
ON NUMERICAL RECOVERY METHODS FOR THE INVERSE
PROBLEM

GEORGE TUCKER, SAM WHITTLE, AND TING-YOU WANG

Abstract. In this paper, we present the approaches we took to recover the
conductances of an electrical network, concentrating on the method of non-
linear least squares optimization. The methods include steepest descent with
symbolic differentiation and numerical differentiation, Newton’s method, and
Levenberg-Marquardt. Using these algorithms, we were able to recover large
networks. In order to better reflect real life situations, we decided to add noise
to our measurements and include some knowledge of the resistors. This led us
to add a regularization term and try a method of rounding between iterations.
In the end, without any a priori knowledge, we recovered a 50x50 square lattice
network with constant conductance to within 0.01% error.

Contents

1. Introduction 1
2. Arbitrary Conductances 2
2.1. Steepest Descent using Symbolic Derivatives 2
2.2. Steepest Descent using Numerical Derivatives 3
3. Finite Set of Known Conductances 3
3.1. Rounding 4
3.2. Genetic Algorithm 5
3.3. Regularization 6
4. Analytic Derivative 7
4.1. Rank of the Differential 8
5. Non-Linear Least Squares - Gauss-Newton and Levenberg-Marquardt 9
6. Physical Network 10
7. Future work 11
8. Results 12
References 12

1. Introduction

An electrical network is a graph with nodes arbitrarily partitioned into boundary
and interior sets and with a non-negative conductance function γ defined on each
edge. Such networks are introduced and discussed in [1].

Definition 1.1 (Kirchhoff Matrix). Suppose an electrical network contains n bound-
ary nodes and m interior nodes. Let the boundary nodes be numbered 1 to n and

Date: August 18, 2006.

1

2 GEORGE TUCKER, SAM WHITTLE, AND TING-YOU WANG

the interior nodes be numbered n + 1 to n + m. Then the Kirchhoff matrix K for
the network is the (m + n) by (m + n) matrix defined:

Kij =

{
−γij , if i �= j∑

k �=i γik, i = j

where γij equals 0 if there is no edge between nodes i and j and γij equals the
conductance function evaluated on the edge between nodes i and j otherwise. K is

symmetric and can be expressed in block form as
[

A B
BT C

]
.

Definition 1.2 (Response Matrix). The response matrix of a network Λ is the
square matrix that maps boundary voltages to boundary currents. If K is a Kirch-

hoff matrix in block form
[

A B
BT C

]
, then Λ is the Schur complement of C in K:

Λ = A − BC−1BT .

The inverse problem for electrical networks is to determine the conductance func-
tion γ by measuring voltages and currents at the boundary nodes. We attempted
to numerically solve the inverse problem by minimizing the sum of square errors
between predicted currents and measured currents. The algorithm takes as inputs
voltages, the resulting currents, an adjacency matrix, and an initial guess for the
conductivity function. Then, we iteratively minimized the following quantities with
respect to γ

F (γ) = vec(Λ̃γ − Λ)

(1) f(γ) =
1
2
||F (γ)||2 =

1
2
F (γ)T F (γ).

where Λ̃γ is the response matrix evaluated with γ as the conductance function. We
tried several methods of optimization and imposed additional constraints to deal
with the ill-posedness of the problem.

2. Arbitrary Conductances

2.1. Steepest Descent using Symbolic Derivatives.
initialize tau (step size)
symbolically compute gradient of f
while iterationsDone < maxIterations
grad = evaluate symbolic derivative at x
x = x - tau*grad

end

Our first algorithm symbolically computed the gradient by assuming every entry
in K was a variable, which allowed us to symbolically compute the functional
(Eq. 1) and then to symbolically differentiate the functional. We thought this
technique would be more exact because the whole computation was accomplished
in a single step. Also we thought we could save time by computing the gradient
once symbolically, instead of numerically every iteration. With the symbolically
computed gradient, we used a gradient descent algorithm with a fixed time step.
The conductivity function was modified at each iteration as follows: γk+1 = γk −

ON NUMERICAL RECOVERY METHODS FOR THE INVERSE PROBLEM 3

α∇f(γk), where α is a fixed constant. As we increased the network size, this
method quickly became infeasible. Even though the gradient was computed only
once, evaluating the gradient, which had to be done every iteration, was extremely
slow.

