
GENERALIZED CIRCULAR MEDIAL GRAPHS

NICK REICHERT

Abstract. This paper gives a discussion of medial graphs in the non-planar

case, as described by [4]. It also proposes some ideas for embedding extension

problems and the genus problem in topological graph theory. In addition, it

provides a (very slow) algorithm for determining the genus of a graph.
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1. Introduction

We have very good results for the recoverability of circular planar graphs. Is it
possible to generalize those results? One way to attack the general recoverability
problem is by examining medial graphs in the non-planar case.

2. Representing Non-Planar Graphs

2.1. Basic Representation. In the circular planar case, visual representations of
medial graphs were extremely useful. For example, it is very clear from a drawing
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whether a medial graph has a lens, and thus whether or not it is recoverable. Thus,
if we are to try generalize those results in a visual sense, we must define what we
mean by the medial graph in the non-planar case. First, though, we describe a way
to represent non-planar graphs so that drawing medial graphs will be somewhat
easier.

Definition 2.1. The genus of a graph G is the smallest number n such that G can
be drawn on a surface S of genus n without any edge crossings. We consider, for
the most part, only the case that S is orientable, though the non-orientable case is
very interesting (see [1]).

Now, we must decide on a convention to represent non-planar graphs. Attempt-
ing to draw a graph on a ”flattened” planar representation of an arbitrary surface
is troublesome. Though it is useful to be able to draw graphs in such a way in
certain, limited cases, it is often very time consuming and difficult to understand
once completed. This problem is heightened as the genus of the surface increases
and as the graphs increase in complexity. Using dashed lines to represent edges on
hidden surfaces on the torus works within reason, but beyond that case this method
is, by and large, extremely impractical.

[5] outlines an alternative way to represent non-planar graphs with is much sim-
pler and less confusing. In an attempt to make this paper somewhat self-contained,
his argument is reproduced here with some additional discussion.
One can make two cuts on a torus to reduce it to a rectangle—one equatorial,

and another around and through the loop. If we identify opposite sides of the rec-
tangle as shown in figure 1, then we get a very simple way to represent the torus.

It is critically important to indentify opposite edges in a way consistent with
figure 1; specifically, if we place cartesian coordiantes on the rectangle, points with
equal vertical coordinate on the vertical edges are identified, and points with equal
horizontal components on the horizontal edges are identified. In other words, the
tip of an arrow on one side is identified with the tip of an arrow on the opposite one,
with the likewise convention for the tails of arrows. If this convention is not followed,
non-orientable surfaces, the klein bottle and the projective plane, arise. Figure 2
gives an example of the complete graph on five nodes drawn on the rectangular
representation of the torus so that edges are identified in the correct way.

Now that we have a good way to represent the torus, we can extend this
method to all orientable surfaces of finite genus. Make a circular hole in each of
three tori, so that the circle that is cut out is simply connected. Then no matter
how we move the circles around on each torus (provided we don’t move “over a
hole”) we can still represent each of these new surfaces on the rectangle with edges
identified. So if we move the circles as in figure 3, then we can represent these
special tori as hexagons by opening the circle, so to speak. Then, connect the three
hexagons at their sides which do not have identified points to obtain the dodecagon
shown at the bottom of figure three. Then, since what we just did is equivalent to
joining three tori, we have a way to represent a surface of genus three.
This method easily generalizes to other genera. A surface of genus g is repre-

sentable as a 4n-gon, partitioned into sets of four adjacent edges so identified in
a way analagous to the torus. We will call this the planar representation of the
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Figure 1. A Sequence of Cuts From A Torus to A Rectangle,
With Edges Identified

Figure 2. A Genus-1 Drawing of the Complete Graph on Five Nodes.

surface.

One natural question to ask is: what can we say about a 4n+ 2-gon?

Proposition 2.2. Consider a 4n-gon, with edges identified in the way we have
defined. Suppose we insert a pair of edges between two of the sets of four identified
edges. Identify the new pair of edges is identified as shown in figure 4. Then if a
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Figure 3. Joining Three Tori to Get a Genus Three Surface

graph can be drawn on that surface without edges crossing, then that graph can be
drawn on the conventional 4n-gon.

