules of addition:

[^0]- For m admittances $Y_{1}, Y_{2}, \cdots, Y_{m}$ in parallel, $Y_{e q}=Y_{1}+Y_{2}+\cdots+Y_{m}$.
- For n admittances $Y_{1}, Y_{2}, \cdots, Y_{n}$ in series, $Y_{e q}=\left(Y_{1}^{-1}+Y_{2}^{-1}+\cdots+Y_{n}^{-1}\right)^{-1}$.

Definition 1.1. An R-edge is an edge consisting only of resistors in series; an L-edge is an edge consisting only of inductors in series, and a C-edge is an edge consisting only of capacitors in series. Likewise, an $R C$-edge consists of resistors and capacitors in series; an $R L$-edge consists of resistors and inductors in series; an $L C$-edge consists of inductors and capacitors in series; and an $R L C$-edge consists of all three types of elements in series. Each edge has a well-defined $Y_{e q}$ found by adding the elements in series.

Definition 1.2. A simple parallel edge is a parallel connection consisting of at least one of the following: an R-edge, an RC-edge, an RL-edge, an RLC-edge. It may also consist of C-edges, L-edges and LC-edges, though that is not required. This paper considers networks made up of simple parallel edges. Such networks have a unique Dirichlet solution [1].

Figure 1. The set of all possible simple admittances for fixed ω in the complex plane. Simple admittances always lie in the right half-plane.

Definition 1.3. A simple admittance is the associated $Y_{e q}$ of a simple parallel edge.

A simple admittance γ as a function of ω is of the form:

$$
\begin{aligned}
\gamma(\omega) & =f+\omega g+\frac{-h}{\omega}+\left[\frac{1}{p_{1}\left(\omega-\xi_{p_{1}}\right)}+\cdots+\frac{1}{p_{d}\left(\omega-\xi_{p_{d}}\right)}\right] \\
& +\left[\frac{1}{q_{1}\left(\omega-\beta_{q_{1}}\right)}+\cdots+\frac{1}{q_{m}\left(\omega-\beta_{q_{m}}\right)}\right]+\left[\frac{\omega r_{1}}{\left(\omega-\delta_{r_{1}}\right)\left(\omega-\psi_{r_{1}}\right)}+\cdots+\frac{\omega r_{n}}{\left(\omega-\delta_{r_{n}}\right)\left(\omega-\psi_{r_{n}}\right)}\right] \\
& +\left[\frac{\omega s_{t}}{\left(\omega-\mu_{s_{1}}\right)\left(\omega-\tau_{s_{1}}\right)}+\cdots+\frac{\omega s_{t}}{\left(\omega-\mu_{s_{t}}\right)\left(\omega-\tau_{s_{t}}\right)}\right]
\end{aligned}
$$

where

- $f \in \mathbb{R}^{+}$
- $g, h \in i \mathbb{R}$
- $p_{j}=i L$ and
$\xi_{p_{j}}=\frac{i R}{L}$ for each RL-edge from 1 to d
- $q_{j}=\frac{1}{i C}$ and
$\beta_{q_{j}}=\frac{1}{i R C}$ for each RC-edge from 1 to m
- $r_{j}=C$ and
$\delta_{r_{j}}, \psi_{r_{j}}$ are the roots of the quadratic equation $i L C \omega^{2}-i$ for each LC-edge from 1 to n
- $s_{j}=C$ and
$\mu_{s_{j}}, \tau_{s_{j}}$ are the roots of the quadratic equation $i L C \omega^{2}+C R \omega-i$ for each RLC-edge from 1 to t
Note that in the remainder of this paper I will refer to simple admittances as admittances of the form $\alpha_{0}+\alpha_{1} i$, where $\alpha_{0} \in \mathbb{R}^{+}$and $\alpha_{1} \in \mathbb{R}$ as in Figure 1.

Remark 1.4. A sum of simple admittances is also a simple admittance; the set is closed under addition.

