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Abstract

We are interested in developing the theory of maps between resistor

networks that preserve certain electrical properties. In the case of contin-

uous potentials, there have been fairly extensive studies of maps between

Riemannian manifolds that pull back locally defined functions that are

harmonic on the codomain to locally defined harmonic functions on the

domain. These maps, known as harmonic morphisms, have been dis-

cretized so that they may be applied to graphs. We study some basic

properties of these maps and produce a few families of examples when

sources and sinks are allowed in the networks.
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1 Introduction

The theory of functions that satisfy Laplace’s equation 4u = 0 is of great
importance in many fields of mathematics. Such functions are called harmonic.
These functions represent electrical potentials, so they occur quite frequently
in physics as well. It would be quite useful to understand maps that preserve
Laplace’s equation. Specifically, we are interested in maps f between two objects
G and H such that if u is a harmonic function defined on some neighborhood
N ⊂ H, then the composition u ◦ f is harmonic on f−1(N) ⊂ G. Maps with
this property are commonly referred to as harmonic morphisms.

1.1 A Quick Example from Complex Analysis

To help understand this concept, we prove that analytic maps are in fact har-
monic morphisms:

Theorem: Let f : Ω→ Ω′ be an analytic function, u : Ω′ → R a harmonic
function, then u ◦ f : Ω→ R is harmonic.

Proof : Write

f = a+ bi, so that (u ◦ f)(x, y) = u(a(x, y), b(x, y))

Let

z = x+ iy ∈ Ω, and ζ = ξ + iη ∈ Ω′

By the chain rule we have

(u ◦ f)x = uξax + uηbx,
(u ◦ f)xx = uξξa

2
x + uξηaxbx + uξaxx + uηξaxbx + uηηb

2
x + uηbxx

Writing a similar expansion for (u◦f)yy and grouping certain terms we get that

4(u ◦ f) =
uξ(axx + ayy) + uη(bxx + byy) + uξξ(a

2
x+ a

2
y) + uηη(b

2
x+ b

2
y) + 2uξη(axbx+ ayby)

Both the real and imaginary parts of an analytic function are harmonic, thus

axx + ayy = bxx + byy = 0.

The Cauchy-Riemann equations state that

ax = by, ay = −bx

So we are left with

4(u ◦ f) = uξξ(a
2
x + a

2
y) + uηη(b

2
x + b

2
x) + 2uξη(axbx + ayby) =

uξξ(a
2
x + b

2
x) + uηη(a

2
x + b

2
x) + 2uξη(axbx − axbx) = (uξξ + uηη)(a

2
x + b

2
x) = 0

where the last equality holds since u was assumed to be harmonic. ¤

Later in this paper we will use a few properties of analytic functions as
motivations to develop analogous properties for harmonic morphisms.
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1.2 Continuous Potentials and Riemannian Manifolds

In order to generalize the harmonic pull-back property of analytic functions on
the complex plane, there has been much work to study harmonic morphisms
between Riemannian manifolds. This work resulted in a nice characterization,
listed on page 108-9 of [1]:

Theorem: Let M = (M, g) and N = (N,h) be Riemannian manifolds, and
let φ : M → N be a smooth map between them. Then the following conditions
are equivalent:

• φ is a harmonic morphism.

• φ is both harmonic and horizontally weakly conformal.

• For each smooth function f : V → R defined on an open subset V of N
with φ−1(V ) non-empty, we have 4(f ◦ φ) = Λ4(f) for some smooth
function Λ :M → [0,∞).

To say that φ is horizontally weakly conformal means that for x ∈M , either
dφx = 0, or dφx maps the horizontal space Hx = {ker(dφx)}

⊥ conformally onto
Tφ(x)N , the tangent space of N at φ(x). It is not necessary to fully understand
this theorem. We include it only to give a flavor of the results that are being
obtained for the case of harmonic morphisms between manifolds.

1.3 Electrical Networks and the Discrete Laplacian

We now consider potentials defined on resistor networks Γ = (G, γ). We adopt
all the conventions of [2] when describing electrical networks. Namely,

G = (intV ∪ ∂V,E)

is a graph with a (possibly empty) set of vertices designated as boundary, so that
the remaining vertices are referred to as interior, and γ is a positive conductivity
function defined on all edges of G. The existence of an edge between vertices x
and y is often denoted by x ∼ y, and the set of all neighbors of a vertex z (that
is, the set of all vertices adjacent to z) is denoted by N(z).
We interpret the boundary vertices as possible sources and sinks and assume

Kirchhoff’s current rule at all interior vertices; that is, the sum of the current
leaving each interior vertex is taken to be zero. It turns out that this condition
is precisely the discrete analogue of the Laplacian. Thus, functions u : V → R
that satisfy

∑

q∈N(p)

γpq(u(p)− u(q)) = 0

at all interior vertices p are referred to as harmonic, or γ-harmonic, where
the gamma is sometimes written to emphasize the dependence on the edge
conductivities. There is an alternate way to write this expression, known as the
harmonic averaging principle, which states that a function u is harmonic at a
vertex p if and only if
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u(p) =

∑

q∈N(p)

γpqu(q)

∑

q∈N(p)

γpq

Thus we can determine if u is harmonic at p either by verifying that the net
current out of p is zero, or by seeing if u(p) is the weighted average of its
neighboring vertices.

1.4 Harmonic Morphisms on a Graph

A manifold is a topological space that is locally Euclidean. A Riemannian
manifold is a manifold endowed with a metric. This means that it is possible
to calculate the distance between any two points on the manifold — typically
by looking at the minimal length of geodesics joining these points. Another
interpretation of the resistor networks described above is that of a metric graph,
which is just a graph with positive edge weights. In other words, we simply
interpret the conductivities of an electrical network to be the distances between
vertices of the graph. This interpretation shows how a metric graph is actually
a discretization of a Riemannian manifold.
With essentially the same definition for the discrete Laplacian mentioned

earlier (i.e. Kirchhoff’s current rule), the notion of harmonic morphism was ex-
tended to generic graphs in [3] and to metric graphs in [4]. In this context, the
definition of harmonic morphism is exactly as one might imagine; namely, a map
φ : V (G)→ V (H) between two electrical networks Γ = (G, γG) and Γ = (H, γH)
is a harmonic morphism if it pulls back locally defined γH -harmonic functions
on H to locally defined γG-harmonic functions on G. The same authors de-
scribe an analogue to the notion of horizontal conformality, reproduced here in
the case of graphs with positive edge weights:

Definition: A map φ : (V1, E1, γ1)→ (V2, E2, γ2) is horizontally conformal
if the following two conditions are satisfied:

1. For all x, y ∈ V1 such that x ∼ y, either φ(x) = φ(y) or φ(x) ∼ φ(y).

2. There exists a function λ : V1 → R+ such that for all p ∈ V1, q
′ ∈ N(φ(p)),

∑

p′∈N(p),φ(p′)=q′
γ1(pp

′) = λ(p)γ2(φ(p)q
′).