2.2. Steepest Descent using Numerical Derivatives.
initialize tau (step size)
while iterationsDone < maxIterations
foreach j = 1 to n
e_j = [0, ... 1, ... 0], 1 in jth position, 0 elsewhere
f_j = (f(x + epsilon*e_j) - f(x)) / epsilon

end
x = x - tau*grad

end

To increase the speed of our algorithm, we switched to numerical computations
of the gradient by forward differences.

∂xF (γ) ≈ F (γ + hx) − F (γ)
h

for small h

This algorithm was much faster, and we were able to tackle larger networks, but we
were still using a constant time step. Instead of writing an algorithm to vary the
time step, we leveraged built-in Matlab minimization algorithms. At first we used a
subspace trust-region method based on an interior-reflective Newton method, which
allowed us to specify a lower bound on γ. During each iteration, computing Λ̃ re-
quired inverting a principle proper submatrix of K. Instead of inverting the matrix,
it is more numerically stable and quicker to solve a linear system of equations. Be-
cause γ was always positive and K has row sums equal to zero, any principle proper
submatrix of K is positive definite, which allowed us to use Cholesky factorization
to solve the system of equations even quicker. We were able to recover 5x5 square
lattice networks, but as the size of the network increased, the algorithm converged
much slower and the solutions were less accurate (refer to Fig. 2 on page 7 for a
picture of a square lattice network). We switched to an unconstrained Levenberg-
Marquardt algorithm. Because γ was unconstrained, during intermediary steps in
the algorithm, some of the γ values became negative, so we were unable to use the
Cholesky factorization. Although the negative values are troubling physically, they
do not seem to have an adverse effect on the numerical calculations. After trying
several other algorithms, we settled on the Levenberg-Marquardt method (Section
5).

3. Finite Set of Known Conductances

In an attempt to simplify the problem, we restricted the conductances in the
network to be from a small set of known conductances. For example, suppose you
have a network with 12 edges but you know the conductance for each edge is either
1 or 10. This scenario is perhaps more likely to occur in practice, due to a limited
supply of resistor types. With only a finite set of conductances, it seemed feasible
to try other techniques for minimization, taking advantage of this restriction.

4 GEORGE TUCKER, SAM WHITTLE, AND TING-YOU WANG

Figure 1. An example of the rounding algorithm for a 5x5 square
lattice. Each frame shows an iteration of the rounding algorithm,
where the colored edges represent determined conductances. As
the algorithm progresses, more of the edges are determined, until
the graph is completely determined.

3.1. Rounding.
additional input: set of known conductances
fixed edges = nothing
while some conductances are not fixed
minimize with other algorithm to low precision
candidate edges = boundary edges + edges adjacent to fixed edges
if a candidate edge is within epsilon percent of a resistor, fix

that edge to that resistor
end

When working with a finite set of known conductances, we could observe when
a conductance approached one of the possible conductances during the process of
minimization. When a varying conductance was sufficiently close to one of the
possible conductances, we could round the conductance. We thought that this
would help the minimization converge faster because it would avoid excessive com-
putation. However we ran into difficulties if, during the process of minimization,
a conductance was rounded incorrectly. We noticed that this occurred most fre-
quently in the interior of the graph. We also observed that during minimization, the
conductivities on the edge of the graph converged to the correct values relatively
rapidly. This intuitively made sense because it is easier to recover conductances on
the boundary of the graph. To take advantage of these observations we developed
a more sophisticated approach.

