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Abstract. This paper explains the challenges in trying to generalize the Cut
Point Lemma that I find to be most interesting. In particular, I tried to see

how connections that are not counted in m can change the quantity m−n+ r.
There are lots of examples to help future students see what doesn’t work and

hopefully to see what might still work, plus a few pieces of advice about how to
count and draw. See the papers by Rachel[4] and Ming[3] for other examples

concerning the same kinds of problems.
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1. Introduction

Curtis and Morrow’s Cut Point Lemma gives an invariant for circular planar
critical graphs. No one has been able to come up with a good definition for ”critical”
in the non circular planar case, so it is hard to predict what a generalized Cut
Point Lemma might look like. Nevertheless, it seems that there could be lots to say
about large classes of circularly embedded graphs. For example, Rachel, Ming and
I considered graphs whose medial graphs have no region bounding lenses, graphs
with no interior nodes, and graphs with fixed z-sequences. Unfortunately, we found
no interesting invariants involving the numbers m (the maximum connection for a
fixed cut XY), r (the number of re-entrant geodesics on the arc XY) and n (the
number of black intervals wholly contained in XY where boundary nodes are place
in the black intervals). We considered other numbers to add or subtract such as
the number of geodesics that cross themselves, the number of non-region-bounding
lenses (see Ming’s paper for a detailed classification of lenses), and the number of
ways a maximum connection can be obtained. There are many possibilities for the
additional numbers that might be involved in a cut point lemma for a large class of
higher genus circularly embedded graphs. A good way to determine which numbers
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Figure 1. nXY − rXY = 1 − 0 = 3 − 2 = nY X − rY X

are important is to start with graphs for which m − n + r = 0 and add or delete
something that changes the quantity m−n + r. In most of the following examples,
I chose to add edges that give an extra connection.

2. A note about how to count more efficiently

Lemma 2.1. Suppose X,Y is a cut on a medial graph of a circularly embedded graph
of any genus. Let nXY and nY X be the number of black intervals on each side. Let
rXY and rY X be the number of re-entrant geodesics. Then nXY −rXY = nY X−rY X .

See Figure 1 for an example. Note that m is independent of side, so as an
immediate corollary, m − n + r is too, so there is no need to count both sides. .

Proof. Let c be the number of geodesics that have one endpoint in XY and one in
Y X. Let k be the number of cuts in black intervals (so k is 0, 1, or 2). Note that
neither c nor k is associated to a single side.

The only identity necessary for this proof is to equate two ways of counting the
number of times a geodesic hits an interval. One way is 2nXY + k which follows
from definitions. The other is c + 2rXY because intersections between geodesics
come from exactly two sources: re-entrant geodesics which hit one interval twice,
and non-re-entrant geodesics which hit each interval once. Therefore,

2nXY + k = c + 2rXY

2(nXY − rXY ) = c − k
Likewise, 2(nY X − rY X) = c − k

Therefore, nXY − rXY = nY X − rY X

�

3. The Cut Point Lemma fails for many graphs embedded on toruses

I will give organized examples of graphs later, but to see that the Cut Point
Lemma fails for some important graphs, see Figures 3 and 2.
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Graph with dotted medial graph Shaded medial graph, with z−sequence 
represented by solid lines. X,Y,W, and Z
mark cuts.
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Figure 2. Two circles Three rays embedded on a torus. Cuts
such as X,Y and Z,W give m−n + r 6= 0, but even they don’t give
the same number. For the smaller side of ZW, m = 2, n = 2 and
r = 2. For either side of XY, m = n = 3 and r = 1

The proof of the Cut Point Lemma fails in exactly one place. We have no higher
genus equivalent of Curtis and Morrow’s Lemma 8.6 that for a set of geodesics all
of which intersect some other geodesic, but which make no lenses, there are three
boundary triangles.[2] The proof of the Cut Point Lemma reduces every critical
graph to a simple case for which m = n and r = 0. The two reduction steps are
eliminating geodesics start and end in adjacent spots, and uncrossing boundary
triangles. It is important that there are three triangles at all times because up
to two could surround the intervals which are chosen to be cut. (Uncrossing a
boundary triangle across a cut could change r without changing m or n, so it is not
allowed as a reduction step). This is the only place the proof fails to generalize,
so it is tempting to seek an analog of Lemma 8.6. See Figure 4 parts A and B for
some examples of what could happen at the boundary circle.