Proof. One way to see this is to note that a cylinder can be represented as a rectan-
gle, with only one pair of opposite sides identified. Then, using the gluing process
shown in figure 3, we see that the 4n + 2-gon, as we have defined it, is a surface
of genus n with a cylinder attached. But that surface topologically equivalent to
a surface of genus n that has been punctured twice. However, we can make those
puncture holes as small as we please, so they will not obstruct any embeddings
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Figure 4. A 4n+ 2-gon, and How to See Its Equivalence to a 4n-gon

on the 4n-gon, nor will they allow any additional graphs to be embedded in the
surface.
An alternative, much simpler way to see this is to note that edges going into the

extra pair of sides come out reversed—that is, we can accomplish the same result
by simply “turning the edges around” (see figure 4). ¤

If we identify the new pair of edges in our 4n + 2-gon in a different way than
as defined in Proposition 2.2, that is, we make a “twist”, we get a very interesting
surface: a mobius strip adjoined to a surface of genus n. On such a surface, is it
possible to go from the outside of the surface to the inside of the surface, or is that
inconsistent with our conventions? If we can go from the outside to the inside, have
we effectively doubled the number of holes we have to work with? In other words,
given a graph with genus 2n, can we embed it in this new type of 4n+ 2-gon?

2.2. Determining The Genus And Embeddings of Non-Planar Circular

Graph Graphs.

Definition 2.3. Let G be a graph with boundary. Suppose n is the smallest genus
an surface can have so that G can be embedded on the surface, with the additional
condition that the boundary of G lie on a circle whose interior on that surface is
simply connected, and that no part of any edge of G lies within the circle. Then
we say that G is genus-n circular. A graph H without boundary is said to be
genus-n circular if the graph H ′ that is H with all nodes declared to be boundary
nodes is genus-n circular.

Remark 2.4. WhenG is genus-0 circular, we shall simply say that it is circular planar.
To justify this terminology, we must show that G is genus-0 circular iff we can em-
bed G so that its boundary lies on a circle, and so that no edge of G lies outside
the circle (thus a genus-0 circular graph would be circular planar in the traditional
sense). To see this, simply reflect about the circle (e.g. declare the origin of the
complex plane to be the center of the circle, and the radius of the circle to be one,
then take the map 1/z). Likewise, a circular planar graph (in the convential sense)
is genus-0 circular. Figure 6 shows an example.

In the planar case, we saw that, visually, medial graphs were very dependent on
embeddings. Here we make the term “embedding” precise.

Definition 2.5. Let G = (V,E) be a simple graph with v vertices. Let ai be an
ordered set with norm ni, where ni is the valence of vi. Furthermore, the elements
of ai are all j such that vi is adjacent to vj . Moreover, let each element of ai occur
only once in ai (so that every j satisfying vi is adjacent to vj occurs in ai). Then
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Figure 5. Two Different Embeddings of a Circular Planar Graph,
One With All Edges Inside the Boundary Circle and the Other
With All Edges Outside the Boundary Circle.

a combinatorial embedding C of G is C = (G,A), where A = {a1, a2, ...av}. We
will say that two combinatorial embeddings C1 and C2 of G are equivalent if each
element of A1 is a cyclic permutation of the corresponding element in A2.

More colloquially, a combinatorial embedding is a graph with the ordering of
edges around each node specified. This is why cyclic permutations of the ai are
allowed in equivalence—we could choose start with any edge around a node. For the
remainder of this paper, we will assume that we always have a clockwise ordering
of edges around each node in a combinatorial embedding.

Definition 2.6. Let G = (V,E) be a simple graph with v vertices. Let xi be such
that if we draw G on the planar representation of a surface of genus n, then xi

is x-coordinate of vi. Define yi likewise. Then a coordinate embedding XY of G is
XY = (G,X, Y ), where X = {x1, x2, ...xv} and Y = {y1, y2, ...yv}.