The algorithm we developed operates by determining certain edges during the
optimization process. Once an edge is determined it is not varied during subsequent
minimization. Thus the number of free variables is reduced throughout the algo-
rithm until all edges are determined. An iteration of the algorithm begins with the
use of another minimization algorithm such as Levenberg-Marquardt (see section
5). We run this algorithm for only a small number of iterations and then try to fix

ON NUMERICAL RECOVERY METHODS FOR THE INVERSE PROBLEM 5

conductances. An edge is a candidate for fixing if it is a boundary edge or it is ad-
jacent to an edge that is already determined. After generating the set of candidate
edges, we compare their values to the set of possible conductances; if they are within
a relative ε, the edge is rounded to that conductance and considered determined
in the following iterations. This served the dual purposed of increasing accuracy
and reducing computation because the optimizer no longer needed to consider that
edge. However, the algorithm suffered a serious flaw because if an edge was fixed
to an incorrect value, there was no hope for recovery. We tried improving this
method by adding extra conditions before an edge was rounded. These included
examining the gradient to see if it indicated the edge was moving toward the value
to which it was being rounded and requiring the conductance lies near the possible
conductance for several iterations before rounding. We were unable to make the
algorithm successful in all cases. However when the algorithm runs successfully, it
can recover a graph much faster than other methods.

For comparison, in a 10x10 square lattice network with conductances chosen
randomly from possibilities of 1 and 10, the rounding algorithm ran in 25.063
seconds while the normal Levenberg-Marquardt algorithm took 608.5061 seconds.

3.2. Genetic Algorithm.
additional input: set of known conductances
randomly generate a population, where each organism is guess for

conductances
while iterationsDone < maxIterations

evaluate fitness for each organism in population
save most fit organism encountered
evolve a new population:

crossbreed organisms, with more fit organisms selected more
often

mutate organisms
population = new population

end
output the most fit organism

A genetic algorithm models the process of evolution and survival of the fittest
in an attempt to find good solutions to a problem. In our implementation, each
organism was the conductances of all edges in the graph. Thus a population of
organisms was a collection of possible solutions to minimizing the functional (Eq.
1).

The algorithm begins with an initial population of random organisms. Each
organism consists only of conductivities specified in the given set. The organisms are
then ranked according to the value of the functional evaluated at their conductances.
An organism is defined to be more fit than another if it has a lower functional value.
A new population is then generated through crossbreeding and mutation.

Crossbreeding is accomplished by taking two organisms and swapping some of
their conductances. The probability of an organism being selected as a parent in
crossbreeding corresponds to its fitness rank, hopefully resulting in fitter offspring.
We implemented crossbreeding by first ordering the nodes in the graph by their
depth. The depth of an edge was defined to be the minimum depth of its end
nodes. The edges in the graph were then ordered by their depth. To crossbreed two

6 GEORGE TUCKER, SAM WHITTLE, AND TING-YOU WANG

organisms, we then selected a random pivot point and exchanged all conductances
corresponding to nodes following the pivot point in the edge-depth ordering. This
can be intuitively thought of as swapping the interior portion (the size of which
depended on the pivot) of the two parents. The resulting two offspring were then
added to the new population.

In addition to those organisms produced by crossbreeding, the new population
also contained some of the previous fittest organisms and some new randomly gen-
erated organisms. This kept fit organisms in the population while also providing
some diversity. After producing a new population, we then mutated organisms by
changing some conductances randomly. By doing so, we evolved the solutions and
beneficial mutations were rewarded in the next iteration.

This process was repeated for a certain number of iterations or until the actual
conductances were reached. At each iteration, the fittest organism in the current
population was checked if it as the fittest organism encountered so far. Thus the
best answer encountered was stored until the end of the algorithm, even if it was
not within the ending population.

Genetic algorithms have proved successful in finding good solutions to difficult
problems. In our experience, this approach worked well for small (5 by 5) lattice
networks. A problem arose with larger networks related to our functional. The
algorithm found local minima, at which the functional value was very small. How-
ever, in such a solution many conductances in the graph were incorrect. Because
so many conductances were different from the actual solution, the amount of mu-
tation needed to jump to near the actual solution would have been large. If the
mutation amount was too large however, the algorithm would degenerate to ran-
dom searching. Therefore genetic algorithms unfortunately did not apply well to
our problem.

