
CHARACTERIZING SEMI-RECOVERABLE GRAPHS
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Abstract. This paper discusses the application of the method described in
by Nick Addington in A Method for Recovering Arbitrary Graphs [1] to a

known class of two-to-one graphs to recover the characterizing quadratic. It
also looks into the different conditions for when a network is two-to-one and

when it is one-to-one. Lastly, it discusses the application of the method to all
semi-recoverable graphs in order to characterize their recoverability.

Contents

1. Introduction 2
2. Definitions 2
3. The Recovery Method 2
4. Applying the Method to the Triangle-in-Triangle Graph 3
4.1. The Matrices 3
4.2. Solving 4
4.3. The Solutions 6
5. Extending it to N-gon-in-N-gon Graphs 6
5.1. The Matrices 6
5.2. Solving 7
5.3. The Solutions 11
6. Extending to Generalizations of the N-gon-in-N-gon Graph 11
6.1. The Hexcyln Graph 12
6.2. The Mobiusn Graph 12
6.3. The Pinwheeln Graph 13
7. Extending to Single Parameter, Semi-Recoverable Graphs 14
7.1. Solving 14
7.2. The Characteristic Polynomial 15
7.3. The Polynomial 18
8. Extending to All Semi-Recoverable Graphs 18
9. Conclusion 19
References 19

Date: August 11, 2005.

1



2 JACOB DANTON

1. Introduction

In [1], Nick Addington describes a method for recovering arbitrary graphs. It is
known to recover many different recoverable graphs(for examples, see [1]). However,
it is unknown if this method can recover all recoverable graphs. For example, it is
unknown if this method recovers graphs that are two-to-one. This paper deals with
the application of this method on the triangle in triangle graph, which was shown
to be two-to-one in [4].

2. Definitions

This paper assumes the reader is familiar with the terminology, definitions, and
notation found in the papers referenced [1, 2, 3, 4, 5]. Additionally, the following
are used.

Definition 2.1. The shape of a matrix, as used in this paper, is used to denote
the pattern of the zero and non-zero entries, independent of signs. It does not refer
to isomorphisms.

Definition 2.2. An entry in a matrix Ri is said to be known if that same entry is
equal to zero in Ki.

Definition 2.3. A network that is neither recoverable (1 → 1) nor nonrecoverable
(∞ → 1) is said to be semi-recoverable. For example, the N-gon-in-N-gon networks
which are 2 → 1.

Definition 2.4. Semi-recoverable graphs are shown to be so through a polyno-
mial or a system of polynomials which characterize it. These are refered to as
characteristic polynomials.

Remark 2.5. The notation M (i, j) denotes the entry of M at the ith row, jth

column. The notation M (a1, a2, . . . , an; b1, b2, . . . , bm) denotes the n×m submatrix
consisting of the entries found at the intersection of each ai row and bj column.
Thus, detM (a1, a2, . . . , an; b1, b2, . . . , bm) denotes the determinant of the submatrix
as defined.

3. The Recovery Method

The method makes use of the following lemma and proposition.

Lemma 3.1. If an n × n matrix M is singular, we know all but one entry mij,
and the cofactor Mij is invertible, we can recover the unknown entry.

Proposition 3.2. Let M be the submatrix of R14
15 consisting of rows r1, . . . , rn by

columns c1, . . . , cn. Let N be the submatrix of Z14
15 consisting of rows r1, . . . , rn, 14, 15

by columns c1, . . . , cn, 14, 15. Then M is singular if and only if N is.

Proof. For the proofs, see [1].
�

The method as described by Nick Addington in [1]:

(1) Write down the signs of all the entries of KN , which we know from the
graph. From these, determine the signs of all the entries of KM , . . . , KN−1.
We will use these to test submatrices for singularity using Proposition 3.2.
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(2) Make empty matrices KM , . . .KN , RM+1, . . . , RN , and Rm
n , M < m < n ≤

N of the appropriate sizes: Kn is n×n, and Rn and Rm
n are n− 1× n− 1.

Fill in the zeros of all these, which can be derived from the zeros of KN .
Fill in the entries of KM , the response matrix.

(3) Whenever we know two of three entries from something of the form R13
16 =

R15
16| + R13

14 or
K13 = K15| + R14

15, recover the third.
(4) Whenever we know all but one entry of a submatrix of any matrix, if the

submatrix is singular and the cofactor of the unknown entry is invertible,
recover the unknown entry using Lemma 3.1.

(5) Whenever we know all but one entry in a row of a Kn, recover it using the
fact that the rows of Kirchhoff matrices sum to zero.

(6) If at any point no more entries can be recovered but some are still missing,
parameterize an unknown entry. The first single layer Rn with unknown
entries (first in the sense that n is least) seems to be the best place to
parameterize.