The authors then produce a result analogous to the characterization theorem
for harmonic morphisms between Riemannian manifolds. Specifically,

Theorem: A map φ : (V1, E1, γ1)→ (V2, E2, γ2) is a harmonic morphism if
and only if it is horizontally conformal.

Remark: The results from these papers are for networks in which harmonic-
ity is required at all vertices of the graph. We are interested in studying the
effect of introducing electrical sources and sinks by way of decreeing that the
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Laplacian of u need not be zero at a set of vertices designated as the boundary.

To help clarify the distinction between locally and globally defined harmonic
functions, it is useful to introduce some terminology:

Definition: Let G = (V,E) be a graph, and let f : W → R be a function
defined on a subset W ⊂ V of its vertices. Then the for each vertex v ∈ W
such that N(v) ⊂ W , we may define the germ of f at v to be the equivalence
class of all functions equal to f at v and at all vertices in the neighborhood N(v).

A globally defined harmonic function is necessarily harmonic on all neigh-
borhoods contained in its domain of definition, thus harmonic morphisms pull
back germs of harmonic functions to germs of harmonic functions.

1.5 Graph Homomorphisms

We would like harmonic morphisms on a graph with boundary to preserve some
essential structure of the graph. Before we do this, it is necessary to define a
graph homomorphism:

Definition: A homomorphism from a graph G = (V,E) to another graph
G′ = (V ′, E′) is a function φ : V → V ′ such that a ∼ b implies φ(a) ∼ φ(b).

Remark: This condition is not an “if and only if” relation; that is, we may
have φ(a) ∼ φ(b) even when there is no edge joining a to b.

It is important to note that we do not allow loops (that is, an edge joining a
vertex to itself). This imposes a significant restriction on the set of graphs that
have a homomorphism to a given graph, since a ∼ b implies that φ(a) 6= φ(b).
It is easily seen that the existence of a homomorphism from a graph G to the
complete graph on 2 nodes, denoted K2, is equivalent to a proper 2-coloring
of G. In fact, there exists a homomorphism sending G to Kn if and only if G
is properly n-colorable [5]. Thus graph homomorphisms are in many ways a
generalization of graph colorings.

We are now able to specify the two additional requirements of any harmonic
morphism φ under consideration:

1. φ must be a graph homomorphism.

2. φ must map interior vertices to interior vertices and boundary vertices to
boundary vertices.

The first condition is in some ways a discrete analogue to the condition that
a map between manifolds is continuous. When we are in fact dealing with
manifolds, it can be shown that a harmonic morphism is an open map — that
is, it sends open sets to open sets. This is verified in [1]. We would like this
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Figure 1: Merging two boundary spikes

same property to remain true on graphs. Later in this paper we verify that this
second condition is sufficient to ensure that φ is an open map.
¿From the definition of horizontal conformality on graphs and the ensuing

theorem, we see that the condition of a harmonic morphism being a graph
homomorphism is automatic when there is no boundary — except that in the
work by [3] and [4] a harmonic morphism is allowed to map two adjacent vertices
to the same image vertex. As will be shown later, permitting this occurrence
can cause violations of the openness of a harmonic morphism. Moreover, in the
case of graphs with boundary it is easy to find examples of harmonic morphisms
that are not graph homomorphisms (due to boundary-to-boundary edges). We
therefore refer to harmonic morphisms that satisfy the two conditions listed
above as harmonic homomorphisms throughout this paper to avoid any possible
confusion.

2 Definition, Examples, and Basic Properties

Now that we have developed a heuristic understanding of harmonic homomor-
phisms, it is necessary to provide a precise, formal definition.

Definition: Let Γ = (V,E, γ) and Γ′ = (V ′, E′, γ′) be two electrical net-
works, and let φ : G = (V,E)→ G′ = (V ′, E′) be a graph homomorphism such
that φ(∂V ) ⊂ ∂V ′ and φ(intV ) ⊂intV ′. Then φ is a harmonic homomorphism
if for every function u : V ′ → R that is γ′-harmonic at some vertex p′ ∈ V ′, the
composition u ◦ φ : V → R is γ-harmonic at every vertex p ∈ φ−1(p′) ⊂ V .

We now illustrate some basic examples of harmonic homomorphisms. In
most of these cases it is clear that the maps in question are homomorphisms
that preserve boundary and interior, so the main condition to check is the
harmonic pull-back property.

2.1 Boundary Spikes and Cayley Trees

Let G and H be the graphs shown in Figure 1. We would like to choose
appropriate conductivities on H so that harmonic functions on H pull back to
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harmonic functions on G. In other words,

Given: α(u2 − u1) + β(u2 − u3) = 0,

Want: a(u2 − u1) + b(u2 − u3) + c(u2 − u3) = 0.

It is easily seen that if we choose α = a, β = b + c then the map φ will indeed
be a harmonic homomorphism.

This example is readily generalized to produce a harmonic homomorphism
from any n-star to any m-star, for m < n.

We can construct more sophisticated maps by stitching together graphs re-
lated to the previous two simple ones. Two examples of this construction are
depicted in Figure 2. In both cases a cursory inspection reveals that the graphs
involved are simply a collection of the 3-star graphs considered above, all iden-
tified at various boundary vertices. This allows us to map each 3-star to the
same 2-star so that the map will be a harmonic homomorphism. The graph G2

has the special property that it is a tree (meaning that there are no cycles in
the graph) and all vertices, except the outer ones (referred to as leaves), have
exactly three neighbors. Such a graph is commonly referred to as a 3-Cayley
tree. As with the example of boundary spikes and stars described above, it is
possible to generalize this map somewhat:

Theorem: Given any n-Cayley tree G such that the length of the (unique)
path between any two leaves is even, it is possible to choose the boundary and
interior according to a proper 2-coloring and choose conductivities on G so that
there is a harmonic homomorphism φ : G→ Hn, where Hn is an n-star with one
interior vertex adjacent to n boundary vertices, regardless of the conductivities
on Hn.