3.3. Regularization. In [2], the inverse problem is solved for the continuous case
with a piecewise constant (in two pieces) conductance function. To deal with the
ill-posedness of the problem, Chan et al. proposed minimizing

f(φ, q1, q2) =
1
2

N∑
i=1

∫
∂Ω

|ui(s, q) − mi(s)|2ds + β

∫
Ω

|∇q(φ, q1, q2)|dx

where φ is the level set function defining the two regions, q1 and q2 are the con-
ductivities, N is the number of measurements, u is the predicted function, and m
is the measured function. The regularization term β

∫
Ω
|∇q|dx measures the jump

between q1 and q2 and the length of the interface between the two regions. So the
new equation seeks to minimize the functional as well as minimizing the interface
and the difference. In the context of tomography, where the areas of conductance
will be clumped in roughly smooth regions, this regularization term is practical.
They had favorable results when recovering the interface even with 1 percent noise.

To discretize the regularization term, we fixed an interior node and summed
the squared difference between adjacent pairs of edges and then summed over all
interior nodes. So our discretized functional was

f(γ) =
1
2
||F (γ)||2 + β

∑
i∈intΩ

⎛
⎝ ∑

j∼i,k∼i

(γij − γik)2

⎞
⎠ .

ON NUMERICAL RECOVERY METHODS FOR THE INVERSE PROBLEM 7

Figure 2. Minimization with regularization term on a 5x5 net-
work with all ones except for hundreds in a 2x2 clump in the middle
and measurements simulated with 1% error. Each square in the
graph corresponds to an average of the edges along that square in
the circuit.

Unlike the regularization term in the continuous case, we decided to square the dif-
ferences in the regularization. This way we could still apply least square techniques
to the functional.

We were able to recover the interface on a 5x5 square lattice with a clump of 100
conductance edges surrounded by 1 conductance edges with 1 percent noise in the
measurements (refer to Fig. 2). This particular setup is extremely difficult to solve
because the high conductance region is surrounded by low conductance. Therefore
the currents do not penetrate the middle area, so the measurements do not provide
much information on the middle conductances. The problem was recovering the
exact value of the conductance of the clump of resistors. The algorithm returned a
constant conductance (within some error) for both regions, but the actual value of
the middle conductance region varied as we changed the order of magnitude of β.
Perhaps an appropriate value for β could be determined by knowing an estimate
for the error in the measurements.

4. Analytic Derivative

Let K be a Kirchhoff matrix with block structure
[

A B
BT C

]
, let D =

[
I

−C−1BT

]
where D can be thought of as a map from boundary potentials to γ-harmonic
functions, and let ∂ix mean the partial derivative of x with respect to edge i. Then

Λ = A − BC−1BT =
[
I −BC−1

] [
A − BC−1BT

0

]

=
[
I −BC−1

] [
A B

BT C

] [
I

−C−1BT

]
= DT KD.

Therefore, ∂iΛ = ∂iD
T KD + DT ∂iKD + DT K∂iD. However,

∂iD
T KD =

[
0 ∂i(−BC−1)

] [
Λ
0

]
= 0 and similarly DT K∂iD = (∂iD

T KD)T = 0.

So,
∂iΛ = DT ∂iKD.

8 GEORGE TUCKER, SAM WHITTLE, AND TING-YOU WANG

Thus,

∂j∂iΛ = ∂jD
T ∂iKD + DT ∂j∂iKD + DT ∂iK∂jD

= ∂jD
T ∂iKD + (∂jD

T ∂iKD)T

because K is linear in γ.
Consider the definition of the differential in [1],

D�κΛ =
d

dt
Bγ+tκ(x, y)|t=0 =

∑
κi,j∇i,ju∇i,jw

which can be thought of as a directional derivative in the direction κ, so not sur-
prisingly, we can relate the two forms of the differential and show that they are in
fact equivalent.