4. Applying the Method to the Triangle-in-Triangle Graph
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Figure 1. the Triangle in Triangle

To begin, we will apply the method to the simplest graph, the triangle-in-triangle
graph. This graph was first shown to be two-to-one by Ernie Esser in [3] and later
by Jennifer French and Shen Pan in [4].

4.1. The Matrices. The first step in recovering the graph is to find all zero entries
in the K and R matrices. In this case, the shapes of the K matrices are as follows.

K9 =




+ 0 0 0 0 0 − − 0
0 + 0 0 0 0 0 − −
0 0 + 0 0 0 − 0 −
0 0 0 + 0 0 − − 0
0 0 0 0 + 0 0 − −
0 0 0 0 0 + − 0 −
− 0 − − 0 − + 0 0
− − 0 − − 0 0 + 0
0 − − 0 − − 0 0 +




K8 =




+ 0 0 0 0 0 − −
0 + − 0 − − 0 −
0 − + 0 − − − 0
0 0 0 + 0 0 − −
0 − − 0 + − 0 −
0 − − 0 − + − 0
− 0 − − 0 − + 0
− − 0 − − 0 0 +




K7 =




+ − 0 − − 0 −
− + − − − − 0
0 − + 0 − − −
− − 0 + − 0 −
− − − − + − 0
0 − − 0 − + −
− 0 − − 0 − +


 K6 = Λ =




+ − − − − −
− + − − − −
− − + − − −
− − − + − −
− − − − + −
− − − − − +



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From these, we can find the shape of the residue matrices as well as the known
and unknown entries. In this case, the single layer residue matrices are as follows

R7 =




? 0 X ? 0 X
0 0 0 0 0 0
X 0 ? X 0 ?
? 0 X ? 0 X
0 0 0 0 0 0
X 0 ? X 0 ?




R8 =




? X 0 X X 0 0
X ? 0 X ? 0 0
0 0 0 0 0 0 0
X X 0 ? X 0 0
X ? 0 X ? 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




R9 =




0 0 0 0 0 0 0 0
0 ? X 0 X X 0 0
0 X ? 0 X X 0 0
0 0 0 0 0 0 0 0
0 X X 0 ? X 0 0
0 X X 0 X ? 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0




Where each ”?” denotes an unknown entry and each ”X” an entry that follows
directly from the K matrix before it. For example, since K7(1, 3) = 0, R7(1, 3) =
K6(1, 3), so that entry is an ”X”.

4.2. Solving. As described above, the next step to recovering the Kirchoff matrix
would be to find all entries in R7. From this, we could find K7, R8, etc. until
we had recovered R9, at which point we could get the characteristic polynomial.
However, since we are only interested in finding the characteristic polynomial, we
will begin at R9, and by looking at the determinant of R9(1, 2; 5, 6), we can get
the quadratic using an easier method which can be easily extended to any n-gon in
n-gon network.

Since every 2 × 2 determinant of R9 is equal to zero, we have:

detR9(2, 3; 5, 6) = 0

Which gives use the equation

R9(2, 5)R9(3, 6) − R9(2, 6)R9(3, 5) = 0

Since each of the corresponding terms in K9 is zero, we can rewrite this as

K8(2, 5)K8(3, 6) − K8(2, 6)K8(3, 5) = 0

We can now use the fact that KN = KN+1|+ RN+1 to rewrite all the remaining K

matrices in terms of R matrices and K6 (ie Λ ). Giving us

[K7(2, 5)−R8(2, 5)][K7(3, 6)−R8(3, 6)]−[K7(2, 6)−R8(2, 6)][K7(3, 5)−R8(3, 5)] = 0
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and

[K6(2, 5)− (R7(2, 5) + R8(2, 5))][K6(3, 6) − (R7(3, 6) + R8(3, 6))]
−[K6(2, 6)− (R7(2, 6) + R8(2, 6))][K6(3, 5)− (R7(3, 5) + R8(3, 5))] = 0

From the above matrices, we know which entries are zero and which are known,
allowing us to simplify this to

[λ2,5 − R8(2, 5)][λ3,6 − R7(3, 6)]− λ2,6λ3,5 = 0

As R8(2, 5) is an unknown entry, we need to rewrite by looking at detR8(1, 2; 4, 5)
and continuing to reduce each following unknown entry in this manner. Since
R7(3, 6) is an unsolvable, unknown entry and we must introduce a parameter into
R7 to solve, we can arbitrarily make this the parameterized entry t. Thus, we get

[λ2,5 −
R8(1, 5)R8(2, 4)

R8(1, 4)
][λ3,6 − t]− λ2,6λ3,5 = 0

[λ2,5 −
λ1,5λ2,4

K7(1, 4)
][λ3,6 − t] − λ2,6λ3,5 = 0

[λ2,5 −
λ1,5λ2,4

K6(1, 4)− R7(1, 4)
][λ3,6 − t] − λ2,6λ3,5 = 0

And finally end up with

[λ2,5 −
λ1,5λ2,4

λ1,4 − λ1,6λ3,4

t

][λ3,6 − t] − λ2,6λ3,5 = 0

After simplification, this yields the quadratic

(λ1,5λ2,4 − λ1,4λ2,5)t2 + (λ1,4λ2,5λ3,6 − λ1,4λ2,6λ3,5 − λ1,5λ2,4λ3,6 + λ1,6λ2,5λ3,6)t
+(λ1,6λ2,6λ3,4λ3,5 − λ1,6λ2,5λ3,4λ3,6) = 0