Proof : With the common convention that black denotes boundary and
white denotes interior, pick an arbitrary leaf (outer vertex) of G and color it
black — that is, declare it a boundary vertex. This vertex has only one neighbor,
which is necessarily white (i.e. an interior vertex). This white vertex has n− 1
neighbors that have yet to be considered, but they all must be colored black.
For each of these n − 1 boundary vertices, either they are leaves or they have
n neighbors that must necessarily be white. We can continue this coloring
procedure to produce a proper 2-coloring on all of G, noting that all leaves will
be black due to parity.
Number the vertices of H by 0, 1, . . . , n, where 0 corresponds to the inte-

rior vertex. Now let γi denote the conductivity on the edge joining vertex 0 to
vertex i. With the coloring chosen above, each interior vertex of G has exactly
n neighbors. For every such interior vertex, choose the conductivities on its n
incident edges to be γ1, . . . , γn. Thus each interior vertex of G and its corre-
sponding neighborhood is an isomorphic copy of Hn. The map φ is defined by
sending each such n-star of G onto Hn. The only trick is that when we give
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Figure 2: Harmonic homomorphisms on graphs constructed from 3-stars

conductivities to the edges incident to some interior vertex of G, we are implic-
itly determining where each of these boundary vertices will be mapped to. It is
quite possible that some of these boundary vertices will neighbor other interior
vertices, thus we may have already determined their image and produced an
ambiguous definition for φ.
We can ensure that φ is well defined by starting with an arbitrary interior

vertex vi of G and mapping it along with its neighbors b1, . . . , bn to Hn in the
obvious way. Now pick one of these boundary vertices bj that is not a leaf (if all
of them are leaves then the map is the identity). We know that bj is adjacent
to n − 1 interior nodes aside from vi. The conductivities of all edges incident
to bj must be equal, since we have already determined the image of bj under φ.
This means that for each of these n-stars that neighbor the one centered at vi,
exactly one edge conductivity will be chosen thus far. We are free to choose the
remaining n − 1 in any way so long as there is exactly one edge corresponding
to each of the n edges of Hn. Because G is a tree, we know that this way of
defining φ can extend radially outward without leading to any contradictions.
With the map φ constructed thus, it is trivial to verify that it is a harmonic

homomorphism since it essentially maps multiple copies of Hn onto itself, hence
every germ of a harmonic function on Hn pulls back to the identical germ of a
harmonic function at each interior vertex of G. ¤

Corollary: For the preceding theorem, the map can take the n-Cayley tree
to any m-star Hm, for 1 ≤ m ≤ n.
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Proof : This is essentially a simultaneous application of the above theorem
with the boundary spike merging example. ¤

All the examples of harmonic homomorphisms in this section are from some
large graph G to an m-star with boundary at the outer vertices and interior at
the central vertex. We choose the boundary at the end points so that we can
imagine applying a voltage at these vertices and then measure the current that
runs through the graph. However, because harmonic morphisms are dependent
only on germs of harmonic functions, we can generalize these maps by allowing
an arbitrary choice of boundary, as the next theorem illustrates:

Theorem: Suppose there is a harmonic homomorphism φ : G→ Hn from a
graph G to an n-star Hn for some choice of boundary on both graphs such that
the center vertex of Hn is interior. Then we can redefine the boundary on Hn

to be any of the 2n+1 possibilities and redefine the corresponding pull-backs on
G without sacrificing the harmonicity of φ.

Proof : It is sufficient to show that φ is still a harmonic homomorphism
when we choose all vertices to be interior, because this will imply that any germ
of a harmonic function on Hn pulls back to the germ of a harmonic function at
every vertex of G — thus if we designate any collection of boundary vertices on
Hn and the corresponding boundary on G, then the set of pulled back germs of
functions that we must check for harmonicity will be a subset of the set of pulled
back germs of functions that are harmonic given by the case that all vertices
are interior.
Begin by numbering the vertices of Hn by v0, v1, . . . , vn, where v0 is the

center vertex, and v1 through vn are the neighbors of v0. We are given that all
germs of harmonic functions at v0 pull back to germs of harmonic functions on
G, so all we need to show is that the germ of a harmonic functions at vi, for
1 ≤ i ≤ n, pulls back to the germ of a harmonic function in G. Since vi has only
one neighbor, namely v0, we know that the germ of any harmonic function at vi
is necessarily constant. Let pi ∈ φ

−1(vi). Then because φ is a graph homomor-
phism we also know that all neighbors of pi get mapped to the neighborhood of
vi, which is simply v0. Thus if we let u be the germ of a harmonic function at
vi, so that u(vi) = u(v0) = c, then (u ◦ φ)(pi) = (u ◦ φ)(q) = c for all q ∈ N(pi).
Therefore u pulls back to the germ of a constant, and hence harmonic, function
on G. ¤

When we have a map from a graph to an n-star, as in the map on the n-
Cayley tree, we can choose all vertices to be interior. However, as the next
section demonstrates, it is much more difficult in general to construct harmonic
homomorphisms between networks with no boundary.

2.2 Identification of Interior Vertices

We now consider a map that sends one interior vertex to another and leaves
the rest of the graph fixed. Let G and H be the graphs in Figure 3. For a
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Figure 3: An identification of two interior vertices

pulled-back function to be harmonic, we see that the only condition needed is

a(u2 − u1) + b(u2 − u3) = 0

due to the symmetry of the conductivities chosen. However, this condition is
precisely what is given for all harmonic functions on H, thus the map is a har-
monic homomorphism.

As with the case of merging boundary spikes, we can apply this technique
multiple times to produce more interesting harmonic homomorphisms. How-
ever, when dealing with graphs that have little or no boundary, it seems more
difficult to construct harmonic homomorphisms since all the conditions required
to ensure that germs of harmonic functions pull back to germs of harmonic func-
tions become quite tangled and convoluted. In Figure 4 we see two such maps.
A careful inspection of each vertex in these graphs shows that the maps in ques-
tion are indeed harmonic homomorphisms. For the map from G2 to H2 we show
explicitly how all the conditions work out:

• The germ of a harmonic function at vertex 1 is necessarily constant (i.e.
u1 = u2). For each of the two vertices in G2 that get pulled back from this
vertex, the neighboring vertices are all pulled back from vertex 2. Thus
the pull-back is also constant and hence harmonic.