4.1. Rank of the Differential. If we could show the differential had full rank,
then by the implicit function theorem, the map itself would be locally invertible,
which is one step closer to showing it is globally invertible. To show that the
differential has full rank, we need to show that the kernel is trivial.

So we need to show that DT (DκK)D = 0 implies that DκK = 0. First we will
prove a motivating lemma.

Lemma 4.1. If X is a real matrix, and XT X = 0, then X = 0.

Proof. Let y be a vector of appropriate length, then yT XT Xy = (Xy)T (Xy) =
||Xy||2 = 0 ⇒ Xy = 0 ⇒ X = 0. �

So if we can factor DκK, then we can apply the lemma. The following definition
motivates such a factorization.

Definition 4.2 (Oriented Incidence Matrix). An oriented incidence matrix M of
an undirected graph is a matrix with row dimension equal to the number of vertices
and column dimension equal to the number of edges and

Mij =

{
±1, if vertex i is incident to edge j
0, otherwise

where the sign is chosen so that the two entries corresponding to the two vertices
of an edge have opposite sign.

Now, DκK can be factored as DκK = HT EH , where HT is an oriented incidence
matrix for the graph, and E is a diagonal matrix with the diagonal equal to κ.

Lemma 4.3. If κ ≥ 0 (by which we mean all entries in the κ vector are ≥ 0) and
none of the rows in D are equivalent, then DT (DκK)D = 0 implies that DκK = 0.

Proof. κ ≥ 0, so all of the diagonal entries of E are positive so, if we let F be the
diagonal matrix with the square root of the diagonal entries of E, then E = FT F
and DT (DκK)D = DT HT FT FHD = (FHD)T (FHD) = 0, so by the previous
lemma, FHD = 0. Each row in H corresponds to an edge in the graph, and every
edge only has two vertices, so every row of H has only two non-zero entries, a 1
and a −1. Multiplying on the left by a matrix can be interpreted as saying a row
in HD is a linear combination of the rows of D with weights from H . Because of
the structure of H , then a row in the final product can only be 0 if two rows in D
are equivalent. Since we assumed that none of the rows of D were equivalent, then
F must be 0, so HT FT FH = DκK = 0. �

ON NUMERICAL RECOVERY METHODS FOR THE INVERSE PROBLEM 9

The problem is that we must assume that κ ≥ 0. When considering directional
derivatives, we can take a partial derivative in each variable and combine them
appropriately to get any directional derivatives. However, in this case we have only
shown that there is no positive linear combination of the columns that sums to 0,
when we need to show that only the trivial linear combination sums to 0 to prove
full rank. To do this we would have to allow κ to be both positive and negative.
However then problems arise from decomposing E because we get a complex-valued
F , and Lemma 4.1 does not hold for complex matrices. It would then be necessary
to determine when XT X = 0 implies X = 0 for complex matrices, and then the rest
of the argument would hold. Note that using what would seem more appropriate
for complex matrices, the conjugate transpose, would not work either because X†X
is positive semi definite and DκK is not necessarily positive semi definite if κ is
positive and negative.

5. Non-Linear Least Squares - Gauss-Newton and
Levenberg-Marquardt

Levenberg-Marquardt(J, F, x)
initialize u
let f(x) = 1/2*F(x)^T*F(x)
while iterationsDone < maxIterations
solve for d in (J(x)^T*J(x) + u*I)d = J(x)^T*F(x)
if f(x + d) < f(x)
x = x + d;
decrease u
iterationsDone++

else
increase u

end
end

We are looking for a point x∗ such that f is minimal, which will necessarily be
a stationary point meaning ∇f(x∗) = 0. Once such a x∗ is found we can recast the
minimization as a root finding problem. If our initial guess is sufficiently close to x∗,
we can use Newton’s method to find the solution to ∇f(x) = 0. If dk = xk+1 − xk,
then by Newton’s method, dk should satisfy Hf(xk)dk = −∇f(xk), where Hf
is the Hessian. The advantage of using Newton’s method is that it has quadratic
convergence, which roughly means a doubling of precision at each iteration, however
computing the Hessian is generally impractical.

