
ANGLE-SYSTEMS AND SELF-DUALITY

NATHAN PFLUEGER

Abstract. This paper serves as a broad introduction to the theory and appli-
cation of Angle-Systems. Angle-Systems are defined as an algebraic structure,
and their basic properties are introduced. The correspondence between Angle-
Systems and embeddings of graphs upon an orientable surface is discussed, and
various graph theoretic results are formalized as properties of algebraic struc-
tures. Symmetry patterns in Angle-Systems are explored, particularly the
problem of characterizing self-dual graphs.
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1. Introduction

Angle-Systems arise as an effort to express all relevant information about a graph
and its embedding in a concise structure. In particular, topologically equivalent em-
beddings must be represented by the same Angle-System. Thus only two properties
are critical.

• Vertices, edges, and faces must be described.

• The ordering of edges around vertices and faces must be specified.

Angle-Systems account only for graphs embedded on orientable surfaces, allowing
a meaningful distinction between clockwise and counterclockwise in the orderings
mentioned.

All theory regarding Angle-Systems presupposes only basic group theory (e.g.
[3]). Numerous analogies are made to graph theoretic notions discussed in [2] and
related papers, though these references serve only as motivation and examples, not
prerequisites.

2. Basic Structures of Angle-Systems

We first describe the algebraic machinery that will be used throughout this paper.
Graph theoretic interpretation of these notions follows in the subsequent section.
It is recommended that these sections be read in parallel so that the motivation
behind the many definitions is understood. They are presented separately to clearly
distinguish between the intuitive and rigorous parts of this paper.

Definition 2.1. An Angle-System of order n is a pair (p, q) of permutations of
2n elements such that (qp)2 = e, where e denotes the identity permutation. If qp
consists only of transpositions (i.e. it has no fixed points), then (p, q) is called a
Proper Angle-System.

Proposition 2.2. If (p, q) is an Angle-System, then so is (q, p).

Proof: It suffices to show that if qpqp = e, then pqpq = e. This follows since
pqpq = q−1(qpqp)q = q−1eq = q−1 = e.
¤

Definition 2.3. The Angle-System (q, p) is the dual of the Angle-System (p, q).

Definition 2.4. The Angles of an angle system are the 2n elements permutated
by p and q. A denotes the set of angles, and all permutations mentioned may
be regarded as bijections of A. The elements of A will be denoted simply as the
positive integers from 1 to 2n.

Composition of permutations will be denoted simply by juxtaposition, as above.
When a permutation is applied to a particular angle a ∈ A, parentheses are used,
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e.g. pqp(a).

Definition 2.5. If p1, . . . , pn are permutations, then ¿ p1, . . . , pn À denotes the
subgroup generated by p1, . . . , pn, i.e. all permutations expressible as a composition
of some sequence of the permutations. In particular, ¿ p À is the cyclic group
generated by p.

When working with Angle-Systems, we are only interested in permutations con-
sisting of compositions of p and q.

Definition 2.6. If S is a subgroup of permutations of A, and a ∈ A, then the
equivalence class of a under S is the set S(a) = {b ∈ A | ∃s ∈ S : s(a) = b}. If
Sa = Sb, we say that a and b are congruent, modulo S.

Permutations will often be written in cycle notation, the unique decomposition
of the permutation into disjoint cycles. For example, p = (1 2 3)(4 5)(6) indicated
that p maps 1 to 2 to 3 to 1, interchanges 4 and 5, and fixes 6. Fixed elements will
sometimes be omitted from the notation. Note that the elements of the cycles of
a permutation p correspond to equivalence classes under ¿ p À. Several cases of
interest are given in the next definition.

Definition 2.7. We define the following subgroups of permutations, and their
correspondent equivalence classes. Where the number of such equivalence classes
is of interest, a label is associated.

• ¿ p, q À is the Walk Group, denoted W . All of the below groups are sub-
groups of W . The equivalence classes under W are called the components
of the Angle-System, and N denotes the number of components |W |.

• ¿ p À is the Vertex Group, denoted P . The equivalence classes under P are
the vertices of the Angle-System, and V denotes the number of vertices |P |.

• ¿ q À is the Face Group, denoted Q. The equivalence classes under Q are
the faces of the Angle-System, and F denotes the number of faces |Q|.

• ¿ qp À is the Edge Group, denoted D. The equivalence classes under
this group are the edges of the Angle-System. All edges consist of one or
two angles; those consisting of only one angle are unary edges, while the
rest are proper edges. E denotes the number of proper edges. Note that
E = 2n− |D| (recall that 2n is the number of angles).

• ¿ pq, qp À is the Geodesic Group, denoted G. The equivalence classes
under G are the geodesics of the Angle-System.

The reason for the somewhat irregular definition for E, the number of edges, is
that fixed points of qp are of very little interest, and tend to obscure many theorems
we would like to prove. Typically, we deal only with Angle-Systems where qp has
no fixed points, but the convention of counting only 2-cycles of D in E allows most
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results to generalize.

Definition 2.8. An Angle-System is connected if it has only one component. Al-
ternatively, we state this definition as ∀a, b ∈ A, ∃w ∈ W : w(a) = b.

Typically, we are only interested in considering connected Angle-Systems. Some-
times, however, a system becomes disconnected in the process of a transformation
(to be discussed in §4). In this case, it is often advantageous to speak only of a
single component and disregard the rest.

Proposition 2.9. Each component of an Angle-System can be treated as a separate
connected Angle-System.

Proof: Simply consider the restrictions of p, q to the set Wa, for any angle a
in the component. Since p, q ∈ W , their restrictions to Wa have image Wa, and
clearly the restriction on pq remains true.
¤
Definition 2.10. The Eulernumber of an Angle-System, denoted χ, is given by
χ = F + V − E.

3. Graph Theoretic Interpretation

3.1. The Fundamental Conjecture of Angle-Systems. The critical connec-
tion between Angle-Systems and graph theory is stated in the following conjecture,
which the author titles, in brazen confidence of its truth, the Fundamental Theorem
of Angle-Systems.