• For vertex 2 we are given that

a(u2 − u1) + b(u2 − u3) = 0

At every vertex pulled back from this vertex, the condition to check is

a(u2 − u1) +
b
2 (u2 − u3) +

b
2 (u2 − u3) = 0

But this is clearly identical to the given condition.

• The harmonicity at vertex 3 and its pull-backs are similar to the preceding
case. Specifically, we are given
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Figure 4: Two harmonic homomorphisms on graphs that are mostly interior
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b(u3 − u2) + c(u3 − u4) = 0

and need to satisfy

b
2 (u3 − u2) +

b
2 (u3 − u2) + c(u3 − u4) = 0

So again germs of harmonic functions pull back to germs of harmonic
functions.

• Finally, as with the first case, every germ of a harmonic function at vertex
4 and its pull-back are constant and therefore harmonic.

It would be nice to have a deeper understanding of why these maps are
harmonic homomorphisms, aside from a direct verification as above. Perhaps the
key lies in horizontal conformality, but there do not appear to be any intuitive
explanations of the definition offered by [3] and [4] in print anywhere to help
elucidate this matter.

2.3 A Map Between Complete Bipartite Graphs

By combining the techniques of the above two simple examples, we are able to
prove the following theorem:

Theorem: Suppose the n boundary vertices and m interior vertices of a
graph G form the complete bipartite graph Kn,m. Then the conductivities can be
chosen so that there is a harmonic homomorphism φ sending G to H = Kp,q,
for any 1 ≤ p ≤ n, 1 ≤ q ≤ m.

Proof : We start with the case that no boundary vertices are identified under
the map φ. That is,

|∂V (G)| = |∂V (H)|

Number the boundary vertices of both G and H by b1, b2, . . . , bn. Let all edges
incident to bi have conductivity γi in both graphs. Then for every germ of a
harmonic function u on H we are given that

n∑

i=1

γi(uj − ui) = 0

for each interior vertex j of H. However, this is exactly the condition that is
needed for each interior vertex of G to ensure that u ◦ φ will be harmonic.
Now consider the case that no interior vertices are identified:

|intV (G)| = |intV (H)|

We will show how to solve this case when the nth boundary vertex gets mapped
to the (n − 1)th boundary vertex. The rest of the case will follow by an iter-
ative application of this result. Again number the boundary vertices of G by
b1, b2, . . . , bn. Define the conductivity of all edges in G incident to bi by γi.
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Figure 5: A harmonic homomorphism from K3,3 to K2,2

Then all we need to do is choose the conductivity for all edges incident to the
first n− 2 boundary vertices of H to be exactly as they were in G, and then for
the last boundary vertex of H we choose the conductivity of all incident edges
to be γn−1 + γn.
It is fairly straightforward to stitch these two cases together to complete the

proof of this theorem. The particular case in which n = m = 3, p = q = 2 is
illustrated in Figure 5. ¤

This theorem can be generalized somewhat by weakening the bipartite struc-
ture of both graphs in the following ways:

1. Creating boundary-to-boundary edges has no effect on the harmonicity of
any functions, so we may permit an arbitrary collection of such edges.

2. If a graph consists of several complete bipartite graphs as its components
such that each component is connected to the other components only by
boundary-to-boundary edges (or they are not connected at all), then the
techniques developed above can be applied piecewise.

2.4 Harmonic Homomorphisms are Open Maps

It was assumed as part of the definition of harmonic homomorphism that in-
terior vertices get mapped to interior vertices. To verify that harmonic homo-
morphisms are open maps, the only other condition that we must check is that
neighborhoods in the domain graph get sent surjectively to neighborhoods in
the codomain (i.e. open sets get mapped onto open sets). More specifically,

Theorem: Let Γ = (G, γ) and Γ′ = (G′, γ′) be electrical networks such that
φ : G → G′ is a harmonic homomorphism. Let p ∈ intV (G) and let p′ = φ(p).
Then for all q′ ∈ N(p′), there exists q ∈ N(p) such that φ(q) = q′.

Proof : Assume, by contradiction, that there is some q′ in the neighborhood
of p′ that is not the image of any vertices in the neighborhood of p. Let u be the
germ of a harmonic function defined on p′ and all vertices adjacent to it. Then
since φ is a harmonic homomorphism, we know that φ pulls back u to the germ
of a harmonic function whose domain of definition contains p and all vertices
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adjacent to it. By letting u(q′)→∞, we know from the averaging principle that
u(p′)→∞. However, since we assumed that q′ is not the image of any neighbor
of p, and by the definition of homomorphism we know that no neighbors of p
get sent to p′, we see that u(p) → ∞ whereas u evaluated at all neighbors of
p remains finite. This is indeed a contradiction of the averaging principle, thus
the theorem is proven. ¤

Remark: If we were to allow adjacent vertices to have the same image, as
in the definition of horizontal conformality, it would be possible to find counter-
examples to this result. For example, imagine two copies of the graph K2, say
G = (g1, g2; g1g2) and H = (h1, h2;h1h2), each consisting of two adjacent in-
terior vertices. We can send both g1 and g2 to h1, so that G does not map
surjectively onto the neighborhood of h1. However, all harmonic functions on
H are constant and pull back to constant, and hence harmonic, functions on G.

The proof of openness in the case of Riemannian manifolds follows a similar
construction, although it is more complicated as the contradiction derived is
in terms of a Green’s function on the image neighborhood and a violation of
Harnack’s inequality. See [1] for the details.

2.5 Composition of Harmonic Homomorphisms

An easy result [1] in the case of Riemannian Manifolds is that the composition
of two harmonic morphisms is itself a harmonic morphism. We quickly derive
the analogous result for harmonic homomorphisms on graphs:

Theorem: Let φ : A → B and ψ : B → C be harmonic homomorphisms
on electrical networks ΓA = (A, γA),ΓB(B, γB), and ΓC = (C, γC). Then the
composition ψ ◦ φ : A→ C is a harmonic homomorphism.