Why do we define two types of embeddings? As it turns out, each type has its
advantages.
Combinatorial embeddings are useful because they allow us to find very impor-

tant properties of graphs, such as the genus, without having to actually draw the
graph (see section 2.4). Furthermore, medial graphs are uniquely determined by
combinatorial embeddings. Finally, there are a finite number of combinatorial em-
beddings for a finite graph (a fact also used in section 2.4). In particular, let (.vi)

represent the degree of vertex i in a graph G. Then if G has v vertices, the total
number of combinatorial embeddings γ is

(1) γ =

v
∏

1

(d(vi)− 1)!

This comes from the fact that, for each node, there are d(vi)! ways to order the
edges around the node. However, since we do not wish to count equivalent combina-
torial embeddings more than once, we divide by the number of cyclic permutations
of edges around each node. Since there are d(vi)! cyclic permutations per node, we
arrive at the above formula.
Coordinate embeddings are not as elegant, but they are nonetheless important.

If we are actually going to draw the medial graphs (or just graphs), we are going to
need a coordinate embedding. A combinatorial embedding certainly isn’t enough
to determine a coordinate embedding; a difficult problem is to find a coordinate
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embedding from a combinatorial embedding. [6] gives a method for giving a coor-
dinate embedding given a certain type of circular planar graph. Other than that,
I have found very little information about finding coordinate embeddings of graphs.

Now that we have some definitions, we can state a result about genus-n cir-
cular graphs.

Proposition 2.7. Let G be a graph with boundary, and with v nodes. Suppose
G is genus-n circular. Then, in O(v3) time, we can determine both n and find a
combinatorial embedding of G in a surface of genus n.

To see this, we first note that finding n reduces to the topic in normal graph
theory of finding the genus of a graph. To see this, refer to Lemma 1.4 of [2]. With
slight modifications, we can apply it to the genus-n circular case.

Lemma 2.8. Suppose G(V, VB , E) is a graph with boundary, and VB = {V1, V2, ...Vn}.
Let H(V ′, E′) be a graph (not a graph with boundary) so that V ′ = V ∪ P , E′ =
E ∪ {(P, V1), (P, V2), ...(P, Vn)}. Then G is genus-n circular iff H is genus n.

Proof. First we prove necessity. If G is genus-n circular, then embed G in a surface
of genus-n with its boundary lying on an empty, simply-connected circle C. Place
P inside C. Then we have a genus-n embedding of H.
Second, we show sufficiency. If H is of genus n, move the nodes adjacent to P so

that they lie on a small circle about H. We requrie that the interior of the circle be
simply connected, and that the only edges inside the circle are those with one end
at P . Then call the nodes adjacent to P boundary nodes. Delete P and all edges
adjacent to it. Then we now have the graph G, with its boundary on an empty,
simply connected circle. ¤

[1] describes a linear time algorithm for determining if a graph is embeddable in
a surface of genus n. If so, it gives a combinatorial embedding for that genus. Now,
the maximum genus of a graph with v boundary vertices is

(2)

⌈

(v − 3)(v − 4)

12

⌉

because that is the genus of Kv [3]. This is an O(v2) bound. So, since we
have a linear time algorithm for checking and finding an embedding of a graph in
an arbitrary surface, we have an O(v3) algorithm that satisfies the requirements of
Proposition 2.7 (assuming the constants in the linear time algorithm do not depend
on genus).

2.3. General Applications. From (2), we quickly see that Kv is genus-n circular,
where

(3) n =

⌈

(v − 2)(v − 3)

12

⌉

This follows from the directly from the proof of Lemma 2.4.

On a slightly different topic, it is very interesting to note that, in a sense, K5 is
∆− Y equivalent to the graph K3,3 ∪ e(2, 6), where K3,3 is the complete bipartite
graph with six nodes. (see figure 6).
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Figure 6. K5 and its ∆− Y Equivalent, K3,3 ∪ e(2, 4)

This is interesting in the context of the following definition and theorem.

