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Abstract

This paper looks at relationships of entries in the response matrix
and determines which entries must be written in terms of the others.
Information about these parameterizations can be used to recover graphs
with only partial information in the response matirx. We analyzed these
relationships for the n-gon in n-gon networks, and for the annular network
with two circles and three rays.
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1 Introduction

Analysis of the relationships among the entries of a Dirichlet to Neumann map
for a resistor network allows us to determine which entries are necessry for
recoverability. If we generalize these relationships to call networks of a spe-
cific structure, then we can recover graphs with only partial information in the
response matrix. Edward B. Curtis and James A. Morrow generalized the pa-
rameterization of square lattice networks in [2]. The Dirichlet to Neumann map
for a square lattice is represented by a 4n x 4n matrix with nodes numbered
as follows, 1 through n on the north side, n + 1 through 2n on the west side,
2n + 1 through 3n on the south side, and 3n + 1 through 4n on the east side as
in figure 1.
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Figure 1: Numbering of nodes for a square lattice with n = 3

In figure 2 we show the block structure for square lattices, where the blocks
correspond to the sides of the graph.
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Figure 2: Block Structure of Response Matrix for Square Lattice Networks

One possible parameterization of the response matrix is the following as



defined by Curtis and Morrow [2]:
e All the entries of B.
e All the entries of A on or above the main antidiagonal.
o All the entries of C on or below the main antidiagonal.
e All the entries of D on the main antidiagonal.

Figure 3 gives a visual representation of the parameters in the response
matrix for any square lattice.
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Figure 3: Parameter Positioning for Square Lattices

2 The n-gon in n-gon Networks

2.1 General Definition for Kirchhoff Matrix

A network is a pair I' = (G, ) where G is a graph and v is a positive conductivity
function defined on all cables in G. If G is a simple graph, then ~y is defined
on G’s edges. If G is not simple, then v assigns a conductivity to each cable
of G, not to individual edges [6]. We will adopt Jenny French and Shen Pan’s
definition for the Kirchhoff matrix, so we can use their Characterization for the
response matrix. [4] The Kirchhoff matriz for T', denoted K, is defined such
that

Wi
Kij={ =Xz Kin =] (1)
0 it jandi#j

It’s useful to write the Kirchhoff matrix in the following block form:
A B
w=lor ¢



If all interior nodes are numbered such that they appear in the C' block and all
boundary nodes are in the A block, then the response matrix is just the Schur
Compliment of K in C.

A=A-BC™'B"

2.2 Characterization of the Response Matrix for n-gon in
n-gon Networks

The following is copied verbatim from Jenny French and Shen Pan’s paper [4].
For further explanation, including a construction of the matrix Py, see [4] sections
2, 4, and 6 (particularly Theorems 4.1 and 6.1).

Theorem 2.1 If A = (\;;) is the response matriz of an n-gon in n-gon network
with conventionally numbered nodes and positive real conductivities, and the
matrix P, with k = n + 1 is formed from the entries in A, then for oll j < k,
the determinants p; and q; are strictly positive. [3]

In addition to satisfying the sign conditions for the response matrix, we must
also take into account the relations defined on all response matrices for n-gon
in n-gon networks.

Theorem 2.2 The relations defined on any response matriz for an n-gon in
n-gon network are modeled as follows:
Fori<n,

)‘i,(i mod n)+1/\n+i,n+(z’ mod n)+1 = ’\(z mod n)+1,n+i/\z’,n+(i mod n)+1

The sign conditions coupled with the relations provide a characterization for
all response matrices of the n-gon in n-gon networks.

2.3 Triangle-in-Triangle

Consider the Triangle-in-Triangle Network with boundary nodes numbered as
in Figure 4. There are 12 edges and thus 12 conductivities to recover, and there
are 15 entries in the response matrix. We should be able to find 15-12, or 3
entries which are determined by the rest of the entries in the matrix.