Proof : There are three properties to check to verify that the map ψ ◦ φ is
a harmonic homomorphism:

1. We know that φ maps interior vertices of A to interior vertices of B, and
then ψ takes these interior vertices of B to interior vertices of C, thus ψ◦φ
maps interior vertices to interior vertices. The same argument applies to
boundary vertices.

2. If x ∼ y in A, then φ preserves this adjacency so that φ(x) ∼ φ(y) in
B and φ(x) 6= φ(y). Since ψ is also a homomorphism, we know that
ψ(φ(x)) ∼ ψ(φ(y)) and ψ(φ(x)) 6= ψ(φ(y)), thus ψ ◦φ is a homomorphism
as well.

3. Finally, the germ of a harmonic function at an interior vertex p of C gets
pulled back by ψ to the germ of a harmonic function at each of the interior
vertices in the inverse image ψ−1(p). Then φ pulls back each of these germs
to the germs of harmonic functions on A. Thus ψ ◦φ pulls back the germs
of harmonic functions on C to the germs of harmonic functions on A.

14



Since these three properties are verified, we see that ψ ◦ φ is indeed a har-
monic homomorphism. ¤

In order to construct more general harmonic homomorphisms, it would be
nice to generalize this composition result in the following manner:

Conjecture: Suppose we are given three graphs A,B, and C with the fol-
lowing property: we can choose the conductivities on A and B so that there is
a harmonic homomorphism from A to B, or we can independently choose the
conductivities on B and C so that there is a harmonic homomorphism from B
to C. Then it is possible to choose the conductivities on A and C so that there
is a harmonic homomorphism from A to C.

We refer to this statement as a conjecture since a proof has thus far eluded
this author. The plausibility of such a result is justified as follows. In all the
examples of harmonic homomorphisms found in this paper, the conductivities
of the target graph were arbitrary and determined the conductivities of the
domain graph. If this occurrence holds in general — that is, whenever there is a
harmonic homomorphism from G to H, we can choose arbitrary conductivities
for H and have those values determine conductivities on G that will preserve
the harmonicity of the map — then we can have arbitrary conductivities on
C, take the appropriate conductivities on B that are determined from ψ, and
then have these conductivities on B determine conductivities A so that φ is a
harmonic homomorphism. Then it is simply a matter of applying the previous
result.

3 Analogues From the Continuous Case

We now return to the continuous case of complex analysis and Riemannian
manifolds to produce some further examples of harmonic homomorphisms.

3.1 Isometries and Automorphisms

An isometry is a bijective map that preserves distance. It is mentioned in [1]
that an isometry of a Riemannian manifold is a harmonic morphism. We would
like to find a discrete analogue to this fact.
Consider the case that a harmonic homomorphism is actually a graph au-

tomorphism. It is clear that the identity map is a harmonic homomorphism,
since all given conditions exactly match all necessary conditions. However, the
only other maps in the automorphism group of a graph that are harmonic are
ones that have a symmetry in the conductivities exactly corresponding to the
symmetry in the graph that produced the automorphism. For example, the
quadrilateral graph in Figure 6 has an automorphism group that is isomorphic
to the dihedral group of order 8. If α = γ, then there is a harmonic homomor-
phism sending vertex 1 to 4, 4 to 1, 2 to 3, and 3 to 2. If β = δ as well, then
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Figure 6: A graph with automorphism group isomorphic to D4

there is also a harmonic homomorphism corresponding to the map defined by
1 ↔ 2 and 4 ↔ 3. Finally, if α = β = γ = δ, then there will be eight possible
harmonic homomorphisms, one for each of the four rotations and four reflections
in the automorphism group of this graph.
If we return to the interpretation of an electrical network as a metric graph,

we see that these harmonic automorphisms are precisely the bijective graph
maps that preserve distance between vertices — and thus graph isometries.

3.2 The Reflection Principle

We have already shown that analytic functions are harmonic morphisms. We
now show that another result from complex analysis, known as Schwarz reflec-
tion, carries over to harmonic homomorphisms.
Under appropriate circumstances, an analytic function on a subset of the

upper half plane, say U+, may be uniquely extended, via complex conjugation,
to an analytic function on U+∪ I ∪U−, where U− is the reflection of U+ across
the real axis and I is the interval that joins U+ and U−. More generally, this re-
flection may occur over any analytic curve, not just the real axis. We can derive
a similar result in terms of electrical networks and harmonic homomorphisms.
Let us begin by investigating the meaning of a reflection in the case of a

graph. First assume that the axis of reflection is a straight line that possibly
intersects G, but does not penetrate the convex hull of V (G). There are a few
cases to consider:

• If the axis of reflection does not intersect any edges or vertices of G, then
reflection produces an isomorphic copy of G, denoted G, sitting in the
same plane as G but sharing no edges or vertices with G.

• If the axis intersects a nonempty set of vertices {v1, . . . , vn} ∈ V (G), but
no edges of G, then we can imagine producing an isomorphic copy of G
off in the distance that is geometrically inverted about this axis and then
sliding it closer to G until the corresponding vertices {v1, . . . , vn} ∈ V (G)
are overlayed with their conjugate counterparts.

• If the preceding case occurs except that the axis of reflection covers at
least one edge (and therefore its endpoints), then we repeat the above
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Figure 7: Various ways in which to reflect a graph

process except that we only keep one copy of the edge in question, rather
than doubling the edge with its conjugate.

One can see the effect of these reflections in Figure 7.

By avoiding the use of a geometric object (line, curve, etc.), we can produce
a useful generalization of this reflection process:

Definition: Let G = (V,E) be a graph embedded in the plane (not neces-
sarily planar). Let VR ⊂ V be a proper subset of vertices of G, and let ER ⊂ E
be the set of all edges in G that have both endpoints in VR (this is typically
referred to as an induced subgraph). Produce an isomorphic copy of G, denoted
by G = (V ,E). The reflection of G induced by VR is the graph G ∪G obtained
by identifying each v ∈ VR with its conjugate v ∈ V , and similarly for edges.
We refer to (VR, ER) as the reflecting set for G ∪ G. The conductivity of each
edge in G ∪G is defined to be the value of the edge it came from if it is not in
the reflecting set, and twice this value if it is in this set (since two edges were
merged to one in the identification process).

