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Abstract

In this paper, we will explore the properties of the Heat Equation on discrete
networks, in particular how a network reacts to changing boundary conditions that are
periodic. In the process we hope to eventually formulate an applicable inverse problem.
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1 Introduction: The Discrete Heat Equation

The first thing that we will look at is discretizing the Heat equation. The continuous Heat
Equation is:

vt = k ∆v = ∇(γ∇v) (1)

In the discrete case, we will form a ∆γ that discretizes ∆v on a graph; that is, we will form
a matrix that operates on a vector v(t) that represents the temperature at each of the nodes
that satisfies this equation:

vt = ∆γv = −Kv (2)
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The discrete analog to Laplacian, ∆γ , is defined as:

∆γvi =
∑

vj∈N(vi)

γij(vi − vj) (3)

where γij is a kind of diffusivity constant from vi to vj . One important difference between
this ’Kirchhoff Matrix’ and the one we are familiar with in the Electrical Conductivity
equation is that these γij ’s are normalized, in other words,

∑
vj∈N(vi)

γij = −1. This means

that the K is not symmetric. It also means that these γij ’s can be interpreted as transition
probabilities.

For self-loops,
γii = −

∑

vj∈N(vi)

γij

Because of this, the sum of any row of K is zero.

2 Discrete Time

The following is a version of our equation with time as a discrete variable. It’s important
to note that this is a mere analog to the continuous Heat Equation for the lim

∆t→0
of this

equation does not give us the continuous version.

(~vt)int = (~vn+1 − ~vn)int = (−K ~vn)int (4)

Note that this equation only refers to the interior of the graph. Rearranging the terms we
get:

(~vn+1)int = [(I −K) ~vn]int (5)

3 Introducing Our Problem: The Periodic Boundary
Problem

Jim Morrow suggested the following problem: Take any network with boundary and interior
nodes. Give some arbitrary boundary condition on the boundary nodes. Then find the
temperature of each interior node by taking the average of the connected neighboring nodes
at that time, i.e. multiplying the ~vn by the transition matrix. Then rotate the boundary
values, so that each boundary node takes the temperature of its neighbor boundary node.
This is one time step. Repeat this process: average, rotate boundary values, average, rotate
boundary values, etc.

4 Forming Notation

Typically for a network with m interior nodes and k exterior nodes we form a k + m by
k + m transition matrix, P , that will act on the (k + m)× 1 vector of nodes ~vn. Let’s group
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the set of boundary nodes into a k × 1 vector we’ll call ~fn, where n denotes the time step,
and the set of interior nodes into a m× 1 vector we’ll call ~un.

~vn+1 = P.~vn, where ~vn =
[

~fn

~un

]

We can partition this transition matrix, P , into four sub-matrices as follows:

P =
[

Q 0
−C (I −D)

]

We set the upper right hand sub-matrix to zero because the boundary conditions do not
depend on the interior temperatures.

[
Q 0
−C (I −D)

] [
~fn

~un

]
=

[
~fn+1

~un+1

]

Q is a permutation matrix that takes ~fn+1 to ~fn. Thus after one iteration,

~fn+1 = Q ~fn

~un+1 = −C ~fn + (I −D)~un

Conjecture 4.1. For any finite boundary period of order k, the sequence of vectors u1, u2, · · · , uk

corresponding to the interior nodes converge as the number of iterations goes to ∞.

To illustrate the problem, let’s look at the following example:

5 Examples: The H-graph

Figure 1: The H-Graph

The first example problem is the H graph. It has four boundary nodes and two interior
nodes. A transition matrix might have the following form:

P =




0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

1/3 0 0 1/3 0 1/3
0 1/3 1/3 0 1/3 0
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The boundary function is defined as follows, fn = en where en is the unit vector in the
nth dimension.

After many (n > 30) iterations, the vectors ~v1 through ~v4 converge to the following:

~v1 =




1
0
0
0

7/20
3/20




, ~v2 =




0
1
0
0

1/20
9/20




, ~v3 =




0
0
1
0

3/20
7/20




, ~v4 =




0
0
0
1

9/20
1/20




Two observations are made:

1. The sequence of vectors ~v1 through ~v4 reach steady states,

2. The values of the steady state vectors corresponding to a certain node, if summed, are
equal to one.

The first observation agrees with conjecture, thus, so far our assumptions seem war-
ranted. The second observation led us to the following further analysis.