In this case, we can rewrite this as

−At2 + (λ1,4C − λ2,5B + λ3,6A)t − λ1,6λ3,4C = 0

Where A =detΛ(1, 2; 4, 5), B =detΛ(1, 3; 4, 6), and C =detΛ(2, 3; 5, 6).
Thus, we get

(1) t =
(λ1,4C − λ2,5B + λ3,6A) ±

√
(λ1,4C − λ2,5B + λ3,6A)2 − 4λ1,6λ3,4AC

2A
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4.3. The Solutions. For both of these solutions to work, we first need the dis-
criminant of the quadratic to be positive. Also, it needs to be that the values of t
yield valid Kirchoff matrices. In other words, the resulting matrix must be positive
and follow the correct sign convention. Notice, this method does not assume either
one (positive or negative diagonal entries). Thus, Λ can be a valid response matrix
only if the following hold.

(λ1,4C − λ2,5B + λ3,6A)2 ≥ 4λ1,6λ3,4AC

and

0 < λ3,6

(
λ3,6 −

(λ1,4C − λ2,5B + λ3,6A) ±
√

(λ1,4C − λ2,5B + λ3,6A)2 − 4λ1,6λ3,4AC

2A

)

since both solutions must have the correct sign (ie the same as each λ).

5. Extending it to N-gon-in-N-gon Graphs
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Figure 2. The N-gon-in-N-gon Graph

Now, we can use these same steps to solve for the general N-gon-in-N-gon case.

5.1. The Matrices. For all N-gon-in-N-gon networks, the R matrices have the
following shape:

R2n+1 =




? 0 ... 0 X ? 0 ... 0 X
0 0 0 0
...

...
...

...
0 0 0 0
X 0 ... 0 ? X 0 ... 0 ?
? 0 0 X ? 0 0 X
0 0 0 0
...

...
...

...
0 0 0 0
X 0 ... 0 ? X 0 ... 0 ?




where all nonzero entries are in the intersection of the rows and columns from
the set {1, n, n+1, 2n}. And for every R matrix after until R3n−1
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R2n+i+1 =




0 ... 0 0 ... 0 0 ...
...

...
...

...
...

0 ... ? X ... X X ...
0 ... X ? ... X ? ...
...

...
...

...
...

0 ... X X ... ? X ...
0 ... X ? ... X ? ...
...

...
...

...
...




where all nonzero entries are in the intersection of the rows and columns from
the set {i,i+1,n+i,n+i+1}. And lastly

R3n =




0 ... 0 0 ... 0 0 ...
...

...
...

...
...

0 ... ? X ... X X ...
0 ... X ? ... X X ...
...

...
...

...
...

0 ... X X ... ? X ...
0 ... X X ... X ? ...
...

...
...

...
...




where all nonzero entries are in the intersection of the rows and columns from
the set {n-1,n,2n-1,2n}.

Again, the ”?” indicates an unknown non-zero entry and the ”X” an entry that
follows directly from the K matrix before it.

5.2. Solving. Like before, we will start at the last residue matrix, R3n. Since every
2 × 2 determinant of the R matrices is equal to zero, we have:

detR3n(n − 1, n; 2n− 1, 2n) = 0

Which gives us the equation

R3n(n − 1, 2n− 1)R3n(n, 2n) − R3n(n − 1, 2n)R3n(n, 2n − 1) = 0

Since each of the corresponding terms in K3n are zero, we can rewrite this as

K3n−1(n − 1, 2n− 1)K3n−1(n, 2n) − K3n−1(n − 1, 2n)K3n−1(n, 2n− 1) = 0

We can now use the fact that KN = KN+1|+ RN+1 to rewrite all the remaining K

matrices in terms of R matrices and K2n (ie Λ ). So we get

[K3n−2(n − 1, 2n− 1) − R3n−1(n − 1, 2n − 1)][K3n−2(n, 2n)− R3n−1(n, 2n)]−
[K3n−2(n − 1, 2n)− R3n−1(n − 1, 2n)][K3n−2(n, 2n − 1) − R3n−1(n, 2n− 1)] = 0

and continuing on until we reach K2n, we get
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[K2n(n − 1, 2n− 1) −
∑n−1

i=1 R2n+i(n − 1, 2n − 1)][K2n(n, 2n) −
∑n−1

i=1 R2n+i(n, 2n)]−
[K2n(n − 1, 2n)−

∑n−1
i=1 R2n+i(n − 1, 2n)][K2n(n, 2n− 1) −

∑n−1
i=1 R2n+i(n, 2n− 1)] = 0

From the above matrices, we know which entries are zero and which are known,
allowing us to simplify all of this to