This definition reduces to the previous (more intuitive) case when the re-
flecting set is chosen to be all edges and vertices that lie on a line drawn through
the plane in which G is embedded that does not penetrate the convex hull of
the vertices of G. This general definition of reflection is more versatile, but it
also leads to some unnatural looking operations. In Figure 8 we see how the
same graph may be reflected geometrically given one embedding, but the more
abstract definition of reflection is needed if we are given another embedding.
These concepts allow us to formulate the discrete analogue of Schwarz re-

flection for harmonic homomorphisms:

Theorem: Given graphs G and H, a harmonic homomorphisms φ from G
to H, and a non-empty reflecting set (VR, ER) for G, we may extend φ to a
harmonic homomorphism φ′ from G ∪G to H.

Proof : As you might expect, we define φ′ to be equal to φ on all vertices of
G, and φ′(v) = φ(v) for all vertices in G that are not in G. Let p ∈ intV (G∪G).
Consider the following cases:
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Figure 8: A reflection of the cube with two different embeddings

• If p ∈ V (G), p /∈ VR, then no edge incident to p is in ER, nor is there any
edge joining p to any vertices of G. Thus the process of reflecting G to
produce G∪G cannot destroy the harmonicity of any pulled back function
on G given by the original map φ.

• If p ∈ V (G), p /∈ VR, then no edge incident to p is in the conjugate of
ER, nor is there an edge joining p to G. By the definition of φ

′, the
values of all pulled-back vertex functions at neighbors of p are equal to
the corresponding values in the conjugate neighborhood, thus this case
reduces exactly to the case described above.

• Now suppose p is in VR, but that p has no incident edges in ER. By the
definition of φ, we know that for all harmonic functions u on H,

∑

q∈V (G):pq∈E(G)

γpq(u(φ(p))− u(φ(q))) = 0

By the symmetry of reflection, we also know that the same statement is
true if we replace G by G. Thus,

∑

q∈V (G∪G):pq∈E(G∪G)

γpq(u(φ(p))− u(φ(q))) = 0

• Finally, consider the case in which there are one or more edges incident
to p that lie in ER, say {e1, . . . , en}. By the definition of reflecting set,
we know that p ∈ VR as well. Let γ1, . . . , γn denote the conductivities of
these edges. These conductivities are by definition twice the value they
were in the original graph G. For each edge ei in this set, consider half
of its conductivity coming from an edge in G, and the other half coming
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Figure 9: Repeated applications of the reflection principle

from an edge in G. When we write the sum of the currents flowing out
of p in the graph G ∪ G, we simply have the sum of the currents out of
p in G plus the sum of the currents out of p in G, which is zero since φ′

restricts to a harmonic homomorphism on both G and G.

Since the reflecting set was chosen to be an induced subgraph, we will never
have an edge joining G to G that is not already in either of the two graphs
alone, thus we are sure that adjacent vertices never have the same image. Also,
adjacency in each graph separately is preserved, thus φ is indeed a homomor-
phism. ¤

We can now construct a much larger class of harmonic homomorphisms by
repeated applications of the reflection principle, as is demonstrated in Figure
9. By taking the simple example of the harmonic homomorphism that identifies
two interior vertices described earlier, we can extend this map to a larger graph
by reflecting twice in both the vertical and horizontal directions.

3.3 Graph Products, Projections, are Related Maps

There are two examples of harmonic morphisms on Riemannian manifolds that
we would like to discretize, both found on page 107 of [1]:

1. Let M and N be Riemannian manifolds, and denote their product man-
ifold by M × N . Then the natural projections π1 : M × N → M and
π2 :M ×N → N are both harmonic morphisms.

2. LetM , N , and P be smooth Riemannian manifolds, and let φ :M ×N →
P be a smooth map. If each of the partial maps φy : M → P and
φx : N → P defined by φy(x) = φx(y) = φ(x, y) are harmonic morphisms
for all (x, y) ∈M ×N , then φ itself is a harmonic morphism.
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Figure 10: The cartesian product of two graphs

We must begin by discussing the concept of a graph product. Given two
graphs G and H, the product graph G ×H has a vertex for every pair of ver-
tices (g, h) ∈ V (G) × V (H). The difficulty is in deciding how the edges in the
component graphs determine the edges in the product graph. We use the fol-
lowing definition of graph product:

Definition: Given two graphs G = (VG, EG) and H = (VH , EH), the carte-
sian product G ×H is the graph with vertex set VG × VH . If g1, g2 ∈ VG and
h1, h2 ∈ VH , then in G×H we have (g1, h1) ∼ (g2, h2) if and only if one of these
two possibilities occurs:

g1 ∼ g2 and h1 = h2 or g1 = g2 and h1 ∼ h2

Remark: Traditionally the cartesian product of two graphs G and H is
denoted by G¤H, but we use G×H to reinforce the analogy between product
graphs and product manifolds.

When discussing product graphs it is useful to have the following notation:

Definition: Given a vertex p = (g, h) in a product graph G ×H, we refer
to the set of all vertices (g, h′) such that h ∼ h′ as the vertical neighborhood
of p, denoted NV (p), and the set of all vertices (g

′, h) such that g ∼ g′ as the
horizontal neighborhood of p, denoted NH(p). If a vertex q is in the vertical
neighborhood of p, we say that p and q are vertical neighbors, and we similarly
define horizontal neighbors.

In order to draw the product of two graphs, it is often helpful to align the
vertices of the first component graph in a horizontal line and those of the second
component graph in a vertical line. This allows us to place the vertices of the
product graph in a grid, as is illustrated in Figure 10.
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There are a couple problems when we try to define the projection maps from
a product graph to either of its component graphs. First, it is not clear how
to designate the boundary and interior in the product graph. Even if we were
to pick some convention, say (g, h) ∈ ∂(VG × VH) if and only if g ∈ ∂VG or
h ∈ ∂VH , in most cases we would not be able to project the product graph onto
its component graphs because of the restriction that interior maps to interior
and boundary maps to boundary. A further difficulty is that the definition of
homomorphism we have adopted does not allow adjacent vertices to get mapped
to the same image vertex.