2. Nifty Results from Complex Algebra

It is useful to identify complex numbers with vectors in \mathbb{R}^{2}. The symbol \sim represents identification.
Lemma 2.1 (The Parallel Lemma). For two complex numbers

$$
\begin{aligned}
x=x_{0}+i x_{1} & \sim\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right] \\
y=y_{0}+i y_{1} & \sim\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]
\end{aligned}
$$

$x y$ is real if and only if $x \| \bar{y}$ in \mathbb{R}^{2}.
Proof. Take $\bar{y} \sim\left[\begin{array}{c}y_{0} \\ -y_{1}\end{array}\right]$. Define a new vector \bar{y}^{\prime} orthogonal to the vector \bar{y} by multiplying the complex number \bar{y} by i so that $\bar{y}^{\prime} \sim\left[\begin{array}{l}y_{1} \\ y_{0}\end{array}\right]$.
The product $x y$ is real if and only if $\Im(x y)=x_{0} y_{1}+x_{1} y_{0}=0$. But it is also the case that $x \cdot \bar{y}^{\prime}=x_{0} y_{1}+x_{1} y_{0}$. So $x y$ is real if and only if the vector x is orthogonal to \bar{y}^{\prime}. Since \bar{y}^{\prime} is also orthogonal to \bar{y}, it follows that $x y$ is real if and only if $x \| \bar{y}$ in \mathbb{R}^{2}.

Figure 2. The Conjugate Lemma: $x \| \eta \bar{y}$ if and only if x is parallel to y conjugated over the line proportional to $\sqrt{\eta}$.

From here on, the notation $x \| y$ means that $\arg (x)=\arg (y)$.
Lemma 2.2 (The Conjugate Lemma). For complex numbers $x, y, \eta, x \| \eta \bar{y}$ if and only if x is parallel to y conjugated over the line proportional to $\sqrt{\eta}$.

Proof. Take y and η as in Figure 2, where

$$
\begin{aligned}
y & =y_{0} e^{i \theta}, y_{0} \in \mathbb{R} \\
\eta & =\eta_{0} e^{i \phi}, \eta_{0} \in \mathbb{R}
\end{aligned}
$$

Note that $\sqrt{\eta} \| e^{\frac{1}{2} \phi}$. Now take $x \| \eta \bar{y}$. This is true exactly when $x \| e^{i(\phi-\theta)}$, so $\arg (x)-\arg (\sqrt{\eta})=\frac{1}{2} \phi-\theta$. Also, $\arg (y)-\arg (\sqrt{\eta})=\theta-\frac{1}{2} \phi$. So x is parallel to the conjugate of y across the line proportional to $\sqrt{\eta}$ if and only if $x \| \eta \bar{y}$.

Figure 3. When η is a simple admittance, the open shaded region in the complex plane represents all possible values for $\sqrt{\eta}$.

3. Complex-Valued $\star-K$ Transformations

Definition 3.1. An n-star, denoted \star_{n}, is a connected graph with exactly one interior node, n boundary nodes, and no boundary-to-boundary connections.

In this section I will consider networks consisting of a \star_{n} with an associated simple admittance function γ on its edges. For such a network, the $\star-K$ transformation defines the complete graph that corresponds to the response matrix Λ according to the formula in [2]:

$$
\begin{equation*}
\lambda_{j k}=\frac{\gamma_{j} \gamma_{k}}{\sigma} \tag{1}
\end{equation*}
$$

where $\sigma=\gamma_{1}+\gamma_{2}+\cdots+\gamma_{n}$.

4. Complexers

Definition 4.1. A plexer is an ordered pair $P=(G, \Pi)$ where G is a graph with boundary and Π is a nontrivial partition of the set of all distinct unordered pairs of boundary vertices. The partition $\Pi=\left(\Pi^{U}, \Pi^{K}\right)$ defines two sets: the unknown set (consisting of unknown pairs) and the known set (consisting of known pairs). P has the following properties:
(1) For a valid response matrix on G, given only the values of the entries corresponding to the known pairs, it is not possible to determine the values of any entry corresponding to an unknown pair.
(2) For a valid response matrix on G, given only the values of the entries corresponding to known pairs and one unknown pair, we can recover the entire response matrix.
A catalogue of plexers appears in [3].
Definition 4.2. A complexer is an ordered triple $C=(G, \Pi, \gamma)$ where (G, Π) is a plexer and γ is a simple admittance function on G 's edges. Additionally, the known set Π^{K} in P must correspond exactly to the positive real entries in the response matrix Λ for G; equivalently, the unknown set Π^{U} must correspond exactly to the union of the nonreal and negative real entries in Λ.