Figure 4: Triangle-in-Triangle Network

The relations for the Triangle-in-Triangle are as follows:

A2 = A2 adis (2)
A23X56 = A3 526 (3)
A3,106,4 = A1,6A3,4 (4)

Now consider the order for picking parameters and uniquely determining
entries in the response matrix:

1-11. pick parameters > 0

: A2,3A5,6 A1,2A45 A1,2A4,523,6+A1,422,3)5,6
12. ple /\275 > 0 and /\275 > 3.0 and /\2’5 > A and /\275 > A1.ar2s

. An2A
13. determine Ay 5 = =252
. A2,3)
14. determine Ay g = 2222
. As.1h
15. determine Ay ¢ = “5°2*

Figure 5: Order of Parameter Placement for the Triangle-in-Triangle Network



2.4 Square-in-Square

Consider the Square-in-Square Network with boundary nodes numbered as in
Figure 6. There are 16 edges and thus 16 conductivities to recover, and 28
entries in the response matrix. Unlike the Triangle-in-Triangle the response
matrix for this network has a series of zero entries. We will place a zero in the
response matrix at A; ;, when there is no path connecting boundary nodes i
and j in the graph. We should be able to uniquely determine 4 entries in the
response.
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Figure 6: Square-in-Square Network

The relations for the Square-in-Square are as follows:

A12X56 = A2 5A16 (5)
A2,3X6,7 = A3 6A2,7 (6)
A3,4A7.8 = Mg 7A38 (7)
A4,185 = A1,8M45 (8)

The order for picking parameters and uniquley determining entries in the
response matrix is very similar to that of the Triangle-in-Triangle.

1-14. pick parameters > 0
15. pick )\4,8 >0 and )\4,8 > )\7,8
16. pick Az > 0 and Ay g > 252207 and Ny g > yopiterles

Az, 7 m
nd dp > BT 3, > AT st e
17. determine A; 6 = %
18. determine Ay 7 = %
19. determine Az g = %
20. determine A g = %



Figure 7: Order of Parameter Placement for the Square-in-Square Network

2.5 Pentagon-in-Pentagon

Now we will look at the Pentagon-in-Pentagon network with boundary nodes
ordered as in Figure 8. There are 20 edges and thus 20 conductivities to recover.
There are 45 total entries in the response matrix. As in the Square-in-Square
network there are a series of zeros corresponding to nodes in the graph which
have no connecting path. There are 20 total zeros. So, we should be able to
uniquely determing 5 entries in the response.

Figure 8: Pentagon-in-Pentagon Network

The relations for the Pentagon-in-Pentagon are as follows:

A1,226,7 = A2,6A1,7 9)
A23A78 = Az 7h28 (10)
A3,428,9 = Ay gA3 9 (11)
A4,5X9,10 = As5,9A4,10 (12)
A5,1A10,6 = A1,10)5,6 (13)



The order for picking parameters follows the same patterns set by both the
Triangle-in-Triangle and Square-in-Square networks. The order is as follows:

1-17. pick parameters > 0
18. pick )\479 > 0 and )\479 > %

19. piCk /\5,10 > 0 and )\5’10 > 9,104,538

A3,8A4,0—Ag,9A3,4
. Ag,002.3)7.8
20. p1ck /\2,7 >0 and /\2,7 > XaoNa.5—As.oNs.a

A7,8X2,324,05,10—A7,8A2,3A4,5A9,10 A1,6A4,022,.3A7,8+A4,0A3,8X1,206,7—A8,0A3,4A1,206,7

and ’\2,7 > A3,8X4,0X5,10 —A8,0A3,4X5,10 and /\2’7 > A1,6A4,0A3,8—A1,6A8,0A3,4
and \ > A1,6A7,8A5,1004,922,3+2A5,1004,0A3,8A1,226,7 —A1,6 A7,8 19,10 A4,5 2,3 —A9,10A4,5 A3,8 A1,2A6,7 —A8,0A5,10A3,4A1,2X6,7
2,7 A1,6A5,10A4,0A3,8 —A1,6 A9,10A4,5A3,8 —A8,0A5,10A3,4A1,6
. A1,2A
21. determine A7 = =521
. Az2,3A
22. determine Ap,g = 5202
. As,aA
23. determine A3 9 = %
. AssA
24. determine A\g,19 = %
. ALs A
25. determine A 19 = %

2 0 0
3|0
4

Figure 9: Order of Parameter Placement for the Pentagon-in-Pentagon Network

2.6 Parameters for the Response Matrix of n-gon in n-gon
Networks

For any n-gon in n-gon network, the response matrix will always be 2n x 2n.
It will always have n + (n — 1) diagonals above the main diagonal, which we
will refer to as upper diagonals. They are numbered in increasing numerical
order, with the 1% upper diagonal directly above the main diagonal and the
n + (n — 1)*t upper diagonal consisting only of the entry Ay 2.