6 A Solution to the Dirichlet Problem

Theorem 6.1. The vector sum of these sequence of vectors is a solution to the Dirichlet
problem.

Proof. Using the definition of this problem’s iteration we can write out the un’s:

u2 = −C ~f1 + (I −D)~u1

u3 = −C ~f2 + (I −D)~u2

u4 = −C ~f3 + (I −D)~u3

...

uk = −C ~fk−1 + (I −D)~uk−1

u1 = −C ~fk + (I −D)~uk

k∑

i=1

~ui = −C

k∑

i=1

~fi + (I −D)
k∑

i=1

~ui

⇒ C

k∑

i=1

~fi + D

k∑

i=1

~ui = 0 (6)

By observation this is the Dirichlet problem, (K.~u)interior = 0, written out in sub-matrix
form.
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7 Proof of Convergence of the Sequence of Temperature
Vectors

Theorem 7.1. The temperature of interior nodes act independently of their initial tem-
perature as the number of iterations goes to ∞.

Proof.

u1 = uinitial

u2 = −Cf1 + (I −D)u1

u3 = −Cf2 + (I −D)(−BT f1 + (I −D)u1)

u4 = −Cf3 + (I −D)[−BT f2 + (I −D)(−BT f1 + (I −D)u1)]
...

un = (I −D)n−1u1 +
n−2∑

i=0

[−Cfn−i(I −D)i]

We want to show that lim
n→∞

(I −D)n−1u1 = 0.
In Tim Devries paper regarding random networks, it is shown that if the sum of the

entries of every row of a matrix are ≤ 1 and the all the entries are ≥ 0, then lim
n→∞

Mn = 0.

The matrix (I − D) has these properties, therefore lim
n→∞

(I − D)n−1 = 0 and since by
assumption u1 is finite, their product also goes to 0.

Theorem 7.2. For any finite boundary period of order k, the temperature vectors corre-
sponding to the interior nodes converge as the number of iterations goes to ∞.

To begin a proof of this theorem we must first introduce some new notation. Let’s begin
by forming a huge matrix, H, which contains all the boundary period data in one array.

H.~v =




I 0

0
−C

0

· · ·

. . .

0

0
−C

−C
0
...
0

0 · · · 0
I −D

0

. . .
0

I −D

I −D
...
0




.




~f1

...
~fk

~u1

...
~uk




(7)
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One can check and see that this matrix is equivalent to

u2 = −C ~f1 + (I −D)~u1

u3 = −C ~f2 + (I −D)~u2

u4 = −C ~f3 + (I −D)~u3

...

uk = −C ~fk−1 + (I −D)~uk−1

u1 = −C ~fk + (I −D)~uk

Let’s rename the sub-matrices of H for convenience. The lower left sub-matrix consisting
of C’s on the diagonal we will call E. The lower right matrix consisting of the (I −D)’s we
will call F . The above equation can then be rewritten as follows:

[
~f
~u

]

iterated

= H.

[
~f
~u

]
=

[
I 0
E F

]
.

[
~f
~u

]
(8)

where

~f =




fi

...
fk


 , ~u =




ui

...
uk




We need to find the fixed point of this equation. For the lower half of the vector we get
E.~f + F.~u = ~u. Manipulating this equation we can get

(I − F ).~u = E.~f (9)

~u = (I − F )−1E.~f (10)

Here, finally, we near a closed form for ~u. The solution for ~u depends directly on the
invertibility of the matrix (I − F ). We’ll prove that this matrix, (I − F ), is invertible by
proving that the series I + F + F 2 + F 3 + ... is convergent.

Theorem 7.3. If every entry is ≥ 0 and the sum of the entries of every row of M are ≤ 1,
Then: ∞∑

n=1

Mn converges

Proof. Referring to Tim Devries proof in his paper Recoverability of Random Walk Networks
we see that these are the conditions to make his proof work.

8 Conclusions

1. We have found a generalized solution to the Dirichlet problem for networks.

2. We have proved that for any graph with rotating boundary conditions the sequence
of temperature vectors converge as the number of iterations goes to ∞.
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