A k-complexer is a complexer such that $\left|\Pi^{U}\right|=k$.
The following definitions are adapted from [3]:
Definition 4.3. A $\Pi_{m \oplus(n-m)}$ complexer is a complexer such that the nonreal entries, or Π^{U}, in Λ correspond exactly to a K_{m} and a K_{n-m}, disjoint, on the boundary nodes.

Definition 4.4. A $\Pi_{m, n-m}$ complexer, where $m=1$ or 2 , is a complexer such that the real entries Π_{K} in Λ correspond exactly to a K_{n} and a K_{n-m}, disjoint, on the boundary nodes.

Remark 4.5. Strictly speaking, $\left(\star_{4}, \Pi_{2,2}, \gamma\right)$, where γ a simple admittance function, is not a complexer because it is not the case that, given one unknown entry in Λ, one may recover all the unknown entries in Λ. This triple still has interesting algebraic properties that I discuss in Section 6.

Definition 4.6. A $\Pi_{l \oplus(m-l), n-m}$ complexer is a complexer such that the real entries Π^{K} in Λ correspond exactly to a K_{n-m} and a $K_{l, m-l}$, disjoint, on the boundary nodes.

5. Cooking up Complexers on Stars

Some stars become complexers via a $\star-K$ transformation. All and only these stars satisfy certain conditions on their admittances, so it is possible to cook up complexers by choosing the appropriate admittance function on a star and then transforming it into a K.

Remark 5.1. First, an explanation of my notation. In the figures that follow, the labels a_{j}, b_{j} and c_{j} that appear next to each node represent the values of the admittances on the corresponding edges of the original star. (Figure 4)

Figure 4. The graph on the left is the original \star_{4} with a simple admittance function on its edges; it transforms to the K_{4} on the right. The labels $a_{1}, a_{2}, b_{1}, b_{2}$ on the K are the admittances on the corresponding edges of the original star.

It is important to remember that every complexer started as a \star_{n} and underwent a $\star-K$ transformation.

In this section, take a \star_{n} with associated simple admittances γ_{j} on its edges. Recall that $\sigma=\gamma_{1}+\cdots+\gamma_{n}$ is in the right half-plane.

Theorem 5.2. When $n \geq 4, a \star_{n}$ will transform to $a \Pi_{m \oplus n-m}$ complexer (Figure 5) if and only if it satisfies the following conditions:
(1) $a_{1}\left\|a_{2}\right\| \cdots \| a_{m}$
(2) $b_{1}\left\|b_{2}\right\| \cdots \| b_{n-m}$
(3) $a_{1} \| \sigma \overline{b_{1}}$
(4) $b_{1} \nVdash a_{1}$

Proof. For all the edges between the a_{j} and b_{k} to be real-valued, it must be the case that for all j from 1 to m and for all k from 1 to $n-m$,

$$
\begin{aligned}
& \frac{a_{j} b_{k}}{\sigma} \in \mathbb{R} \\
\Leftrightarrow & a_{j} \| \overline{\left(\frac{b_{k}}{\sigma}\right)} \\
\Leftrightarrow & a_{j} \| \overline{\sigma b_{k}}
\end{aligned}
$$

Figure 5. This is Π^{K} of a $\Pi_{m \oplus(n-m)}$ complexer. It is the complement of Π^{U}. All and only these edges in the complete graph on these n vertices correspond to response entries in \mathbb{R}^{+}.

In other words, Conditions 1, 2 and 3 taken together. This guarantees that every edge in Π^{K} is real-valued. Now we must guarantee that no edge in Π^{U} is real. That is to say, for all j and k,

$$
\begin{aligned}
& \frac{b_{j} b_{k}}{\sigma} \notin \mathbb{R} \\
\Leftrightarrow & b_{j} \nVdash \overline{\left(\frac{b_{k}}{\sigma}\right)} \\
\Leftrightarrow & b_{j} \nVdash a_{1}, \text { because } a_{1} \| \overline{\left(\frac{b_{k}}{\sigma}\right)}
\end{aligned}
$$

This is Condition 4. It guarantees that no edge in Π^{U} is real. By definition this is a $\Pi_{m \oplus(n-m)}$ complexer.