Conjecture 3.1. There is a one-to-one correspondence between topologically equiv-
alent embedded graphs on orientable surfaces and those Angle-Systems which have
no unary edges.

One portion of this conjecture, namely that any embedding of a graph on an
orientable surface, is intuitively clear once the proper interpretations of p, q and
A are given. The conjecture in full generality may be proven by several steps by
existing embedding theorems. However, the purpose of this paper is to explore the
properties of Angle-Systems as algebraic objects independent of graph theory, thus
rigorous proof of the relation to graph theory is left to other efforts.

All this papers’ results, however, are motivated by an intuitive graph theoretic
interpretation, which shall now be outlined.

3.2. A, p, q and pq. The angles A correspond to ordered pairs of edges in a graph.
Namely, they represent two vertices immediately adjacent in the embedding. The
pairs are ordered because one edge is distinguished as the leading edge, the other
the following edge, so that the following edge must be rotating counter-clockwise to
coincide with the leading edge, if the orientation of the surface is taken to be out
of the page.

Notice that each edge in the graph is thus the leading edge of two angles, and the
following edge of two others (in certain special cases these four angles need not be
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Figure 1. Interpretation of an angle.

distinct; this will be discussed later). Using this fact, we interpret the permutations
p, q as follows.

• Both p and q map each angle a to one of the two angles whose following
edge is the leading edge of a.

• p maps a to the angle around the same vertex, while q maps to the angle
around the vertex at the other end.1

Observe that the reasoning behind the restriction imposed on qp by Definition
2.1 is now apparent. qp maps from an angle to the unique angle with the same
leading edge. Thus this permutation must simply interchange pairs of angles.

p(a) qp(a)

pqp(a)a = qpqp(a)

Figure 2. The relationship between qp and edges.

3.3. Primal, Dual, and Medial Graphs. One reason this interpretation is so
powerful and represents so many useful symmetries lies in the evenhandedness with
which it applies to both the primal graph and the dual graph. In particular, angles
belong not only to one vertex, but also to one face, and it is apparent that q could
be interpreted as mapping each a to the unique angle whose following edge is the
leading edge of q and which is part of the same face as a. Faces and Vertices being
duals of each other, q plays the exact same role in the dual graph as p plays in the
primal graph, and vice versa. Thus our definition of (q, p) as the dual of (p, q) is
logical. See figure 3 to see how angles in the primal graph correspond to angles in
the dual graph.

It should be observed that the notions of dual and medial graph discussed here
are different from those discussed in [2] and in other REU papers, since no bound-
ary is specified. In most cases, there is a way to map between those two notions,
though sometimes it is more difficult. This problem is discussed briefly at the end
of the paper.

1This may be the same vertex in the case of a loop.
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Figure 3. Illustration of the correspondence between angles in the
primal and dual graph, and the fact that the vertex permutation
of the primal is identical to the face permutation of the dual.

Another aesthetically pleasing and conceptually useful characteristic of Angle-
Systems is how they can be represented by the medial graph of the correspondent
embedded graph. In this setting, angles of the System correspond to edges of the
medial graph, with p and d permuting these edges counterclockwise about faces. p
rotates about the face of one shading, q about faces of the other shading. pd and
dp then interchange adjacent elements of geodesics.

3.4. The Equivalence Classes. The equivalence classes described in Definition
2.6 all correspond to the notions for which they are named. The vertices and faces
are self-explanatory., while some notes are useful regarding the others.

The walk group W is so-named because any “walk” by repeatedly moving in the
manner described by p and q can map any angle to any other angle in a connected
part. The equivalence classes thus become connected components.

The edge group defines a pairing of angles which share a leading edge. Since
each edge is the leading edge of a pair of angles, the equivalence classes are the
edges.

The geodesic group G similarly makes sense since both qp and pq map from an
edge in the medial graph to another edge on the same geodesic, and it is easy to
see that a series of these two can map from any edge to any other edge on the same
geodesic.

3.5. Example: The Tetrahedron Graph. We now illustrate the notions de-
scribed with a simple but interesting graph: the tetrahedron. We display diagrams
of the primal, dual, and medial graphs, as well as an overlay of the primal and dual
graphs to convey the correspondence between them.
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Figure 4. The tetrahedron graph, it’s dual, and the two overlayed.

1

6 8

3

5

2

4 7

11 12

9

10

Figure 5. The medial graph of the tetrahedron. Note that the
four ends are meant to intersect at infinity; the intersection in not
drawn so as to avoid clutter.

As can be observed from the diagrams, the Angle-System for the tetrahedron
graph is as follows.
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p = (1 2 3)(4 5 6)(7 8 9)(10 11 12)
q = (1 4 7)(2 9 12)(3 11 5)(6 10 8)

We also consider the following two compositions, whence we can derive all the
equivalence classes we mention.

qp = (1 9)(2 11)(3 4)(5 10)(6 7)(8 12)
pq = (1 5)(2 7)(3 12)(4 8)(6 11)(9 10)

It is easy enough to observe that interchanging p and q indeed gives the correct
Angle-System for the dual graph. Examining how the patterns of the above per-
mutations manifest themselves in the primal, dual, and medial graphs. Further,
we enumerate the equivalence classes of the tetrahedron graph, which can all be
observed in the diagrams above.

1 Component: {1,2,3,4,5,6,7,8,9,10,11,12}
4 Vertices: {1, 2, 3}{4, 5, 6}{7, 8, 9}{10, 11, 12}

4 Faces: {1, 4, 7}{2, 9, 12}{3, 11, 5}{6, 10, 8}
6 Edges: {1, 9}{2, 11}{3, 4}{5, 10}{6, 7}{8, 12}

3 Geodesics: {1, 9, 10, 5}{2, 11, 6, 7}{3, 4, 8, 12}

3.6. Constructing an embedding from an Angle-System. As a partial jus-
tification of why Conjecture 3.1 should be true, we present an intuitive argument
for how an embedding can be reconstructed from an Angle-System. The fact that
each embedded graph produces a unique Angle-System, and that the Angle-System
encapsulates all necessary information about the embedding, should be obvious. It
is the converse that presents more technical difficulty.