[λn−1,2n−1 − R3n−1(n − 1, 2n− 1)][λn,2n − R2n+1(n, 2n)]− λn−1,2nλn,2n−1 = 0

Once again, since R2n+1(n, 2n) is an unknown, unsolvable entry and we must pa-
rameterize a single entry in R2n+1, we can let R2n+1(n, 2n) = t, our parameter.
Which gives us

(2) [λn−1,2n−1 − R3n−1(n − 1, 2n− 1)][λn,2n − t] − λn−1,2nλn,2n−1 = 0

Now, all that is left to do is simplify the term R3n−1(n−1, 2n−1). We can do this
through a series of rewrites which we get from the following lemma.

Lemma 5.1. For all i < n − 1,

R2n+j+1(j + 1, n + j + 1) =
λj,n+j+1λj+1,n+j

λj,n+j − R2n+j(j, n + j)

Proof. Since all 2 × 2 determinant of R2n+j+1 are equal to zero, we have

detR2n+j+1(j, j + 1; n + j, n + j + 1) = 0

so

R2n+j+1(j+1, n+j+1)R2n+j+1(j, n+j)−R2n+j+1(j, n+j+1)R2n+j+1(j+1, n+j) = 0

thus
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R2n+j+1(j + 1, n + j + 1) =
R2n+j+1(j, n + j + 1)R2n+j+1(j + 1, n + j)

R2n+j+1(j, n + j)

=
λj,n+j+1λj+1,n+j

K2n+j(j, n + j)

=
λj,n+j+1λj+1,n+j

K2n+j−1(j, n + j) − R2n+j(j, n + j)
...

=
λj,n+j+1λj+1,n+j

K2n(j, n + j) −
∑j

i=1 R2n+i(j, n + j)

=
λj,n+j+1λj+1,n+j

λj,n+j − R2n+j(j, n + j)

�

From this, we can write R3n−1(n−1, 2n−1) in terms of λi,j and R2n+1(1, n+1).
Since

R3n−1(n − 1, 2n− 1) =
λn−2,2n−1λn−1,2n−2

λn−2,2n−2 − R3n−2(n − 2, 2n − 2)

=
λn−2,2n−1λn−1,2n−2

λn−2,2n−2 − λn−3,2n−2λn−2,2n−3
λn−3,2n−3−R3n−3(n−3,2n−3)

...

=
λn−2,2n−1λn−1,2n−2

λn−2,2n−2 − λn−3,2n−2λn−2,2n−3

λn−3,2n−3−...
λ1,n+2λ2,n+1

λ1,n+1−R2n+1(1,n+1)

And, by 5.1, since R2n+1(1, n + 1) can be written in terms of λi,j and t, every
R2n+j+1(j + 1, n + j + 1) term can as well.

Lemma 5.2. For all i < n − 1, R2n+i(i, n + i) can be written in the form ait+bi

cit+di

Proof. From detΛ(1, 2n; n, n + 1), we have R2n+1(1, n + 1) = λ1,nλn+1,2n

t Now sup-
pose there exists a j such that R2n+j(j, n + j) = ajt+bj

cjt+dj
then, from 5.1, we know

R2n+j+1(j + 1, n + j + 1) =
λj,n+j+1λj+1,n+j

λj,n+j − R2n+j(j, n + j)

so
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R2n+j+1(j + 1, n + j + 1) =
λj,n+j+1λj+1,n+j

λj,n+j − aj t+bj

cj t+dj

=
λj,n+j+1λj+1,n+jcjt + dj

λj,n+jcjt + dj − ajt + bj

=
(λj,n+j+1λj+1,n+jcj)t + (λj,n+j+1λj+1,n+jdj)

(λj,n+jcj − aj)t + (λj,n+jdj − bj)

therefore, R2n+j+1(j + 1, n + j + 1) can also be written in the form aj+1t+bj+1
cj+1t+dj+1

�

Furthermore, we can see that

aj+1 = λj,n+j+1λj+1,n+jcj

bj+1 = λj,n+j+1λj+1,n+jdj

cj+1 = λj,n+jcj − aj

dj+1 = λj,n+jdj − bj

Thus, we can write all R2n+j(j, n+j) entries in the form λj−1,n+jλj,n+j−1
cj−1t+dj−1

cjt+dj

with cj and dj defined recursively as:

cj+1 = λj,n+jcj − λj−1,n+jλj,n+j−1cj−1

c1 = 1
c2 = λ1,n+1

and

dj+1 = λj,n+jdj − λj−1,n+jλj,n+j−1dj−1

d1 = 0
d2 = −λ1,nλn+1,2n

Thus equation (2) now becomes

[λn−1,2n−1 − λn−2,2n−1λn−1,2n−2
cn−2t + dn−2

cn−1t + dn−1
][λn,2n − t] − λn−1,2nλn,2n−1 = 0

This can be further reduced to produce the quadratic

cnt2 + (dn + λn,2n−1(λn−1,2n − λn,2n)cn−1 + λn−2,2n−1λn−1,2n−2λn,2n)t
+(λn,2n(λn,2n−1 − λn−1,2n−1) − dn+1) = 0
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5.3. The Solutions. For both of these solutions to work, we first need the dis-
criminant of the quadratic to be positive. Also, it needs to be that the values of t
yield valid Kirchoff matrices. In other words, the resulting matrix must be positive
and follow the correct sign convention (ie it must have the same sign as λn,2n). No-
tice, this method does not assume either one (positive or negative diagonal entries).
Thus, Λ can be a valid response matrix only if the following hold.

(dn+λn,2n−1(λn−1,2n−λn,2n)cn−1+λn−2,2n−1λn−1,2n−2λn,2n)2 ≥ 4(λn,2n(λn,2n−1−λn−1,2n−1)−dn+1)cn

and

0 < λn,2n(λn,2n − t)

Also note that for i ≤ n − 1, detR2n+i(i, n + 1; i + 1, n + i + 1) = 0 gives us

λi,i+1λn+i,n+i+1 = λi+1,n+iλi,n+i+1

Notice that these are very similar to the conditions given in [4] to determine
whether Λ is a valid response matrix. In fact, the definitions of the ci and di are
nearly identical to the definitions of the pi and qi in [4] both can be written in terms
of the other. Additionally, since we assumed neither sign convention, some of the
requirements discussed in [4] are irrelevant. Thus, the conditions stated above are
actually the same as those in [4].

6. Extending to Generalizations of the N-gon-in-N-gon Graph

Pinwheel3Hexcyl3Triangle in Triangle
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Mobius4

Figure 3. Some Generalizations of the Triangle in Triangle

In Mobius Strips, Pinwheels, and Other Two-to-one Generalizations of N-gon-
in-N-gon Graphs [5], Nick Reichert describes some generalizations of the N-gon-in-
N-gon graphs, the Hexcyln, Pinwheeln, and Mobiusn graphs, and shows them to
be at most two-to-one. However, it is not known what conditions are applicable to
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these (ie what characterizations remain throughout the different generalizations).
We will now examine these three generalizations.
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Figure 4. The Hexcyln Graph

6.1. The Hexcyln Graph. If we look at the residue matrices for the Hexcyln
graph, we see that for all 2n + 1 < i < 3n, Ri has the same shape as the Ri matrix
for the N-gon-in-N-gon graph. Therefore, the method of recovery is the same as
the one for the N-gon-in-N-gon graphs as shown above. Thus, the same conditions
described above apply for all Hexcyln graphs. The reason for this can easily be
seen by looking at K3n.

Each Hexcyln graph starts with 4n vertices and the matrix K4n. If we interiorize
the n inner interior vertices (3n+1, 3n+2,. . . ,4n), it results in the matrix K3n.
Graphically, we can see that this network has the same connections as the n-gon-
in-ngon with an additional n edges connecting adjacent, inner boundary vertices
(n+1,n+2,. . . ,2n) shown by dotted lines in the figure.

2n−1

2n−2

2n
n+1

n+4 4

3

2

1

n

n−1

n−2

n+2

n+3

2n+2

2n+3

2n+43n−1

3n

2n+1

Figure 5. The Hexcyln Graph after Interiorizing

Each interiorization of a node is a simple Y −∆ transformation, so all the steps
up to this point are recoverable. Also, since the extra connections do not effect the
R2n+j+1[j, j + 1; n + j, n + j + 1] submatrices, it does not effect the method or the
result above. Thus, the conclusions are the same as they are in the N-gon-in-N-gon
case. This confirms that the Hexcyln graph is at most two-to-one.

6.2. The Mobiusn Graph. Similarly to the Hexcyln graphs, the Mobiusn graphs
can be shown to have similar shaped Ri matrices to the ones for the N-gon-in-N-
gon graphs. So, again, the same method of recovery can be used and the same
conditions for the solutions hold.
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4n
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2n+4
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3

2
2n+2

1
2n+1

n

3n

n−1
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Figure 6. The Mobiusn Graph

2n−2

2n−1

2n
n+1

n+2

n+3

n+4 4

2n+4

3

2n+3

2

1

2n+22n+1

3n
n−1

3n−1

n−2

n

Figure 7. The Mobiusn Graph After Interiorizing

Again, this is easier to see from looking at the corresponding K3n network. Each
interiorization is a recoverable Y − ∆ transformation. So after interiorizing all the
inner interior vertices (3n+1, 3n+2,. . . ,4n), we get a network which contains all
the connections found in the N-gon-in-N-gon network plus some extra boundary
to boundary connections (shown by dotted lines in the figure). Since the extra
connections do not effect the R2n+j+1[j, j + 1; n + j, n + j + 1] submatrices, we can
use the same method and, therefore, get the same results as in the N-gon-in-N-gon
case. Again, this confirms that the Mobiusn graph is at most two-to-one.