Corollary 5.3. When $n \geq 4, a \star_{n}$ that transforms to $a \Pi_{m \oplus(n-m)}$ complexer has no real-valued admittances.

Proof. First assume that one of the a_{j} is real. Then all the other a_{j} are real too. By the Conjugate Lemma, all the b_{k} are parallel to σ. Then σ and all the b_{k} must be real; if they were not, then σ could not be the sum of the admittances. But then $a_{1} \| b_{1}$, which contradicts Condition 4. So none of the a_{j} is real. Similarly, none of the b_{k} is real.

Theorem 5.4. When $n-m \geq 3$ and $l, m-l \geq 1$, $a \star_{n}$ will transform to a $\Pi_{l \oplus(m-l), n-m}$ complexer (Figure 6) if and only if it satisfies the following conditions:
(1) $a_{1}\left\|a_{2}\right\| \cdots \| a_{l}$
(2) $b_{1}\left\|b_{2}\right\| \cdots \| b_{m-l}$
(3) $a_{1} \| \sigma \overline{b_{1}}$
(4) $c_{1}\left\|c_{2}\right\| \cdots\left\|c_{n-m}\right\| \sqrt{\sigma}$
(5) $a_{1} \nVdash b_{1}$

Figure 6. This is Π^{K} of a $\Pi_{l \oplus(m-l), n-m}$ complexer. It is the complement of Π^{U}. All and only these edges in the complete graph on these n vertices correspond to response entries in \mathbb{R}^{+}.

Proof. Conditions 1, 2 and 3 follow from the proof of Theorem 5.2. In addition, it must be the case that for all j, k from 1 to r,

$$
\begin{array}{ll}
& \frac{c_{j} c_{k}}{\sigma} \in \mathbb{R} \\
\Leftrightarrow & c_{j} \| \sigma \overline{c_{k}} \\
\Leftrightarrow & c_{j} \| \sigma \overline{c_{j}} \\
\Leftrightarrow & c_{j}^{2} \| \sigma \\
\Leftrightarrow & c_{j} \| \sqrt{\sigma}
\end{array}
$$

This is Condition 4. Additionally, it must be the case that no edge from an a_{j} to a c_{l} or from a b_{k} to a c_{l} is real:

$$
\begin{aligned}
& \frac{a_{j} c_{l}}{\sigma} \notin \mathbb{R} \text { and } \frac{b_{k} c_{l}}{\sigma} \notin \mathbb{R} \\
\Leftrightarrow & a_{j} \nVdash \sigma \bar{c}_{l} \text { and } b_{k} \nVdash \sigma \bar{c}_{l} \\
\Leftrightarrow & a_{j} \nVdash \sqrt{\sigma} \text { and } b_{k} \nVdash \sqrt{\sigma} \\
\Leftrightarrow & a_{j} \nVdash b_{k}, \text { because } a_{j}\left\|b_{k} \Leftrightarrow b_{k}\right\| \sqrt{\sigma}
\end{aligned}
$$

Corollary 5.5. When $n-m \geq 3$ and $l, m-l \geq 1$, $a \star_{n}$ that transforms to a $\Pi_{l \oplus(m-l), n-m}$ complexer has no more than $n-m$ real-valued admittances.

Proof. If the star has more than $n-m$ real-valued admittances, then at least one a_{j} or b_{k} is real-valued. Without loss of generality, assume a_{1} is real. Then all the a_{j} are real. By the Conjugate Lemma, all the b_{k} are parallel to σ. Then, because all the c_{l} are parallel to $\sqrt{\sigma}$ and σ is the sum of the admittances, $\sqrt{\sigma}$ and σ must also be real. But then b_{1} is real, and $a_{1} \| b_{1}$, which contradicts Condition 5. So none of the a_{j} is real. Similarly, none of the b_{k} is real.

So a star that transforms to a $\Pi_{l \oplus(m-l), n-m}$ complexer has no more than $n-m$ real-valued admittances.