The most obvious action is to use the equivalence classes mentioned above. For
example, examine the cycle notation of p. The cycles represent vertices of the em-
bedding, we can simply draw every vertex as a star, with all angles labeled, and
then draw in the edges one by one. It should be noted that if the graph is non-
planar, eventually some of the edges will have to pass under existing edges, and
some care will be necessary in determining the exact embedding.

We illustrate this method by example. If the reader is still unsure about the
graphical interpretation of Angle-Systems, the author encourages him or her to
work several more of these examples. We begin by simply picking any p permu-
tation, and any qp permutation composed of 2-cycles, such as the following. Note
that we might as well number the angles in p in order, since it makes no difference.

p = (1 2)(3 4 5)(6 7 8)
qp = (1 6)(2 4)(3 8)(5 7)
q = qpp−1 = (1 4 8 5 2 6 3 7)

The construction and embedding of this graph, which was conceived simply as
a pair of permutations obeying our axioms, is displayed in Figure 7.
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Figure 6. First, all vertices are drawn and labeled as stars. Then
we identify the leading edge of each angle and connect it to the
leading edge of the angle to which the edge permutations pairs it.
Next, we tidy up the graph by rotating vertices and redrawing to
make it more legible. Finally we observe that indeed this graph
can be embedded on a surface of genus 1, as the Euler number
would suggest.

3.7. Unusual Cases. Another strength of Angle-Systems lies in how they deal
with unusual cases, such as edges connecting a vertex to itself. When dealing with
the Angle-System as a formal algebraic object, these distinctions, which so often
lead to painful casework when performing graph theory, are given formal and dis-
tinct representation in Angle-Systems, which can be dealt with in full rigor.
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Figure 8 illustrates two of these unusual cases, corresponding to points that are
fixed in either p or q. Note how easy these are to spot. Other unusual cases might
include an edge connecting back to the same vertex; this can be identified as an
angle which is mapped by q back to the same vertex, though perhaps not the same
angle, as in the loop shown in Figure 8.

a

a

Figure 7. If p(a) = a, then an isolated vertex is formed, as in the
top picture. Dually, if q(a) = a, a loop is formed, as in the lower
picture. Both of these cases, unusual in typical graph theoretic
analysis, are very easy to spot and deal with rigorously in Angle-
Systems.

One other strange case that cannot occur in an Angle-System under definition
2.1 is still of interest. If it is allowed that qp have fixed points in addition to two-
cycles, then degenerate edges can occur. These are edges which come off of a vertex
but do not go to another vertex. They are structurally analogous to loops with no
interior face, and are thus drawn as in Figure 9. Their manifestation in the interior
graph is also of interest: they correspond to a vertex of degree two (ordinary medial
graphs must have only vertices of degree four).

Degenerate edges, prohibited from ordinary Angle-Systems, are usually of no
interest. However, they occur inevitably in Quotient Systems to be discussed later.
The primary reason for their prohibition is the complications they cause for the
computation of χ.
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ap(a)

Figure 8. Notation for a degenerate edge, which is an edge con-
sisting of only one angle, and correspondent to fixed points in qp,
if their prohibition is relaxed.

��

Figure 9. The appearance of loops, isolated vertices, and degen-
erate edges in the medial graph. Loops and isolated vertices, being
dual to each other, appear the same in the medial graph: a loop
in a geodesic. Degenerate edges correspond to degree two vertices.

4. Transformations

Substantial information regarding Angle-Systems can be gleaned by considering
transformations of existing systems. We consider transformations of the following
form.

Definition 4.1. A standard transform Tm,n, where m and n are permutations, from
permutation pairs to permutation pairs, is defined by Tm,n(p, q) = (mpn−1, nqm−1).

Proposition 4.2. Standard transforms map Angle-Systems to Angle-Systems.

Proof: Suppose that Tm,n(p, q) = (p1, q1). Then q1p1 = nqm−1mpn−1nqpn−1,
and q1p1. For any angles a, b such that q1p1(a) = b, premultiplying yields qpn−1(a) =
n−1(b). Since qp fixes no points, n−1(a) 6= n−1(b) whence a 6= b. Thus (p1, q1) is
an Angle-System.
¤
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Observe that the simple transform of relabeling the angles of the system is a
standard transform, where m = n.

The following observation regarding the composition of permutations will be use-
ful in many of the arguments to follow. All permutations can be decomposed the
product of (not generally disjoint) transpositions, which can then be multiplied one
at a time.

Proposition 4.3. If p is a permutation, than composing p with the transposition
(a b) will increase the number of cycles of p by one if ¿ p À a =¿ p À b (i.e. a
and b lie in the same cycle, or a = pn(b) for some n), and increase the number of
cycles by one otherwise.

Proof: It is not difficult to verify the following identities:

(1) (a b)(a . . . b . . . ) = (a . . . )(b . . . )

(2) (a b)(a . . . )(b . . . ) = (a . . . b . . . )

(3) (. . . a . . . b)(a b) = (. . . a)(. . . b)

(4) (. . . a)(. . . b)(a b) = (. . . a . . . b)

¤

4.1. Disconnection and Euler’s Formula. We wish to be able to represent the
fundamental graph transformations deletion and contraction on an angle-system.
Unfortunately, since both these actions effectively reduce the number of angles by
two, they cannot be perfectly represented. The actions can be represented, but
always leave an extra component, not connected to the rest of the Angle-System.

Both deletion and contraction hinge on using equations (1) through (4) to break
off the edge which is destroyed. All are built up from a basic transformation called
disconnection.

Definition 4.4. The disconnection of edge e at one of its incident vertices v is
T(a,p(a)),e, where a = e ∩ v (the angle incident at v with leading edge e).

Proposition 4.5. Upon performing a disconnection, the Euler number χ either
remains unchanged or increases by two, remaining unchanged if and only if a and
p(a) lie in the same face.