There will always be a total of 2(n — 3) upper diagonals consisting only of
ZEros:

e One block of (n — 3) diagonals with all entries equaling zero will start at
the 2" upper diagonal and end at the (n — 2)”¢ upper diagonal.

e Another block of (n — 3) diagonals with all entries equaling zero will start
at the (n+2)"¢ upper diagonal and end at the n+(n—2)"? upper diagonal.

The placement of parameters in the response matrix:

1. The 1°¢ upper diagonal.
2. The (n — 1)% upper diagonal.
3. The nt* upper diagonal.

The entries in the response matrix that are involved in the relations do not
appear in the equations for the sign conditions. Thus, when picking our last
parameter we can ensure that all sign conditions will be satisfied. If we always
pick Ay (n42) last we will be able to fix all the necessary signs with that one
choice. This is because the entry Ay (,42) appears in all equations for sign con-
ditions, and it can always be written as Az (n42) > expressions that are in terms
of previously picked parameters. Thus, we can always choose g (n12) to be
greater that the maximum of these expressions.

3 The Two Circle Three Ray Network
3.1 General Definition for the Kirchhoff Matrix

We need to change our interpretation of the Kirchhoff matrix from that used for
the n-gon in n-gon networks, because we will be using Ernie Esser’s conjecture
about the characterization of the response matrix for the G(3,2) [3]. For a
network with n nodes, the Kirchhoff matrix K is an n x n symmetric matrix
formed by taking for ¢ # j

K(i,j) = —v(i,7) if there is an edge from i to j
Y= 0 if no such edge exists

Then the diagonal entries are chosen such that each row sums to zero. It’s useful
to write the Kirchhoff matrix in the following block form:

b

BT C
If all interior nodes are numbered such that they appear in the C block and all
boundary nodes are in the A block, then the response matrix is just the Schur

Compliment of K in C.
A=A-BC'BT

10



For simplification purposes we will represent the response matrix A as

¥ a b ¢ d e
a ¥ f g h p
b f X q r s
c g q X t wu (14)
d h r t X v
e p s u v X

3.2 Characterization of the Response Matrix for G(3,2)

For our parameterization we must assume Ernie Esser’s conjecture about the
characterization of the response matrix for G(3,2) is true [3]. The conjecture
came from a G(3,2) with boundary nodes numbered as in Figure 10.

4

Figure 10: G(3,2)

In [3] it was found that there are 13 sign conditions which come in the form
of determinantal inequalities. They are

1.
2.

© N o oo W

det A(1,2,3;4,5,6)
det A(1,2,5;3,4,6)
det A(2,1,4;3,5,6)
det A(2,3,5;1,4,6)
det A(2,3,6;1,5,4)
det A(1,3,4;2,5,6)
det A(1,3,6;2,4,5)
det A(1,2;4,5) >0

<0
>0
>0
>0
>0
>0
>0

11



9. det A(2,3;5,6) >0
10. det A(1,3;4,6) > 0
11. det A(1,4;2,5) > 0
12. det A(1,4;3,6) > 0
13. det A(2,5;3,6) > 0

These determinants, however, aren’t enough to characterize A. It was also
found in [3] that there is existance of one relation such that for any A for G(3,2)
labeled as in equation 14, relation R can be expressed as

R =aqu+ fdu+ bpt — tef —vgh — ura — dpq + gre = 0 (15)
This is also equivaltent to saying,
R = det(A(1,2,4;3,5,6)) — det(A(1,4,5;2,3,6)) =0

The following is Ernie Esser’s conjecture concerning the characterization of
the response matrix for G(3,2), which will be used in our parameterization.

Conjecture 3.1 The relation
R =det(A(1,2,4;3,5,6)) — det(A(1,4,5;2,3,6)) =0

combined with the 13 previously mentioned sign conditions constitutes a char-
acterization of the response matriz for G(3,2) [3].

3.3 Parameterization for G(3,2)

Consider the G(3,2) Network with boundary nodes numbered as in Figure 10.
There are 15 edges and thus 15 conductivities to recover. There are also 15
entries in the response matrix. We have 13 sign conditions and 1 relation and
with that information should be able to uniquely determine 1 entry.

Remark 3.1 There are 3 entries in the response which are not involved in the
relation. They are A; 4, A2 5, and A3 6. By the notation in equation 14 they are
denoted ¢, h, and s. Our method is to pick 11 entries in the relation, satisfaying
any necessary determinantal inequatlities as we go. Then, we will satisfy the
relation with our 12¢* pick. Finally, we will use c, h, and s to fix any left over
sign conditions.