Remark 5.6. A star with $n-m$ real-valued admittances can transform to a $\Pi_{l \oplus(m-l), n-m}$ complexer. Assume one of the star's admittances is real-valued and, without loss of generality, it is called c_{1}. Then all the c_{k} are real and $\sqrt{\sigma}$ is real. So σ is real. As long as $\sum_{j=1}^{l} a_{j}$ is conjugate to $\sum_{k=1}^{m-l} b_{k}$ over the real axis, all the conditions are satisfied.

6. Unusual Small Partitions

Further discussion of the $\Pi_{1, n-1}$ complexer and the $\Pi_{2,2}$ partition is useful, because they are special cases of the larger theorems.

The $\Pi_{1, n-1}$ complexer is a special case of the $\Pi_{l \oplus(m-l), n-m}$ complexer, where $m=1$.

Figure 7. This is Π^{K} of a $\Pi_{1, n-1}$ complexer. It is the complement of Π^{U}. All and only these edges in the complete graph on these n vertices correspond to response entries in \mathbb{R}^{+}.

Lemma 6.1. $A \star_{n}$ transforms to a $\Pi_{1, n-1}$ complexer (Figure 7) if and only if it conforms to the following conditions:
(1) $c_{1}\left\|c_{2}\right\| \cdots\left\|c_{n-2}\right\| \sqrt{\sigma}$
(2) $c_{1} \nVdash \sigma \bar{a}$

Proof. Condition 1 follows from the proof of Theorem 5.4; it guarantees that every edge in the K_{n-1} is real-valued. Additionally, it must be the case that no edge between a and any c_{j} is real-valued, which is Condition 2.

Corollary 6.2. $A \star_{n}$ that transforms to $a \Pi_{1, n-1}$ complexer has no real-valued admittances.

Proof. First assume one of the c_{j} is real. Then all the c_{j} are real. By the Conjugate Lemma, $\sqrt{\sigma}$ and σ are real. Then a is real, because σ is the sum of the admittances. But then no entry in the response is nonreal-valued, and the star cannot transform to a complexer. So none of the c_{j} is real-valued. Similarly, a is not real.

This result is significant because a star that transforms to a $\Pi_{l \oplus(m-l), n-m}$ with $l, m-l \geq 1$ may have some real-valued admittances, as shown in Corollary 5.5.
$\left(\star_{4}, \Pi_{2,2}\right)$ is not a plexer [3], so $\left(\star_{4}, \Pi_{2,2}, \gamma\right)$ is not a complexer. But it is still possible to discuss the conditions a \star_{4} must satisfy if there is to be a $\Pi_{2,2}$ partition on its response entries. These conditions are interesting because they are less stringent than the conditions a $\star_{n}, n \geq 5$, must satisfy if it is to transform to a $\Pi_{2, n-2}$ complexer.

Figure 8. This is a \star_{4} with a $\Pi_{2,2}$ partition on its response entries. The solid lines denote the entries in \mathbb{R}^{+}in Λ; the dashed lines represent the entries not in \mathbb{R}^{+}.

Lemma 6.3. $A \star_{4}$ transforms to a $\Pi_{2,2}$ complexer (Figure 8) if and only if it conforms to the following conditions:
(1) $a \| \sigma \bar{b}$
(2) $c_{1} \| \sigma \overline{c_{2}}$
(3) $a \nVdash \sigma \overline{c_{1}}, a \nVdash \sigma \overline{c_{2}}, b \nVdash \sigma \overline{c_{1}}, b \nVdash \sigma \overline{c_{2}}$

Proof. It must be the case that

$$
\begin{aligned}
& \frac{a b}{\sigma}, \frac{c_{1} c_{2}}{\sigma} \in \mathbb{R} \\
\Leftrightarrow & a \| \sigma \bar{b} \text { and } c_{1} \| \sigma \overline{c_{2}}
\end{aligned}
$$

These are Conditions 1 and 2 . Now to ensure that the other four response entries are not real-valued:

$$
\begin{aligned}
& \frac{a c_{1}}{\sigma} \notin \mathbb{R}, \frac{a c_{2}}{\sigma} \notin \mathbb{R}, \frac{b c_{1}}{\sigma} \notin \mathbb{R}, \frac{b c_{2}}{\sigma} \notin \mathbb{R} \\
\Leftrightarrow & a \nVdash \sigma \overline{c_{1}}, a \nVdash \sigma \overline{c_{2}}, b \nVdash \sigma \overline{c_{1}}, b \nVdash \sigma \overline{c_{2}}
\end{aligned}
$$

Note that it is not required that $a_{1}\left\|a_{2}\right\| \sqrt{\sigma}$ on a \star_{4}. For such a partition to result on a $\star_{n}, n \geq 5$, it is required that all the c_{j} are parallel to $\sqrt{\sigma}$, as shown in Theorem 5.4.