Proof: Let (p, q) be the original Angle-System, and (p1, q1) the result upon
applying some disconnection. Then p1 = (a, p(a))p, and since a and p(a) lie in the
same cycle of p, V1 = V + 1. F1 = F ± 1, with the sign dependent on whether a
lies in the same face as p(a). q1p1 = q(a, p(a))(a, p(a))p = qp, so E1 = E. Thus
χ1 = V1 + F1 − E1 = χ + 1± 1, and the result follows.
¤

We now have the machinery to prove the following crucial result, the analogue
of Euler’s Theorem in graph theory.
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Theorem 4.6. If (p, q) is a connected Angle-System, then the Euler number χ is
an even number less than or equal to 2.

The proof follows directly from the following two lemmas.

Lemma 4.7. It is possible to apply a series of disconnections to any connected
Angle-System, resulting in a system (pt, qt) such that Ft = 1 and χt = χ.

Proof: Suppose that the system (pm, qm) is a system acquired by applying a
series of χ-preserving disconnections so that Fm is minimized. Then for every a ∈ A,
p(a) ∈ Qa, for otherwise contraction at a would reduce F and preserve χ. Trivially,
q(a) ∈ Qa. Since we can apply any series of p and q and the angle remains in Qa,
it follows that Wa ∈ Qa. The system is connected, so Wa = A, thus A ∈ Qa.
But Qa ∈ A, so A = Qa, implying there is only one face on which all angles lie, as
desired. ¤

Lemma 4.8. For any Angle-System with only one face, χ is even and less than or
equal to two.

Proof: By definition, F = 1, so q is a single cycle, and likewise q−1. Now
p = q−1qp, and qp is expressible as a composition of E transpositions. Each trans-
position changes the sign of the number of cycles in the resulting permutation, thus
carrying out the composition one transposition at a time results in a number of
cycles whose sign is congruent to 1 + E mod 2. Thus V ≡ 1 + E mod 2, and
χ = V +F −E ≡ 1+E +1−E ≡ 0 mod 2, so χ is even. Also, V ≤ 1+ E since V
is maximized when each transposition causes an increase in the number of cycles.
Thus χ = V + F − E ≤ 1 + E + 1− E = 2. ¤

With these constraints established on χ, the following definition can be made.

Definition 4.9. For any connected Angle-System, the integer 1
2 (χ − 2) is called

the genus of an Angle-System. When the genus is 0, i.e. χ = 2, the Angle-System
is called planar.

4.2. Deletion and Contraction. As mentioned in the previous section, it is very
easy to define deletion and contraction as standard transforms.

Definition 4.10. The deletion De of edge e is the transform T(a,p(a))(b,p(b)),e,
where e = {a, b} (e in the subscript refers to the identity transform, not the edge,
which would be nonsensical). Similarly, the contraction Ce of e is the transform
Te,(a,q−1(a))(b,q−1(b)).

Though somewhat hard on the eyes, this definition follows common sense: to
delete an edge, disconnect both its ends, and to contract, perform the dual action
of deletion. The inverses must be present to perform the dual action because pq
in the dual Angle-System plays the role of qp in the primal, leading to different
pairings of angles in edges. Inspection of the example below should make it clear
why this is the most convenient definition.

Observe that Both deletion and contraction create disconnected Angle-Systems.
In particular, each performs the proper graph-theoretic action on the rest of the
angle system and forms an extra component consisting in the two angles a and
b. As an example, see Figure 10, where a deletion and contraction are applied to
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Figure 10. The result of performing D{3,4} and C{8,12} on the
tetrahedron graph.

the tetrahedron graph, on edges {3, 4} and {9, 10}, respectively, creating a three-
component Angle-System.

In most cases, it is most useful to disregard these extra components, for example
in the calculation of χ.

5. Symmetries and Quotient Systems

Another variety of transformation that is of particular interest is a symmetry :
a permutation on A that preserves the relations p and q. Just like symmetries
of plane figures, symmetries of Angle-Systems come in two varieties: proper and
reflective. These are defined as follows.

Definition 5.1. A proper symmetry of a connected Angle-System is a permutation
f such that fp = pf and fq = qf . A reflective symmetry is a permutation f such
that fp = p−1f and fq = q−1f .

Proposition 5.2. The symmetries of an Angle-System are a subgroup of the per-
mutations. Furthermore, the product of two proper or reflective symmetries is a
proper symmetry, while the product of a reflective and proper symmetry is a reflec-
tive symmetry. The inverse of a proper symmetry is also proper, and likewise for
reflective.

Proof: If f1, f2 are two symmetries, the first proper, the second reflective, then
f1f2p = f1p

−1f2 = p−1f1f2 and f1f2q = f1q
−1f2 = q−1f1f2, thus f1f2 is a reflec-

tive symmetry. The other cases are similar. To see existence of inverses, simply
premultiply and postmultiply by f−1 in the equations given in the definition. ¤

One important characteristic of a proper symmetry is that it partitions all the
angles into equivalence classes of equal size. This is stated in the following theorem.

Theorem 5.3. All cycles of a proper symmetry f on a connected Angle-System
have equal length.

Proof: Let a be the angle with minimal order n. Then fnw(a) = wfn(a) =
w(a), for any w ∈ W . Since the system is connected, any angle can be written as
w(a) for some w ∈ W , thus fn = e, and thus n must be the order of all elements. ¤
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Reflective symmetries do not have this property, but they can be simplified in a
very pleasing way.

Theorem 5.4. If a connected Angle-System has a reflective symmetry, then there
exists some reflective symmetry with order 2 and at least one fixed point; all reflec-
tive symmetries are obtained by composing this point-fixing symmetry with a proper
symmetry.

Proof: Since the square of any reflective symmetry is a proper symmetry, this
shall follow as a corollary of the following, more general theorem. ¤
Theorem 5.5. If f is a permutation such that f2 is a proper symmetry, then

• Either all elements have the same order, or some have order n, where n is
odd, and the rest have order 2n.

• There exist permutations g, h and integer n ≥ 1 such that h is a proper
symmetry, g2n

= e, g2 is a proper symmetry, and f = gh. In the case
when some element has odd order under f , n = 1 and g fixes at least one
point.

Proof: If an element a has order n under f , then if n is odd, a has order n
under f2, otherwise it has order n/2 under f2. Since all elements have the same
order under f2, it follows that if any element has odd order n under f , then all
elements have order n or 2n. If no element has odd order, then all elements have
half the order under f2 as under f , and thus they must all have equal order under
f . This establishes the first part of the theorem.