10 2
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1
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5 6
7

89
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1

6

Figure 8. Examples of the Pinwheeln to Mobiusn Isomorphism

6.3. The Pinwheeln Graph. As seen in the figure, the Pinwheeln graph is iso-
morphic to either the Mobiusn graph or the Hexcyln graph, depending on the
parity of n [5]. Thus, Pinwheeln ∼= Mobius2n+1 and Pinwheel2n

∼= Hexcyl2n.
So, it is enough to show the conditions for both the Mobiusn and Hexcyln graphs
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Figure 9. Examples of the Pinwheeln to Hexcyln Isomorphism

and apply these to the Pinwheeln. So, the conclusions are the same as for the
N-gon-in-N-gon graphs.

7. Extending to Single Parameter, Semi-Recoverable Graphs

Instead of looking at specific cases, we now want to look at how these different
steps of recovery can be applied to all single perameter semi-recoverable graphs. In
other words, what restrictions or conditions can be found for all semi-recoverable
graphs.

7.1. Solving. One of the most important results from the method above is the
fact that the characterizing equation comes from one of the 2 × 2 determinants
in a single-layered residue matrix. This fact will help us recover it for all semi-
recoverable graphs.

Theorem 7.1. The characteristric polynomial of a single parameter semi-recoverable
network is recovered from a 2× 2 determinant of a single layer residue matrix. For
some indices a1, a2, b1, and b2, each term in Ri(a1, a2; b1, b2) is non-zero and
detRi(a1, a2; b1, b2) yields a polynomial which characterizes the network.

Proof. The characteristic polynomial must be recovered from some submatrix de-
terminant which is composed entirely of known entries in a Rm

n matrix. Since all
multi-layered R matrices can be written as the sum of single-layered R matrices, all
known entries in the multi-layered are known in the single-layered. Thus, if such a
determinant exists in a multi-layered, it must exist in a single-layered. �

This is an important result since it now tells us the first step in the method above
is a valid step for all semi-recoverable graphs. Thus, we can state the following.

For some indices a1, a2, b1, and b2 all of which are known and non-zero

(3) detRi(a1, a2; b1, b2) = 0

Similarly to what we did in the N-gon-in-N-gon case we can rewrite this as
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detRi(a1, a2; b1, b2) = Ri(a1, b1)Ri(a2, b2) − Ri(a1, b2)Ri(a2, b1)
= Ki−1(a1, b1)Ki−1(a2, b2) − Ki−1(a1, b2)Ki−1(a2, b1)
= [Ki−2(a1, b1) − Ri−1(a1, b1)][Ki−2(a2, b2) − Ri−1(a2, b2)]

−[Ki−2(a1, b2) − Ri−1(a1, b2)][Ki−2(a2, b1) − Ri−1(a2, b1)]
= [Ki−3(a1, b1) − Ri−2

i−1(a1, b1)][Ki−3(a2, b2) − Ri−2
i−1(a2, b2)]

−[Ki−3(a1, b2) − Ri−2
i−1(a1, b2)][Ki−3(a2, b1) − Ri−2

i−1(a2, b1)]
...
= [Kk(a1, b1) − Rk+1

i−1 (a1, b1)][Kk(a2, b2) − Rk+1
i−1 (a2, b2)]

−[Kk(a1, b2) − Rk+1
i−1 (a1, b2)][Kk(a2, b1) − Rk+1

i−1 (a2, b1)]

= [Λ(a1, b1) − Rk+1
i−1 (a1, b1)][Λ(a2, b2) − Rk+1

i−1 (a2, b2)]

−[Λ(a1, b2) − Rk+1
i−1 (a1, b2)][Λ(a2, b1) − Rk+1

i−1 (a2, b1)]

Thus, we have

(4)
[Λ(a1, b1)−Rk+1

i−1 (a1, b1)][Λ(a2, b2)−Rk+1
i−1 (a2, b2)]−[Λ(a1, b2)−Rk+1

i−1 (a1, b2)][Λ(a2, b1)−Rk+1
i−1 (a2, b1)] = 0

as the characterizing equation.

7.2. The Characteristic Polynomial. Before we continue determining the char-
acteristic polynomial, we need to find what form it is in. To do this, we will examine
a number of important facts about the single and multi-layered residue matrices.

Lemma 7.2. If an entry in Ki is equal to zero, the same entry is zero in all Kj

entries where j ≥ i.

Proof. This is easily shown in terms of connections. If a connection exists before
the interiorization of a node, it exists after. In other words, if an entry in Ki+1 is
nonzero, it is nonzero in Ki. Thus, if an entry in Ki is zero, it must be zero in all
Kj entries where j > i. �

Lemma 7.3. If an entry in Ri is known, the entry is equal to zero for all Rj where
j > i.