7. Demonstrations

Example 7.1. $A \Pi_{1 \oplus 4}$ complexer on $a \star_{5}$. (Figure 9)
To cook up this complexer, first choose a ray from the origin in the right halfplane that will be proportional to σ. This will define the ray proportional to $\sqrt{\sigma}$, because $\arg (\sqrt{\sigma})=\frac{1}{2} \arg (\sigma)$.

It follows from the conditions in Theorem 5.2 that a never lies within the region

Figure 9. The solid edges in the complete graph are real-valued and correspond to Π^{K}; the dashed edges are not real-valued and correspond to Π^{U}.
between the real axis and the line proportional to σ. Also, the angle between a and the line proportional to $\sqrt{\sigma}$ must be smaller than the angle between the line proportional to $\sqrt{\sigma}$ and the imaginary axis. This follows from the stipulation that all the admittances are in the right half-plane. Choose any simple admittance a in accordance with these directions, as in Figure 9.

This move determines everything else. The b_{k} are all conjugate to a over the line proportional to $\sqrt{\sigma}$, so the argument of every b_{k} is determined. So the line proportional to the b_{k} is determined. σ is also determined; it is the intersection of the line proportional to σ and the line proportional to the b_{k}. Additionally, $a+\sum_{k=1}^{4} b_{k}=\sigma$, so the modulus of $\left(b_{1}+b_{2}+b_{3}+b_{4}\right)$ is determined. All that remains, then, is to divide this the value of this modulus among the four b_{k}.

Example 7.2. $A \Pi_{2 \oplus 3,3}$ complexer on $a \star_{7}$. (Figure 10)
To cook up this complexer, first choose a ray from the origin in the right halfplane that will be proportional to σ. This will define the ray proportional to $\sqrt{\sigma}$, because $\arg (\sqrt{\sigma})=\frac{1}{2} \arg (\sigma)$.

Next, choose a simple admittance a_{1} in accordance with the conditions in Example 1. $a_{1} \| a_{2}$, so the argument of a_{2} is determined. Choose a modulus for a_{2}. The argument of the b_{k} is determined, because a_{1} is conjugate to the b_{k} over the line proportional to $\sqrt{\sigma}$. The modulus of $\left(b_{1}+b_{2}+b_{3}\right)$ must be great enough to allow a simple admittance from $\left(a_{1}+a_{2}+b_{1}+b_{2}+b_{3}\right)$ and parallel to $\sqrt{\sigma}$ to intersect the line proportional to σ, as in Figure 10. Choose the modulus of each b_{k} in this way. Then σ is determined; it is the intersection of the simple admittance from $\left(a_{1}+a_{2}+b_{1}+b_{2}+b_{3}\right)$ parallel to $\sqrt{\sigma}$ and the line proportional to σ. Additionally, $a_{1}+a_{2}+\sum_{k=1}^{3} b_{k}+\sum_{k=1}^{3} c_{l}=\sigma$, so the modulus of $\left(c_{1}+c_{2}+c_{3}\right)$ is determined.

Figure 10. The solid edges in the complete graph are real-valued and correspond to Π^{K}; the dashed edges are not real-valued and correspond to Π^{U}.

All that remains, then, is to divide this the value of this modulus among the three c_{l}.

References

[1] Hila Hashemi 'Electrical Networks with Periodic Voltages and Complex Conductivities', University of Washington 2005.
[2] Jennifer French and Shen Pan ' 2 n to 1 Graphs', University of Washington 2004.
[3] Tom Boothby, Andrew Fanoe, Tracy Zhang 'Structure of Multiplexers on Stars', University of Washington 2007.

[^0]: Date: August 2, 2007.