For the second part, there are two cases. If f has elements of odd order n, then
1 − n is even, thus letting g = fn and h = f1−n satisfies the stated conditions. If
f has only elements of even order k2n, where k is odd, then g = fk and h = f1−k

satisfy the stated conditions. ¤

Proper symmetries allow for a rather remarkable simplification to take place: the
quotient Angle-System. All angles which are congruent modulo F (where F denotes
¿ f À) can be identified with each other, and only the relations between these
sets need be considered. This notion is made precise by the following theorem.

Theorem 5.6. If (p, q) is an Angle-System and f is a proper symmetry of the
system, there exist permutations p1, q1 on the equivalence classes of A under F
such that p1Fa = Fpa, q1Fa = Fqa, and (q1p1)2 = e, the identity.

Proof: To see that p1 and q1 are well-defined, suppose that Fa = Fb. Then
a = fn(b) for some n, so Fp(a) = Fpfn(b) = Ffnp(b) = Fp(b). The same
argument is valid for d. Thus p1Fa and q1Fa are well-defined. Now note that
(q1p1)2Fa = F (qp)2(a) = Fa, so (q1p1)2 = e. ¤

Note that the reason this proof is not valid for reflective symmetries is that n
might be odd, in which case pfn 6= fnp generally. A more sophisticated definition
is required to take quotients by reflective symmetries, which may be developed in
later editions of this paper.
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Definition 5.7. The pair (p1, q1) is called the quotient Angle-System of (p, q) by
the symmetry f , and is denoted (p, q)/F .

One substantial difficulty is that quotient angle systems often degenerate Angle-
Systems; it is possible that q1p1 has fixed points. It is easy enough to acquire a
proper Angle-System from a quotient Angle-System, however: simply remove fixed
angles from all cycles. Alternatively, degenerate Angle-Systems can be treated as
legitimate structures, with the understanding that they do not have an analogue in
graph theory, and if the stipulation is made that only edges containing two angles
are counted when calculating χ.

Proposition 5.8. For any reflective or proper symmetry f , and H being any of
F, Q, or G, fH(a) = Hf(a), thus f permutes vertices, faces, and geodesics.

Proof: If f is a proper symmetry, it commutes with any element of W , and the
result is immediate (any holds for any subgroup of W ). If f is a reflective symmetry,
observe that fh(a) = h′f(a), where h′ consists of replacing each instance of p and q
in h with its inverse. If h ∈ P or h ∈ Q, it is clear that h′ is in the same subgroup.
If h ∈ G, then observe p−1q−1 = qp and q−1p−1 = pq, so h′ ∈ G, establishing the
result. ¤

The following theorem may or may not be a discrete version of the Riemann-
Hurwitz formula.

Theorem 5.9. If χ′ is the Euler number of the quotient system of an Angle-System
with Euler number χ under a symmetry of order n, then

χ′ = 1
nχ +

∑

k|n

k − 1
n

(Vn/k + Fn/k) +
1
n

E1,

where Vk, Fk, Ek denote the number of vertices, faces or edges, respectively, with
order k under f .

Proof: Observe V ′ =
∑

k|n

1
k

Vk =
∑

k|n

k

n
Vk/n, since all k-cycles of vertices under

f are reduced to a single vertex in the quotient system. The second equality results
from a change of index and the fact that k|n if and only if (n/k)|n. Similarly

F ′ =
∑

k|n

1
k

Fk =
∑

k|n

k

n
Fk/n. However, we use a different method to calculate E′,

taking into account that fixed points of q1p1 are not to be counted. There are E−E1

edges that are not mapped to themselves. These are constituted from 2(E − E1)
angles, which thus become 2(E − E1)/n angles in the quotient system, therefore
forming (E−E1)/n edges. Thus E′ = 1

n (E−E1). Using these formulas, we obtain
the following.

χ′ =
∑

k|n

k

n
Vk/n +

∑

k|n

k

n
Fk/n −

1
n

(E − E1)

χ′ =
∑

k|n

k

n
(Vn/k + Fn/k)− 1

n
(E − E1)

χ′ =
1
n

∑

k|n
(Vk/n + Fk/n) +

∑

k|n

k − 1
n

(Vn/k + Fn/k)− 1
n

E +
1
n

E1
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χ′ =
1
n

(V + F − E) +
∑

k|n

k − 1
n

(Vn/k + Fn/k) +
1
n

E1

χ′ =
1
n

χ +
∑

k|n

k − 1
n

(Vn/k + Fn/k) +
1
n

E1. ¤

Corollary 5.10. A quotient system has lesser or equal genus than the initial Angle-
System, with strict inequality when the genus is greater than 1.

Proof. Notice that χ′ ≥ 1
nχ. If χ = 2, it follows that χ′ > 0 and thus χ′ = 2 as

well. If χ ≤ 0, then 1
nχ ≥ χ, with strict inequality if χ < 0, whence χ′ ≥ χ, strict

if χ < 0. The result follows. ¤

As an example, the quotient systems created by two different symmetries on the
tetrahedron Angle-System shall be presented.

The first symmetry is f = (1, 10)(2, 11)(3, 12)(4, 8)(5, 9)(6, 7). Taking the quo-
tient system, and representing each of the six equivalence classes under F by the
angle of lesser index, the following quotient system is obtained, depicted in Figure
11. Observe that two degenerate edges are created.

p1 = (1, 2, 3)(4, 5, 6)
q1 = (1, 4, 6)(2, 5, 3)
q1p1 = (1, 5)(2)(3, 4)(6)

1

3 2

4 6

5

1

23

4 6

5

Figure 11. The primal and medial graphs of the first example of
a quotient system of the tetrahedron.

The second symmetry is f = (1, 2, 3)(4, 11, 9)(5, 12, 7)(6, 8, 10). This produced
the quotient system of 4 angles given below and depicted in Figure 11.
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p1 = (1)(4, 5, 6)
q1 = (1, 4, 5)(6)
q1p1 = (1, 4)(5, 6)

1

4

6

5

1

5 46

Figure 12. The primal and medial graphs of the second example
of a quotient system of the tetrahedron.