Fortunately, an unconstrained nonlinear least squares minimization problem has
several advantages over a general unconstrained nonlinear minimization problem.
Recall that

f =
1
2

∑
F 2

i .

So the functional can be expressed in terms of the individual terms and taking
the derivative results in

∂f

∂xj
=

∑ ∂Fi

∂xj
Fi ⇒ f ′ = JT F.

10 GEORGE TUCKER, SAM WHITTLE, AND TING-YOU WANG

We see that to compute the gradient of f we simply need the Jacobian of F ,
which can be computed efficiently as in Section 4. And then similarly the Hessian
matrix can be computed as

∂2f

∂xjxk
=

∑
i

(
∂Fi

∂xk

∂Fi

∂xj
+ Fi

∂2Fi

∂xj∂xk

)
⇒ f ′′ = JT J +

∑
i

(FiF
′′
i).

At first it does not seem like we have reduced the problem because we still
need the Hessian matrices of Fi; but when we are near a solution, the residuals
or Fi values → 0, so

∑
i(FiF

′′
i) → 0, and JT J is a good approximation to the

Hessian. So the approximate search direction dk is the solution of the linear system
JT Jdk = −JT F . This method is referred to as the Gauss-Newton method, and
an additional constraint is usually imposed that forces the functional values to be
decreasing.

Problems arise when the second order term of the Hessian is significant. The
Levenberg-Marquardt algorithm avoids this problem by alternatively solving the
following linear system (JT J + μkI)dk = −JT F where μk > 0. This method has
several other advantages that result from (JT J + μI) being positive definite, thus
the system always has a unique solution.

Definition 5.1 (Descent direction). A direction h such that hT∇f < 0.

Lemma 5.2. dk is a descent direction.

Proof. dk = −(JT J + μkI)−1JT F , so (dk)T∇f = −(JT F)T (JT J + μkI)−1(JT F)
and (JT J+μkI) is positive definite, so (JT J+μkI)−1 is positive definite. Therefore
−(JT F)T (JT J + μkI)−1(JT F) < 0, so dk is a descent direction. �

Because dk is a descent direction, there exists an α such that f(xk+αdk) < f(xk)
and we can always move in a decreasing direction. As μk → 0, the algorithm reduces
to Gauss-Newton and as μk gets large the equation simplifies to dk = −JT F

μk
, which

is simply the steepest descent direction as in algorithms in Section 2. Thus μ can
be adjusted at each step to avoid the problems inherent in Gauss-Newton. The key
to the algorithm is controlling μ. Unfortunately we did not have time to try out
different methods for controlling μ, but our program can be easily modified to use
a different algorithm.

6. Physical Network

To see how the algorithm stands up to a real life situation, we created several
physical networks and made measurements to put into our program. As a start, we
built a Y − Network using resistances of 1 Ohm, 47 Ohms, and 100 Ohms seen in
Figure 3.

After making the measurements and running it through the program, we were
able to clearly distinguish which edge corresponded with the right resistance (ba-
sically recovering the network). The largest error was about 15%, which is quite
reasonable given the fact that the resistors had a 5% and the equipment added an
additional 1.2% to 2% error.

The next step up from solving the Y-network was to work out the 2-by-2 grid
network. For this problem, we modeled situations like the human body where there
are lumps of resistances. In our case, we used 1 Ohm and 10 Ohm resistors with a
lump in the middle of the grid as shown in Figure 4.