Proof. For an entry in Ri to be known, the corresponding entry must be zero in
Ki. Thus, as we showed above, it is zero in all Kj matrices where j > i. So all the
entries in the Rj entries are known. Which means they have the same value as the
previous Kj matrix which is exactly zero. �

Lemma 7.4. A diagonal entry in a R matrix, single-layered or multi-layered, is
non-zero ⇔ at least one off-diagonal entry is non-zero. In other words, if a diagonal
entry is zero, all the entries in that column and row are zero.
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Proof. This comes directly from the fact that the residue matrices are the differ-
ence (or residue) of two Kirchhoff matrices. Therefore, if you change at least one
connection (ie an off-diagonal entry) you must change the sum of connections (ie
the diagonal entry). This argument works both ways. �

Lemma 7.5. All zero entries in a single-layer R matrix are part of a row or column
of zeros. In other words, if an entry is zero, so is every entry in either the column
or the row.

Proof. Again, this can easily be seen by looking at the residue matrix in terms of
changing connections. Suppose for some residue matrix Ri, two diagonal entries
Ri(a1, a1) and Ri(a2, a2) are non-zero. Then, the connection between node a1 and
a2 has changed. Thus, Ri(a1, a2) and Ri(a2, a1) are non-zero.

So, if an off-diagonal entry is zero, at least one of its corresponding diagonal
entries is zero and, therefore, the entire row or column is zero. �

Lemma 7.6. For a single-layered residue matrix Ri to be recoverable, every non-
zero entry must be part of a 2 × 2 submatrix with at least two known entries.

Proof. At least one unknown entry must be part of a 2×2 with three known entries
in order for it to be recoverable. Then, all the following matrices must be part of
a 2× 2 submatrix with all its entries known or already recovered. This means, the
second recovered entry must be part of a submatrix with at least two known entries
and the third may be part of one with only one. However, since the ones before
were part of submatrices with at least two, the third can also be written as part of
a submatrix with at least two known entries. This is easier to see by example.




...
...

X ... ? ...
...

...
X ... X ...


→




...
...

X ... ? ...
...

...
X ... ? ...
...

...
X ... X ...



→




...
...

...
X ... ? ... ? ...
...

...
...

X ... ? ... X ...
...

...
...

X ... X ... ? ...




or




...
...

...
X ... ? ... ? ...
...

...
...

X ... ? ... ? ...
...

...
...

X ... X ... X ...




Although the entry in the upper right corner can be written as part of a 2 × 2
submatrix that has only one known entry (or none in the second case), it also can
be written as part of a submatrix with at least two. The same is true for the entry
in the lower right.

This is true for all following unknown entries in the single-layered residue matrix
and, thus, all entries are part of a 2× 2 submatrix with at least two known entries.

�

Lemma 7.7. Every recoverable, single-layered residue matrix must have a j × j
submatrix where j > 2 with no zero entries and at least one known entry in every
column and row.

Proof. First, suppose the largest non-zero submatrix of some Ri is 2×2. Then, two
of the entries are diagonal entries which cannot be known. Thus, we have a 2 × 2
submatrix that is not recoverable. So, by 7.6, Ri is not recoverable. Thus, every
recoverable residue matrix must have a non-zero submatrix of size greater than 2.
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Also, to be recoverable, the matrix must have at least one known entry per column
and row.

�

Lemma 7.8. Every entry in a single-layered residue matrix for a single parameter
semi-recoverable graph must be part of a 2 × 2 determinant which has two known
entries which come directly from Λ.

Proof. In the first residue matrix, all known entries must be λ’s since they come
directly from Λ.

Now, suppose Ri is a recoverable residue matrix or is once a single parameter is
used. Let j denote the size of the largest non-zero submatrix. Then, it must have
at least 2j known entries (including the parameter in the parameterized layer). If
2(j − 1) entries are λ’s, then, from the lemmas above, these entries coorespond
to zero rows/columns in every Rl matrix where i < l. Thus, at least (j − 2) of
the row/columns are zeroed out, leaving exactly four uneffected entries, two of
which are diagonal entries. Thus, there are only 2 entries left that can be in the
following residue matrices. But, from 7.7, we know each single-layer residue matrix
is recoverable only if it has a non-zero submatrix of size greater than 2. So, the
next R matrix must have 2(m − 1) known entries which do not come from any of
the unknown entries in the previous residue matrices. Thus, they must be from Λ.

We also know that all 2× 2 submatrices have at least two known entries. So, for
all single-layered residue matrices, at least two of the known entries in each 2 × 2
submatrix come directly from Λ. �

Corollary 7.9. Every entry in a single-layered residue matrix for a semi-recoverable
graph with one parameter can be written in the form at+b

ct+d
where t is the parameter

and a, b, c, and d are polynomials in Λ.