It is somewhat difficult to gain an intuitive grasp on the geometric effects of
quotients on the primal, dual, and medial graphs, but careful study should reveal
the underlying patterns.

5.1. Product Systems. The natural follow-up question is when it is possible to
perform a quotient in reverse, creating a product system. We must understand
what must be specified to uniquely determine a product system, and also how to
distinguish when several differently specified product systems are isomorphic. This
paper answers the first question, but the second is not yet fully explored.

Suppose an Angle-System (p, q) with angles A is given, which is meant to be the
quotient system of the product Angle-System (pP , qP ) with angles AP , under the
proper symmetry f of order n (recall that f must be composed of n-cycles only).
Thus each a ∈ A represents a coset of AP under f , so we suppose that there is
some representative a′ such that a corresponds to Fa′. Then for every a ∈ A, there
are n angles fk(a′) ∈ AP . A different notation, however, is slightly more convenient.

Definition 5.11. The angles of a product system are written 〈a, k〉, k ∈ Zn,
indicating the kth member of the coset a. Therefore 〈a, k〉 = fk(a′).

In the above notation, it follows immediately that f〈a, k〉 = 〈a, k + 1〉. The
representation of p′ and q′, and what must be specified to uniquely construct them,
is given by the following theorem.

Theorem 5.12. (p, q) = (pP , qP )/F if and only if there exist two functions u, v :
A → Zn, such that pP and qP are given by
pP 〈a, k〉 = 〈p(a), k + u(a)〉
qP 〈a, k〉 = 〈q(a), k + v(a)〉,
and furthermore that (u + vp + uqp + vpqp)(a) = 0 for all a ∈ A.
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Proof: First, suppose that indeed (p, q) = (pP , qP )/F . Define the function
u′ : A×Zn → Zn such that for all 〈a, k〉 ∈ AP , pP 〈a, k〉 = 〈p(a), u′(a, k)〉. Similarly,
define v′ : A × Zn → Zn such that q〈a, k〉 = 〈q(a), v′(a, k)〉. These are both well-
defined functions since each angle of AP is uniquely mapped to another by each of
p and q. We shall establish that u′(a, k) = u′(a, 0) + k and v′(a, k) = v′(a, 0) + k.
The base case k = 0 is trivial, and we proceed by induction. Suppose that the
result holds for 0 ≤ k ≤ h. Since f is a proper symmetry, fpP = pP f , thus:
fpP 〈a, h〉 = pP f〈a, h〉
f〈p(a), u′(a, 0) + h〉 = pP 〈a, h + 1〉
〈p(a), u′(a, 0) + h + 1〉 = 〈p(a), u′(a, h + 1)〉,
Completing the induction. The proof is identical for v′.
Thus we define u(a) = u′(a, 0) and v(a) = v′(a, 0), and see that the first two
conditions must indeed be true.
To confirm the final inequality, notice that qP pP qP pP = e implies that for all angles:
qP pP qP pP 〈a, k〉 == 〈a, k〉
qP pP qP 〈p(a), k + u(a)〉 == 〈a, k〉
qP pP 〈qp(a), k + u(a) + vp(a)〉 == 〈a, k〉
qP 〈pqp(a), k + u(a) + vp(a) + uqp(a)〉 == 〈a, k〉
〈qpqp(a), k + u(a) + vp(a) + uqp(a) + vpqp(a)〉 == 〈a, k〉
〈a, k + u(a) + vp(a) + uqp(a) + vpqp(a)〉 == 〈a, k〉,
So indeed we must have (u + vp + uqp + vpqp)(a) = 0.
Conversely, suppose that an Angle-System (p, q), and a pair of functions u, v : A →
Zn, for any n are given. It can be directly verified that if we define a set of angles
Ap == {〈a, k〉|a ∈ A, k ∈ Zn, and permutations pP , qP : AP → AP as stated in
the theorem, as well as stipulating that f : AP → AP increments the index k of an
angle in AP , then (p1, q1) constitutes an angle system, f a proper symmetry of that
angle system, and (p, q) corresponds to the quotient system (p1, q1)/F , as desired.
¤

This result allows the construction of all possible product systems from a given
Angle-System. What is not clear, however, is how exactly these should be specified,
and which product systems are isomorphic to each other. The following theorem,
however, gives a means of parameterizing all possible product systems in a fairly
efficient manner. First we introduce some terminology.

Definition 5.13. The coefficient k of an angle 〈a, k〉 in a product system shall
be called the sector of the angle, and the angle a from the initial system is the
position of the angle. The functions u and v for each angle of the initial system
shall be called, respectively, the vertex transition and face transition of the angle.
The value (u + vp)(a) is called the edge transition, which will be denoted w(a).

Thus we interpret the product system as follows: the product creates n sectors of
angles, and in each sector is one angle for each position, which correspond to angles
of the original system. When any permutation (vertex, face, or edge) is applied to
the product system, the position is permuted as in the original system, and then
the sector is adjusted by the transition function for that angle and permutation.
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Proposition 5.14. The assignments of vertex and face transitions determine a
valid product system if and only if w(a) + wqp(a) = 0 for all angles. Thus the two
angles of every edge have complementary edge transitions.

Proof: This follows directly from the definition of w(a) and the above theorem.
¤

We now make the following important observation: we can parameterize all
possible product systems of an Angle-System by first assigning not vertex or face
transitions, but edge transitions. Simply identify a primary angle for each edge,
and assign an edge transition to each primary angle, which uniquely determines
the other edge transition. Then either the vertex or edge transitions can be arbi-
trarily assigned, and the other will be fully determined. For example, if all edge
and vertex transitions are knows, we compute the face transition of any angle as
v(a) = (up−1 + vpp−1 − up−1)(a) = (wp−1 − up−1(a) = (w − u)p−1(a).