The following is the order in which we can pick entries in the response matrix.

1. pick e <0

12



10.

11.

12.

13.

© »® N o o W

pick p< 0
pick d <0
pick u < 0
pick r <0
pick v <0
pick t <0
pick ¢ <0

pick f <0
and f < BT (satisfies sign condition 13)

pick b< 0

and b < L (satisfies sign condition 12)

and b < W (will help to satisfy sign conditions 3 and 5)
and b # ¢ (will help satisfy the relation)

pick a <0

If (ur —qu) = 0 (or) (ur — qu) has a different sign than (re —vd) (or) both
(ur — qv) and (re —vb) both have positive sign and d(ur — qv) < t(re—wb),
then piCk a< d(— fdu—bpt+ief+dpq

A= .
t(re—vb)(1— tE::—g:))

If (ur — qu) and (re — vb) both have negative sign (including the case
d(ur—quv) _ 1) then ple a> d(— fdu—bpt+tef+dpq

t(re—vb) t(re—vb)(l—%::—_:f:)) ’

where

determine g = =22v=F d”_f’e’t_t}ief turatdpq (gatisfies both the relation and
sign condition 11)

We know that (re — vb) will not equal zero because of the way in which
we picked b.

We also know that (—aqu — fdu — bpt + tef + ura + dpq) will always
be negative because of our choices of both a and b.

pick h <0

and h > W (satisfies sign conditions 3 and 5)

We know that (eq — bu) will always be positive by sign condition 12.

We also know that (—bpt —dfu+dpq+eft) will always be negative because
of the way in which we picked b.

13



14. pick ¢ < 0

and ¢ < ’i—g (satisfies sign condition 8)
and ¢ < W (satisfies sign condition 2)
arutdpg—aqu—dfu

and ¢ < g

(satisfies sign condition 7)

We know that (rp — fv) is negative by sign condition 13.

15. pick s <0
and s < & (satisfies sign condition 9)
and s < °I (satisfies sign condition 10)

and s < gbutped_aqu_pbt (g, tisfies sign condition 7)

dg—at
and s < W (satisfies sign condition 6)
and s < ig%_g’;‘”ﬂ (satisfies sign condition 1)
We know that (dg — at) is neqative by sign condition 11.

We also know that (ch — dg) is positive by sign condition 4.

Remark 3.2 The above is not a parameterization for all G(3,2) response ma-
trices.

The determinant corresponding to (re —wvb) can in fact equal zero, but we didn’t
allow this case which enabled us to determing g. But, this is not a problem.
We can account for this case by picking a different entry to uniquely determine.
When determining a different entry in the relation we will end up with a dif-
ferent determinant in the denominator that can also be positive, negative, or
equal zero. This parameterization will allow for the case that (re — vb) = 0.
We will then do as we did before and not allow this new determinant to equal
zero. Thus, if we parameterize the matrix 12 times, each time determining a
different entry in the relation, we will be restricting different determinants with
each parameterization. Every possibility among these restricted determinants
will be accounted for.

We also have one problem that does not have a clear solution. When pick-
ing a we didn’t account for the case when (ur — gv) and (re — vb) both have
positive sign and d(ur — qu) > t(re — vb). At first it appeared that this case
could never occur, but it was verified numerically using MATLAB that although
it’s very rare this situation will arise. If we had account for the above case we
would be forced to pick a > something positive and a < 0, which is an obvious
contradiction. There are a couple possible explanations for this problem.

1. Our method for picking entries in the response matrix was incorrect and
there is a better ordering,.

2. The conjecture made in [3] was incorrect. There might be more sign con-
ditions involved the the characterization for the G(3,2) response matrix.

14



Further Research

. The most obvious question is how to give a full parameterization for the

G(3,2) network. It appeared that the method used above was the best way
to pick entries, but there may be something better. But, before looking
for different parameterizations it would be much more useful to either
prove the characterization conjecture in [3], or find more conditions for a
characterization of the G(3,2) response matrix.

. It would also be interesting to look at the G(n,n/2) networks, and provide

parameterizations for their response matrix. But, before tackling any
parameterization it is important to find a prove their characterization.

. There are other networks with lots of symmetry that would probably pro-

duce nice parameterizations. This notion of picking parameters could be
applied to both 3-d lattice networks and hexagonal networks.
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