Note: Because of these two complications, we restrict our discussion for the
remainder of this section to harmonic morphisms defined as in [3] and [4] — that
is, we no longer consider graphs with boundary, and the graph homomorphism
condition is replaced by the following:

If x ∼ y then φ(x) ∼ φ(y) or φ(x) = φ(y)

which we refer to as the weak homomorphism condition.

We still need to decide how the conductivities on the edges of a product
graph are determined. Since we chose the cartesian product for our definition
of graph product, this turns out to be quite simple:

• If g1 ∼ g2 and h1 = h2, then let γ[(g1, h1)(g2, h2)] = γ(g1g2)

• If g1 = g2 and h1 ∼ h2, then let γ[(g1, h1)(g2, h2)] = γ(h1h2)

We can now state the discretization of the fact that projections from product
manifolds are harmonic morphisms:

Theorem: Let ΓG = (G, γG) and ΓH = (H, γH) be two electrical networks,
and denote their product network by ΓG×H = (G ×H, γG×H). Then the maps
π1 : G×H → G and π2 : G×H → H defined by π1(g, h) = g and π2(g, h) = h,
respectively, are both harmonic morphisms.

Proof : Clearly it suffices to show that one of the projections, say π1, is a
harmonic morphism, since the cartesian product is symmetric. Pick a vertex
p′ ∈ V (H) and let u be an arbitrary germ of a harmonic function at p′. We will
show that u ◦ π1 is the germ of a harmonic function at an arbitrary vertex p in
the inverse image π−1

1 (p′). Since all vertical neighbors of p are also in π−1
1 (p′),

we know that for all q ∈ NV (p),

(u ◦ π1)(q) = (u ◦ π1)(p) = u(p′)

thus
∑

q∈NV (p)

γG×H(pq)(u(π1(p))− u(π1(q))) =
∑

q∈NV (p)

γG×H(pq)(u(p
′)− u(p′)) = 0

Now for the horizontal neighbors of p we have the that
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∑

q∈NH(p)

γG×H(pq)(u(π1(p))− u(π1(q))) =
∑

q′∈N(p′)

γG(p
′q′)(u(p′)− u(q′)) = 0

since u◦π1 essentially restricts to u on horizontal slices of ΓG×H . We also know
∑

q∈N(p)

=
∑

q∈NV (p)

+
∑

q∈NH(p)

so that
∑

q∈N(p)

γG×H(pq)(u(π1(p))− u(π1(q))) = 0

and thus u pulls back to the germ of a harmonic function at p. ¤

Let us now investigate the discretization of the second class of harmonic
morphisms on Riemannian manifolds listed at the beginning of this section. We
first need to define partial maps in the case of graphs:

Definition: Let G × H be a product graph and let φ : G × H → L be a
map from this product to a third graph L. For every vertex h ∈ V (H), there is
an isomorphic copy of G sitting in G×H which is the subgraph induced by the
set of vertices contained in a horizontal slice of the product graph:

G ∼= Ind{(g, h) ∈ V (G×H) | g ∈ V (G)}

Given a fixed h ∈ V (H), the partial map φh is the map from this induced sub-
graph to L given by φh(g) = φ(g, h). The partial map φg : H → L is defined
similarly.

We can now state and prove the result that a map on a product graph will
be a harmonic morphism whenever both partial maps are harmonic morphisms
for every vertex in the graph:

Theorem: Let ΓG = (G, γG),ΓH = (H, γH), and ΓL = (L, γL) be electrical
networks, and let φ : G ×H → L be a graph map. If the partial maps φg and
φh are harmonic morphisms for all g ∈ V (G) and h ∈ V (H), then φ itself is a
harmonic morphism.

Proof : Denote the product network by ΓG×H = (G × H, γG×H). Choose
p′ ∈ V (L) and p = (g, h) ∈ φ−1(p′) ⊂ V (G×H) to be arbitrary. As in the proof
of the previous theorem, we use the fact that the sum of the current out of p
is equal to the sum of the current out in the horizontal direction plus the sum
of the current out in the vertical direction. Let u be the germ of a harmonic
function at p′, so that

∑

q′∈N(p′)

γL(p
′q′)(u(p′)− u(q′)) = 0

Since φh is a harmonic morphism, we know that
∑

q∈NH(p)

γG×H(pq)(u(φ(p))− u(φ(q))) = 0
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and similarly
∑

q∈NV (p)

γG×H(pq)(u(φ(p))− u(φ(q))) = 0

because φg is a harmonic morphism. As mentioned above, we also know that
∑

q∈N(p)

=
∑

q∈NH(p)

+
∑

q∈NV (p)

Thus
∑

q∈N(p)

γG×H(pq)(u(φ(p))− u(φ(q))) = 0

Therefore u ◦ φ is the germ of a harmonic function a p. ¤

The following corollary is an application of this theorem:

Corollary: Let ΓG,ΓH , and ΓL be electrical networks. If there are harmonic
morphisms φ : G → L and ψ : H → L, then there is a harmonic morphism
ω : G×H → L.

Proof : It is easiest to describe ω as the composition of three simple maps.
First, let α : G × H → G × L be the map obtained by applying ψ to each of
the vertical copies of H. Then let α′ : G× L→ L× L be the map obtained by
applying φ to each horizontal copy of G. Finally, let α′′ : L × L → L be the
projection map onto a horizontal copy of L.
To see that all the partial maps of ω = α′′ ◦α′ ◦α are harmonic morphisms,

we first note that the partial maps ωg are harmonic morphisms for all g ∈ V (G)
because the projection map α′′ sends all vertices in a vertical slice down to one
vertex, thus all harmonic functions on L trivially pull back to constant functions
on the vertical slices of G×H. Then for the partial maps ωh, we see that there
is no dependence on h, since all horizontal slices of G ×H map onto L in the
same manner. Moreover, for each h ∈ V (H) the map ωh : G→ L is identical to
the map φ : G→ L, thus all partial maps are indeed harmonic morphism. ¤

All the maps involved in the above proof are pictured in Figure 11.

4 Miscellaneous Remarks and Future Research

The aim of this paper is to explore the topic of harmonic morphisms on graphs in
an example-oriented fashion. Now that the groundwork has been laid, it would
be nice to prove some more general results about such maps and develop some
related material. We list below a few of the possible topics of future research.