4 ZACK GEBALLE

1

25

4 3

2

4

1

3
5

Figure 3. A graph with all possible set-connections (see Def-
inition 4.1) is embedded on a torus. The z-sequence is not
1234512345, so following the logic of Remark 4.5, there are cuts for
which the smaller side has a re-entrant geodesic, and yet m = n.
Therefore, m− n + r = 0 + 1 = 1 for certain cuts. Also, this graph
is recoverable, so it would be best to find a cut point lemma that
allows for crazy geodesics like the bold one.
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The graph from which B arises

Figure 4. Two medial graphs (see [5] for how to draw legitimate
medial graphs without first drawing a graph.) In ”A”, the bound-
ary polygons have 3,5,7,and 5 sides. In ”B” there are eight bound-
ary squares
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Idea for Future Research 3.1. Perhaps we shouldn’t allow the kinds of lenses
that the bold geodesics cause in Figure 4 part A and B. Maybe it is best to consider
medial graphs with a geodesics surrounding the boundary circle separately from the
others. Hopefully any geodesics that are not allowed correspond to non-recoverable
graphs, but that is a more distant problem. See Ming’s paper [3] for more on lenses.

4. Connections

Definition 4.1. There is an ordered connection between two ordered sets of n
boundary nodes if the ith elements of each set are connected by a path for all
1 ≤ i ≤ n such that all paths are disjoint.
There is a set connection between two sets of n boundary nodes if there is an
ordered connection between some ordering of them.

Remark 4.2. The traditional way to denote an ordered connection between two
sets of boundary vertices is to write one set and then the other so that the nodes
that can be connected are in the same place in their respective lists. For example
(1, 3; 5, 6) means that there are disjoint paths from 1 to 5 and 3 to 6. I find it easier
to denote the same thing (15)(36), because then it is easy when two connections
are equivalent. (15)(36) is obviously the same as (63)(51) in my notation, whereas
I find it hard to see that (6, 1; 3, 5) is the same as (1, 3; 5, 6).

In my opinion, the biggest hurdle in generalizing the Cut Point Lemma is that
there is no easy way to account for non-circular connections. The number m is
merely the maximal connection between XY and YX. In particular, the original
Cut Point Lemma does not depend on the number of maximal connections or any
lesser connection. For this reason m − n + r = 0 is something of a miracle to me.
On the other hand, the Cut Point Lemma holds only for critical graphs – those
for which removal of any edge breaks a connection – so maybe it is not such a
miracle. Perhaps the biggest impediment to generalizing the Cut Point Lemma is
that we have no good analog of critical for higher genus surfaces. Unfortunately,
past students have had a very hard time deciding how to define ”critical” for non-
circular planar graphs.

Anyway, I would be surprised if the number of ways a maximal set-connection
can be connected (say (1,4)(2,5)(3,6) and (1,5)(2,6)(3,4) were two ways to connect
the set {1,2,3}in XY with the set {4,5,6} in YX) was not a factor in a generalized
cut point lemma. My best evidence is that adding connections that change only
the number of ways to connect maximal sets of nodes but not connectedness of sets
of nodes often changes the value of m − n + r. See figures 5 and 6 for examples.

Idea for Future Research 4.3. It might be fruitful to try to figure out how
geodesics change when extra combinations of nodes are connected in already con-
nected sets. I would start with graphs on which all sets are connected and add
connections by going around handles of a torus. In addition to Figures 5 and 6,
there is an easy example in Remark 4.5.

4.1. A note about maximum anti-circular connections on genus n Rie-
mann surfaces.

Definition 4.4. An anti-circular n-connection is one that (by suitable labeling of
boundary nodes) can be denoted (1, n + 1)(2, n + 2)...(n, 2n) where 1, 2, ...,2n are
in circular order with any number of other nodes mixed in.
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Graph with dotted medial graph.
Inside of boundary circle shows connections.

Shaded medial graph
Inside of boundary circle shows z−sequence (which
makes counting re−entrant geodesics easy).
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Figure 5. An embedding of the top graph on a torus. (12)(34)
is the only 2-connection from XY to YX. It might not be a coinci-
dence that m − n + r = 2 − 2 + 0 = 0

An upper bound on the genus of the simplest graphs that have anti-circular con-
nections is the minimal genus surface on which a complete graphs can be circularly
embedded. K-1 through K-7 can be circularly embedded on a torus. Therefore,
anti-circular 1, 2 and 3-connections are possible on a torus. See Figure 7 for the
toroidal graph with an anti-circular 3-connection. It can be created by deleting
one boundary node and lots of edges of a toroidal embedding of K-7, but I do not
recommend doing that. Since it is the simplest one possible, I call it ”Antipodal 3”

If you can convince yourself that Figure 7 shows the only way to have an anti-
circular 3-connection, then I can convince you that there is no anti-circular 4-
connection. Color in the regions of the graph (not the medial graph) of Antipodal
3. Since no antipodal intervals of the boundary circle border the same region, there
is no way to add a pair of antipodal boundary nodes and connect them without
crossing another edge. (If you cross an edge , you must add an interior node that
the two edges share, so the 2-connections are not disjoint, so they don’t count as
part of a larger connection).