The logical next step in the development of a good theory of product systems is to
attempt to classify equivalent product systems. For example, of the sector numbers
of a given angle of the product system are permuted, the system’s structure is
unchanged, but the transitions are adjusted. One logical effort might be to attempt
to “localize” sectors to the greatest extent possible, so that as many transitions as
possible are equal to 0, except at “sector boundaries.” All this may be developed
in a later edition of this paper, or by some future student.

6. Planarity

It is possible to prove an analogue of the Jordon curve theorem.

Theorem 6.1. If an Angle-System is planar, then all polygonal paths divide the
angles of the Angle-System into two sides.

The most obvious proof, which is not presented here due to its messy nature and
the author’s hope that a more elegant solution is yet to be found, is to use standard
genus-preserving transforms to shrink the polgonal path down to a single edge, and
then showing that at that point a disconnection would increase the Euler number
of the graph without creating a new component, showing the Euler number was
previously less than 2.

An analogous result for polygonal paths in the medial graph must also hold, and
can probably be proved similarly.

This topic is highly incomplete, and future students are highly encouraged to
complete it in a satisfying way, and also to extend it to results for higher genuses
as well.

7. Self-Duality

We now approach a version of the self-dual problem originally posed by Owen
Biesel and Jeff Eaton in [1]: how can one classify those graphs that are isomorphic
to their dual? Specifically, [1] deals with planar graphs, and Angle-Systems allow
for more headway here than in other cases. The tetrahedron graph mentioned
earlier is an example of a self-dual graph.
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Definition 7.1. A permutation f of the angles of an Angle-System (p, q) is a
proper self-duality if pf = fq and qf = fp. It is called a reflective self-duality if
pf = fq−1 and qf = fp−1.

Proposition 7.2. If f is a self-duality, then f2 is a proper symmetry.

Proof: This follows almost directly from the definition.
¤

Thus we have the results from a previous section that all the cycles of f either
have the same order, or orders n and 2n, where n is odd, and f = gh, where h is
a proper symmetry, and g is composed either entirely of 22n

cycles, for some n, or
has order 2. Clearly g = fh−1, so we have the following.

Proposition 7.3. If an Angle-System is self-dual, there exists a self-dual permu-
tation g with all cycles of length 22n

for some n ≥ 1, or all cycles of length 1 and
2.

We will thus typically only concern ourselves with self-dualities of the form above,
since they are sufficient to characterize all self-dual graphs.

A neat result that is useful in some casework is the following.

Proposition 7.4. For any angle a, Gf(a) = f(Ga). Thus f can be regarded as
specifying a permutation of the geodesics.

Proof. It is easy to verify that, in both the reflective and proper cases, f{pq, qp} =
{pq, qp}f . Thus ∀g ∈ G, fg(a) ∈ Gf(a) and gf(a) ∈ f(Ga), thus Gf(a) = f(Ga).

¤

7.1. Constructing Self-Duality. We now prove a result regarding the uniqueness
of the self-dual mapping f . We first must define the dual of a walk, as follows.

Definition 7.5. If we are considering proper self-duality, the dual w̄ of any walk
w ∈ W is the walk in W obtained by replacing every p with a q and vice versa. If
we are considering reflective self-duality, w̄ is obtained by replacing every p with
q−1 and vice versa. Thus for all w ∈ W , fw = w̄f .

Proposition 7.6. Every valid self-dual on a connected Angle-System is completely
determined by its effect on a single angle.

Proof. Suppose it is given that f(a) = b. Connectedness implies that any other
angle can be written as w(a), and fw(a) = w̄f(a) = w̄(b). Thus the value of f at
every angle is determined. ¤

This naturally raises the question: for which assignments of f(a) will a valid
self-duality f be produced this way? There are two problems that could arise: the
definition procedure in the above proposition may be ill-defined, or the function
may not be a self-duality. The conditions where these problems do not arise are
expressed in the following theorem.

Theorem 7.7. Let Wa = {w ∈ W |w(a) = a}. Then there exists a self-duality on
the Angle-System if and only if there exists another angle b such that W̄a fixes b.

Proof: To see that this is a necessary condition, note that for all w ∈ Wa,
w̄f(a) = fw(a) = f(a), thus W̄a must fix the point w(a). For sufficiency, note
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that if such a, b exist, we can define fw(a) = w̄(b). To see that this is well-defined,
Suppose that w, v ∈ W and w(a) = v(a). Then v−1w fixes a, therefore ¯v−1w̄ fixes
b, or w̄(b) = v̄(b), and thus f is well-defined. To see that f is a self-duality is fairly
straightforward. ¤

This theorem provides a closed-form criterion for a graph being self-dual, prop-
erly or improperly, but it would be very difficult to verify in practice. It’s strength,
however, lies in its elimination of the “there exists an f” quantifier.

7.2. Self-Duality Preserving Transformations and Quotients. It is some-
times possible to simplify a self-dual angle system by applying a self-dual preserving
transformation. It is the author’s hope that this will, in time, yield a method that
can be used to generate all self-dual graphs. These transformations take a form
specified by the following theorem.

Theorem 7.8. A transformation Tm,n preserves self-duality, with the same map
f , if the permutations m,n satisfy the following conditions.

• For proper self-duals: mf = fn, nf = fm.
• For reflective self-duals: mf = fm, nf = fn.

Proof: For proper self-duals, if m,n obey the given conditions, then fmpn−1 =
nfpn−1 = nqfn−1 = nqm−1f , and similarly fnqm−1 = mpn−1f , so indeed f
is still a self-duality. For reflective self-duals, we similarly verify that fmpn−1 =
mq−1n−1f = (nqm−1)−1f and fnqm−1 = np−1m−1f = (mpn−1)−1f , thus f is
still a reflective self-dual. ¤

We also have the following result, which allows substantial simplification of self-
dual graphs.

Theorem 7.9. If f is a self-duality of an Angle-System (p, q), then the permutation
f1 over the equivalence classes F 2A given by f1F

2a = F 2f(a) is well defined and
also a self-duality for the quotient system (p, q)/F 2, where F 2 denotes ¿ f2 À.