ON NUMERICAL RECOVERY METHODS FOR THE INVERSE PROBLEM 11

Figure 3. The Y-Network

Figure 4. The 2-by-2 Grid Network with lumped resistors

On this network we ran into a slight problem. When we ran it through our
program, we could definitely match up the conductances with the edges, given we
know the only possibly values they could take. So, we were still, in a certain respect,
able to recover the network from the response matrix. However, the recovered
conductances were twice what the measured values were. Currently, we are unable
to develop a concrete explanation for this, but we believe that it is due to systematic
error when making the readings. Some possible causes of the error are in the meter
readings, loss of power to perform the readings and giving off heat as well, and a
poor source of voltage. Further investigation into this issue should be taken so that
it can be determined whether it was a systematic error in measurements or a flaw
in the algorithm.

7. Future work

• Change the criteria for rounding edges, so the edges do not get fixed to the
wrong value.

12 GEORGE TUCKER, SAM WHITTLE, AND TING-YOU WANG

• Change the regularization term to deal with more general cases, instead of
just clumped networks.

• Investigate whether it is possible to determine when XT X = 0 implies
X = 0 for complex X , possibly leveraging information from the graph.

• Implement a hybrid algorithm with Levenberg-Marquardt and a Quasi-
Newton method. The Levenberg-Marquardt method has good convergence
if F (x) = 0 at the minimum, but if there are large residuals, which might
be the case with noisy data, the Quasi-Newton method would be more
appropriate. In fact, we might even be able to use Newton’s method because
we can calculate the true Hessian as in Section 4.

8. Results

size time iterations
3 0m0.003s 5
4 0m0.006s 7
5 0m0.019s 8
6 0m0.063s 10
7 0m0.163s 11
8 0m0.403s 14
9 0m0.843s 15
10 0m1.564s 17
11 0m2.748s 18
12 0m5.033s 21
13 0m8.767s 24
14 0m13.976s 26
15 0m21.264s 26
16 0m28.872s 23
17 0m39.829s 22
18 0m56.577s 23
19 1m22.991s 24
20 1m58.056s 26

Figure 5. Square lattice networks of constant conductance one
using Levenberg-Marquardt minimization with C implementation
and initial guess of all twos.

References

[1] Curtis, B., and James A. Morrow. “Inverse Problems for Electrical Networks.” Series on
applied mathematics – Vol. 13. World Scientific, c©2000.

[2] Eric T. Chung, Tony F. Chan and Xue-Cheng Tai. “Electrical impedance tomography using
level set representation and total variational regularization.” November 12, 2003.

[3] K. Madsen, H.B. Nielsen, O. Tingleff. “Methods for Non-Linear Least Squares Problems.”
Informatics and Mathematical Modelling. Technical University of Denmark. c©2004.

ON NUMERICAL RECOVERY METHODS FOR THE INVERSE PROBLEM 13

size Numerical Derivative Analytic Derivative
time (sec) maximum error time (sec) maximum error

3 0.11098 1.33e-015 0.041700 1.11e-015
4 0.11630 1.67e-015 0.097511 1.67e-015
5 0.17119 7.11e-015 0.081613 9.00e-013
6 0.23644 2.44e-014 0.129420 7.88e-012
7 0.35731 1.86e-012 0.164470 1.99e-010
8 0.75801 2.09e-012 0.270460 8.95e-010
9 1.7320 4.57e-011 0.535200 9.01e-013
10 3.6749 1.05e-009 0.788620 2.24e-012
11 9.216 1.53e-009 1.30440 4.26e-011
12 20.585 6.08e-009 2.91440 1.44e-008
13 54.664 5.63e-008 6.64590 1.32e-007
14 200.650 9.61e-007 78.8480 2.53e-006
15 1242.00 4.64e-005 115.910 9.17e-007
16 - - 183.99 4.2e-005
17 - - 337.83 5.4e-005
18 - - 502.10 1.0089e-004
19 - - 890.36 1.8003e-004
20 - - 1256.30 7.0156e-004

Figure 6. Comparison of Levenberg-Marquardt algorithm on
square lattice networks of constant conductance one, using nu-
merical and analytic derivatives. The analytic derivative greatly
decreases the running time of the algorithm.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