Remark 4.5. Antipodal graphs provide nice examples of how adding edges can
change m − n + r. Starting with antipodal graphs, m , n, and r are easy to count.
Any cut separates the boundary nodes into sets for which the maximum possible
connection exists (i.e. m = n on the smaller side). In this way, for the cuts
that divide the boundary circle into two connected components (the only cuts I
have considered), antipodal graphs have the same values of m and n as complete
graphs. Additionally, they always have the z-sequence 123..n123...n . All together,
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Graphs with dotted medial graphs. Shaded medial graphs
Insides of boundary circles show z−sequence (which
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Figure 6. Two (of several) embeddings of the top graph on a
torus. The graph is the one in Figure 5 with two additional edges
that create an extra 2-connection. (12)(34) and (13)(24) are both
2-connections from XY to YX. Hence, m = 2, as in Figure 5, but
the extra 2 connection across the cut seems to make the cut point
lemma fail. m − n + r = 1 for both graphs

m − n + r = (m − n) + r = 0 + 0 = 0 on the smaller side. (There is no need to
count the larger side by Lemma 2.1). Next, it is easy to change r without changing
m or n. Simply add an edge between two boundary vertices. The z-sequence must
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Figure 7. Antipodal 3

change, but it is still true that m = n on the smaller side of the cut. Therefore, for
some cuts, m − n + r = 1.

4.2. The Sad Truth. Examples cited above show that adding connections can
easily change the quantity m − n + r. It would be nice to show that among graphs
with a fixed number of boundary nodes, those that have the same large ordered
connections tend to have the same value for m − n + r for each cut. (The quantity
m− n + r may differ from cut to cut, but the point is that hopefully the essense of
the Cut Point Lemma - that there is a relationship between n, r and the connections
- still exists for non circular planar graphs). Sadly, there is no easy pattern.

Example 4.6. Graphs with the same ordered connections can have different z-
sequences. See figures 8, 9 and 10.

5. Other ideas for future research

1. Look at different embeddings of a single graph. (see Figure 6 for an exam-
ple)
(a) Follow Rachel’s line of research by including ”winding number” in z-

sequences to differentiate between embeddings.
(b) Consider Ming’s idea of requiring graphs to be embedded cellularly

on the highest genus surface possible. No lemma with this require-
ment could reduce to the original Cut Point Lemma, but at least the
requirement might associate a single z-sequence to each graph.

2. Allow cuts that break the boundary circle into more than two connected
components. In some sense, this would be the most honest approach be-
cause theordering of nodes on the boundary circle is less important in the
non circular planar case.

3. As an alternative to embedded on higher genus Riemann surfaces, decom-
pose every graph into circular planar layers where each layer includes all
the nodes, but only edges that are not contained in any other layer. See
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Figure 8. K-4 has every possible ordered connection, so m = n
on the smaller side of any cut. Therefore, m − n + r = 0 for every
cut except X,Y, for which m = n = 1 and r = 1
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Figure 9. This graph is like K-4 in that there is a way to make ev-
ery possible ordered 2-connection:(12)(34), (13)(24) and (14)(23).
To be thorough, they differ in that here there is more than one
way to make the 2-connection (12)(34) and 1-connections (12),
(13) and (24). Above, all ordered connections are unique. Again,
the z-sequence is not 12341234, so for the cut XY, (m−n)+r = 0+1

Figure 11. It is possible to draw medial graphs on each layer, but it is
unclear how different decompositions of a single graph are related.
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Figure 10. This graph is very much like K-4. (It is really an
embedding of K-4 with a boundary spike added). There is a unique
way to make every possible ordered 2-connection:(12)(34), (13)(24)
and (14)(23). A difference is that a few 1-connections are not
unique. In particular, there are two ways to connect each of (12),
(14) and (24). Unfortunately, the z-sequence is different from both
Figures 8 and 9. Here, as above, one cut yields m − n + r = 1.

A B C

Figure 11. A is decomposed into B and C
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