Proof: First, to see that f is a well-defined permutation of the equivalence
classes under F 2, note that if F 2a = F 2b, then F 2f(a) = fF 2a = fF 2b =
F 2f(b). In the proper self-dual case, fp1F

2a = fF 2p(a) = F 2fp(a) = F 2qf(a) =
q1F

2f(a) = q1fF 2a, and similarly fq1F
2a = p1fF 2a. The reflective case is analo-

gous. ¤

Thus any self-dual Angle-System can be reduced by a quotient to a self-dual
(possibly degenerate) Angle-System with f of order 2. Alternatively, almost as
significant a simplification can be made as in the following proposition.

Proposition 7.10. Any self-dual graph possesses a self-duality permutation of or-
der 2n, for some nonnegative integer n.

Proof: Let k be the highest odd factor of the order of f . Then fk is the desired
permutation. This follows because either all cycles of f have the same order k2n,
or some have order k, some order 2k. ¤
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7.3. 1-2 Self-Duals. We define those self-dualities where the cycles of f have or-
ders 1 and 2 1 − 2 Self-Duals. Any Angle-System with a self-duality having one
element of odd order possesses a 1− 2 self-duality. They turn out to be fairly easy
to classify, by considering only a single fixed angle.

Suppose f is a self-duality of a connected Angle-System, and a is a fixed point
of f . All other angles can be written as w(a) for some w ∈ W . Then f must
obey fw(a) = w̄(a). Geometrically, this means that the Angle-System is that of a
medial graph which is reflectively symmetric in the ordinary sense, and thus any
self-dual embedded graph is topologically equivalent to a graph symmetric in this
way. Specifically, if f is proper, the medial graph is symmetric by a reflection
through the midpoint of the edge correspondent to a, and if f is reflective, the
medial graph is symmetric by a reflection across the geodesic of a.

Some rigor is necessary in this argument, as in all the arguments herein that
refer to graphs rather than pure angle-systems. Nevertheless, once this is provided,
this provides some vindication for the conjecture at the end of [1].

8. Circular Planar Graphs

One problem in attempting to use Angle-Systems to find results relevant to REU
research is that there is no clear definition of boundary nodes, and the notion of the
dual graph is notably different in the two cases. Several solutions come to mind,
but the author has found none to be totally satisfactory yet. One is simply to
take a circular planar graph, and create one more vertex connected to all boundary
nodes, but this is not preserved in creating the dual graph. Another idea is to place
something identifiable on the boundary nodes, such as a degenerate edge, but again
this does not behave well in the dual graph.

The most promising option so far is to revise the definition of Angle-Systems to
have incomplete permutations, which is to say objects that are like permutations,
except that some angles are permuted to nothing. Thus the angles on the boundary
simple are the “ends” of cycles. Consider the example in figure 13, which is related
to the spherically embedded tetrahedron graph, and is also self-dual in the sense
discussed in [1] and other REU papers.

We use square braces (e.g. [ ]) to indicate incomplete permutations, i.e. the final
element is not mapped to any element, and no element is mapped to the first. Thus
the graph is represented by the following Angle-System of incomplete permutations:

p = [1 2 3][4 5 6](7 8 9)[10 11]
q = [6 1](2 5 7)[3 9 10][11 8 4]
qp = (1 5)(2 9)[3](4 7)[6](8 10)[11]

This representation possessing many aesthetic qualities, and if nothing else is an
efficient way to represent a graph with a boundary, in the style used by the REU. It
is also easy to convert between the graph and its dual. However, it is not clear how
to perform algebra on incomplete permutations. In particular, though they form a
monoid (we can compose them), they are not a group, since it is not obvious how
to create inverses. It is conceivable that with some effort this model can be revised
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Figure 13. A circular planar graph, in the style used by the REU.

into a robust algebraic structure, lending itself to analysis in the same capacity as
Angle-Systems.

9. Further Research

This paper constitutes only a compilation of ideas the author feels could be very
productive in an algebraic approach to various graph theoretic problems; it remains
to actually solve these problems. There are countless unanswered questions which
lend themselves to further research in the vein of the ideas proposed in this paper.
Some that the author particular wishes he had the time to explore (and may explore
yet) are the following:

• First and foremost, someone with a deeper background in Algebra should
carefully examine this theory, and see what marvelous simplifications and
extensions may result from less elementary methods.

• The self-dual problem is still significantly incomplete. A little effort might
resolve the entire issue with a simple paradigm.

• The more general self-dual problem, where ordering of angles around a
vertex is no longer pertinent, might be attacked, though there is strong
evidence that Angle-Systems would be unideal in this effort (though their
strength lies in the easy creation of dual graphs).

• It should be a fairly routine matter to prove a version of the Jordon curve
theorem as a planarity criterion. Further criteria might be explored, as
well as a deeper theory of genus in general, and what indicators might exist
upon considering only p and qp, without explicitly working out q.

• There is no reason the set of angles must be finite; a great deal of theory
might be developed for bijections of the integers, uncountable sets, or even
general groups. Applications of such a theory might extend far beyond
simple graph theory.

• The topic of geodesics and medial graph has not been explored in great
depth. Many of the informal ideas expressed in [1] might find excellent
expression if the theory of Angle-System geodesics is developed and under-
stood further.
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• The topic of simplifying systems by various standard transforms may pro-
vide further headway in the self-dual problem, perhaps classifying a set
of “primitive” self dual systems with lead, in turn, to the others. Such
primitive systems might have pleasing descriptions in terms of geodesics.

• The problem of applying the methods of Angle-Systems to the graphs with
boundaries considered in the REU is very open, as discussed in the final
section.

• The abstract structures knows as Matroids have provided significant head-
way in some graph-theoretic problems similar in nature to the problems
that inspired Angle-Systems. There may by connections to be found be-
tween the two abstractions.

• Angle-Systems provide a good stage for the consideration of coloring prob-
lems, such as the four-color theorem and its generalizations to higher genus
surfaces. Perhaps some interesting results could be discovered in this realm.

• It would be easy enough to program an applet to work with Angle-Systems
and perform various actions on them. The creation of a robust software
environment might be a good first step in all of the above areas of study.

• This paper should be thoroughly read over and corrected, as the author
may have left many technical or more significant errors.
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