4.1 A Geometric Representation of Harmonic Functions

Suppose we are interested in studying a harmonic homomorphism φ : G → H.
Given an interior vertex p ∈ V (H), let u be an arbitrary germ of a harmonic

23



α α

α αω = α

G

ba

L

a

b/2

a a

b b

b/2

GxL LxL

L

H

GxH

φ ψ

α

Figure 11: A harmonic homomorphism ω from G×H to L

function at p. Since harmonicity is entirely determined by the averaging princi-
ple, we can assume without loss of generality that u(p) = 0. A physical argument
for this is that absolute potentials never matter, it is only their differences that
are important. With this simplification, Kirchhoff’s current rule becomes

∑

q∈N(p)

γpq(−u(q)) = 0

where the negative sign is clearly irrelevent.
Now suppose the valency of p is n (that is, p has n neighbors). We can

number these n neighbors, say q1, . . . , qn, in some consistent fashion: for ex-
ample, start due north of p and travel in a clockwise direction. Then we can
write the conductivities on all edges incident to p as a vector with n entries, say
Γ = (γpq1 , γpq2 , . . . , γpqn

). Furthermore, we can write the value of u at these n
vertices as another vector U = (u(q1), u(q2), . . . , u(qn)). With this notation, we
see that the condition of u satisfying Kirchhoff’s rule can be written as Γ·U = 0.
In other words,

Let u be the germ of a function. Then u is harmonic if and only if the vectors
U and Γ described above are orthogonal in the standard Euclidean sense.

Because φ is a harmonic homomorphism, we know that any vertex p′ in
the inverse image of p has valency of at least n (by the openness of harmonic
homomorphisms) and that each neighbor of p′ gets mapped to a vertex in the
neighborhood of p (since φ is a graph homomorphism). Thus the pulled back
values of u at N(p′) will all be entries in U . These values induce an ordering
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Figure 12: A vector representation of harmonicity

on the vertices in the neighborhood of p′. However, because the valency of
p′ may be greater than n, there could be multiple neighbors of p′ that share
the same value of u ◦ φ. If this is the case, then the vector of conductivities
Γ′ = (γ′1, . . . , γ

′
n) at p

′ is obtained as follows: each entry γ ′i is the sum of the
conductivities on all edges from p′ to a vertex q′ that gets mapped to qi. Be-
cause φ pulls back germs of harmonic functions to germs of harmonic functions,
we see that Γ′ ⊥ U . Thus harmonic homomorphisms preserve orthogonality in
some sense. We can summarize this process as follows:

Given an n-star H, we choose an ordering on its vertices and represent its
conductivites according to a unique vector in the positive orthant of Rn. The
space U of all germs of harmonic functions that take the value zero at the center
vertex p of H forms an n− 1 dimensional vector space orthogonal to the vector
of conductivities. If we have a homomorphism φ from a graph G to H, then for
each interior vertex p′ in the inverse image of p, we can form the conductivity
vector for N(p′) described above. We know that φ is a harmonic homomorphism
if and only if this conductivity vector is orthogonal to the space U. An example
of this geometric interpretation is illustrated in Figure 12.

It seems quite plausible that this representation would be useful for investi-
gating certain properties of harmonic homomorphisms.
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4.2 Germs of Functions and Harmonic Continuation

It is interesting to note that there is a distinction between the set of maps
that pull back germs of harmonic functions to germs of harmonic functions and
those that pull back globally defined harmonic functions to globally defined
harmonic functions. This is because not every germ of a harmonic function can
be extended to a harmonic function on the entire graph. If a vertex has valency
n, then every vector in Rn corresponds to exactly one germ of a harmonic
function at this vertex, since we are free to choose any real number for each of
the n neighbors and then the averaging principle determines the value at the
center vertex. However, if a graph has strictly less than n boundary vertices,
say m < n, then it will be impossible to have each of these germs extend to a
globally defined harmonic function — since these global functions are in bijective
correspondence with Rm.
In the trivial case, the only globally defined harmonic functions on a graph

with one boundary vertex will necessarily be constant functions, so any vertex
with valency two or more will have a whole family of germs of harmonic functions
that do no extend globally.
It is an interesting problem to determine exactly when the germ of a har-

monic function can be extended to a globally defined harmonic function in
general. It is possible that this has something to do with the existence of dis-
joint paths to the boundary from each vertex in the neighborhood of the locally
defined function, but there has really been no work on this topic yet.

4.3 Characterization of Harmonic Homomorphisms

As is commonly the case in mathematics, the characterization of harmonic ho-
momorphisms seems to be quite difficult compared to proving basic properties
about such maps and producing examples. One approach is the following:
Since a harmonic homomorphism is a vertex map from one graph with con-

ductivities to another graph with conductivities, we can interpret characteri-
zation as a problem with four given quantities and one unknown such that we
are interested in determining what values of the unknown will ensure that the
map is a harmonic homomorphism. For example, we could be given two graphs,
one of which with fixed conductivities, and a vertex map between them. The
question would be to determine what conductivities on the other graph would
guarantee that the map is a harmonic homomorphism. Or we could be given
two graphs, both with fixed conductivities, and the problem is to determine
what vertex maps are harmonic homomorphisms.

Perhaps the most difficult problem in this paper is to develop a suitable
interpretation of harmonic homomorphisms on resistor networks in terms of
electrical properties. Also, there is likely to be much we can learn about two
electrical networks based on the existence of a harmonic homomorphism from
one to the other. However, at the time this paper is written there are no known
applications to potential theory and inverse problems arising from this work.

26



References

[1] P. Baird and J. Wood, Harmonic Morphisms Between Riemannian Mani-
folds, Clarendon Press, Oxford, 2003.

[2] E. Curtis and J. Morrow, Inverse Problems for Electrical Networks, World
Scientific, Singapore, 2000.

[3] H. Urakawa, “A Discrete Analogue of the Harmonic Morphism,” in: Har-
monic Morphisms, Harmonic Maps and Related Topics, proceedings of a
conference held in Brest, France 7th-11th of July 1997, 97-108, CRC Press,
2000.

[4] C. Anand, “Harmonic Morphisms of Metric Graphs,” in: Harmonic Mor-
phisms, Harmonic Maps and Related Topics, proceedings of a conference
held in Brest, France 7th-11th of July 1997, 109-112, CRC Press 2000.

[5] C. Godsil and G. Royle, Algebraic Graph Theory, Springer-Verlag, New
York, 2001.

27