Proof. Since at least two entries in each 2 × 2 submatrix are λ’s and the third
known is linear fractional, solving for an unknown entry is done by a linear rational
operation. Thus, every entry is linear rational.

Alternatively, we can show this algebraically. Let x denote the unknown entry
and f(t) denote a linear fractional entry. Then

x · f(t) − λi,jλk,l = 0 ⇒ x =
λi,jλk,l

f(t)
and

λi,ix − λi,jf(t) = 0 ⇒ x =
λi,j

λi,i
f(t)

Either way, x retains linear rationality. So every entry can be written in the
form at+b

ct+d .
�

Theorem 7.10. The characteristic polynomial of all single variable, semi-recoverable
graphs is a quadratic. In other words, they are 2 → 1.

Proof. This follows immediately from 7.1, 7.8, and 7.9. Since detRi(a1, a2; b1, b2)
has at two λ entries and two linear fractional entries, detRi(a1, a2; b1, b2) = 0 will
yield either a linear or quadratic equation. However, since we assumed the graph
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is semi-recoverable, it cannot be a linear equation, since that would make the
parameter spurious. Thus, it is a quadratic and the graph is 2 → 1.

�

7.3. The Polynomial. We now return to solving the equation as we did for the
N-gon-in-N-gon case.

We now know we can rewrite 4 in one of the following ways

[Λ(a1, b1) − Rk+1
i−1 (a1, b1)][Λ(a2, b2) − Rk+1

i−1 (a2, b2)] − [Λ(a1, b2)][Λ(a2, b1)] = 0

or

[Λ(a1, b1) − Rk+1
i−1 (a1, b1)][Λ(a2, b2)] − [Λ(a1, b2)][Λ(a2, b1) − Rk+1

i−1 (a2, b1)] = 0

Both remaining Rk+1
i−1 entries must be linear fractionals dependant on the pa-

rameter t.
We also know that each non-zero entry in Rk+1

i−1 comes from some single residue
matrix Rj where k +1 < j < i−1.Additionally, from 7.8, each term can be written
recursively as

Rj(a1, b1) =
λa1,b2λa2,b1

Rj(a2, b2)

=
λa1,b2λa2,b1

Kj−1(a2, b2)

=
λa1,b2λa2,b1

Λ(a2, b2) − Kk+1
j−1 (a2, b2)

=
λa1,b2λa2,b1

λa2,b2 − Rl(a2, b2)
or

Rj(a1, b1) =
λa2,b1

λa2,b2

Rj(a1, b2)

=
λa2,b1

λa2,b2

Kj−1(a1, b2)

=
λa2,b1

λa2,b2

(Λ(a1, b2) − Kk+1
j−1 (a1, b2))

=
λa2,b1

λa2,b2

(λa1,b2 − Rl(a1, b2))

for some indices a1, a2, b1, and b2 where l < j.
So, we see that a continued fraction (or other recurrance relation) similar to the

one in the N-gon-in-N-gon case is typical of the characteristic quadratics for all
semi-recoverable graphs.

8. Extending to All Semi-Recoverable Graphs

We will now look at what this result says for semi-recoverable graphs in general,
not just ones that are recoverable with a single parameter.
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Theorem 8.1. All semi-recoverable graphs are 2n → 1.

Proof. This follows almost directly from 7.10.
Suppose K is a semi-recoverable graph with n parameters. Then, since each

yields a quadratic, every parameter gives 2 solutions. So we have n parameters,
each yielding 2 solutions, which means the graph has 2n solutions. Thus, it is
2n → 1. �

Corollary 8.2. All networks K associated with a semi-recoverable graph G have
2k solutions for some integer k.

Proof. Since G is semi-recoverable, we know that it is 2n → 1. However, this does
not mean that all its associated networks K have 2n solutions since any of the
characteristic quadratics can have double roots. Since each double root reduces the
number of solutions by a factor of two, we can see that there are 2k solutions where
1 ≤ k ≤ n. �

9. Conclusion

Not only have we shown that the method for recovering arbitrary graphs de-
scribed in [1] can recover the conditions for multiple solution graphs, we also see
that it also recovered all conditions that make Λ a valid response for a N-gon-in-N-
gon graph that were shown in [4]. Also, we have confirmed the Hexcyln, Mobiusn,
and Pinwheeln are at most two-to-one and have shown that all known general-
izations of the N-gon-in-N-gon graphs have the same conditions for when they are
two-to-one and when they are one-to-one as the N-gon-in-N-gon itself.

More importantly, through use of methods similar to the ones used in the N-
gon-in-N-gon case, we have shown that all semi-recoverable graphs and their cor-
responding networks are 2n → 1. This greatly restricts the semi-recoverability of
graphs. However, this paper makes no argument for why that is except for through
the method used. In other words, there is no other explanation for why there does
not exist say a 3 → 1 graph other than the fact that it is impossible to get a cubic
characteristic polynomial.
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