Definition 2.9. A graph G′ is a subdivision of a graph G if G′ is obtained from G
by replacing edges of G with series connections.

Theorem 2.10. (Kuratowski Reduction Theorem) A graph G is non-planar iff it
is a supergraph of some subdivision of K5 or K3,3.

For this reason, K5 and K3,3 are known as the forbidden minors (also known as
Kuratowski Graphs) for the plane. From figure 6, we now see that the two forbidden
minors for genus-0 are practically Y −∆ equivalent to one another. Can we extend
this to other genera? First, we consider a theorem about forbidden minors.

Theorem 2.11. (Robertson-Seymour Theorem) For any genus g, the list of for-
bidden minors for that genus is finite.

Unfortunately, not much more is known. Besides the plane, a complete list of
forbidden minors in known only for the projective plane, which has 103 ([8]). The
torus is known to have at least one thousand ([9]). So, even if we can make a
guess about relations between forbidden minors due to Y −∆s (and, as we’ll see,
F−K’s), it will be impossible, at this point, to check.

One way to generalize the fact about the relation between K5 and K3,3 is as
follows.

Proposition 2.12. For n ≥ 3, K2n−1 is F−K equivalent to a supergraph of Kn,n.

Proof. We will only consider the n = 8 case, from which it should be clear in
general. Consider an arbitrary circular embedding of K7 (see figure 7).
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Figure 7. An Arbitrary Circular Embedding of K7, and a F −
K’d K7 Embedded in a Similar Fashion.
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Then do a F−K on nodes the K4 with vertices v2, v3, v6, and v7. Place the F
inside the circle. Call the new interior node v8. Then we now have a supergraph of
the bipartite graph K4,4, with one part being v2, v3, v6, and v7, and the other part
being v1, v4, v5, and v8. ¤

It is worth noting that the genus of the circular embedding ofK7 (e.g. a standard
embedding of K8) by going to K4,4 (in other words, given a topological embedding
of K7, we found a topological embedding of K4,4; this is called an “embedding ex-
tension problem”, or EEP, and is discussed in [1]). This is an interesting way to put
a bound on genus—specifically, that the genus of K8 is at least the genus of K4,4,
or, in general, the genus of Kn,n is at most the genus K2n. Now, certainly, this
is an obvious fact. Indeed, even the idea of trying to put bounds on the genus of
complete and bipartite graphs is pointless, as the genus of such graphs is well known
([3]). Nonetheless, the method of proof is very interesting. Perhaps, by considering
multiple “boundary circles”, we could use a similar argument to put bounds on
other types of graphs, such as certain generalized forms of bipartite graphs.

In light of the previous discussion, we make the following statement.

Conjecture 2.13. For an arbitrary genus g, every forbidden minor is a F − K
equivalent to a complete graph, a complete bipartite graph, or the connected sum
of forbidden minors of lower genera (to be sure, we must define what exactly we
mean by connected sum, but that will not be discussed in this paper).

If true, this could potentially be quite useful, as it may allow us to find an exact
formula for the number of forbidden minors of an arbitrary genus, as well as give a
constructive method to find all such forbidden minors. Even if not true, it should
give, inductively, a large class of forbidden minors for a given genus.

It is worth noting that not all Y −∆ equivalent graphs necessarily have the
same genus.

Conjecture 2.14. There exists a graph G such that any Y −∆ changes the genus
of G.

This question is important because, if true, it shows just how much a medial
graph can change under the slightest transformation.
A motivation for this statement comes from a simple example. Consider a ∆

embedded around a loop on the torus. Then doing a ∆− Y , we can’t put the new
interior vertex “inside” the torus—we must put it on the surface. Depending on
how the three nodes in the ∆ were connected to other nodes, this could force a
change in the genus. I am pretty sure that this conjecture is true; an example that
should work is shown in figure 7, which is genus-1 because it contains a supergraph
of K3,3.
One could check the given graph proves conjecture 2.14 by doing a ∆ − Y and

using the program provided in the appendix on the new graph to see if the it is
genus-2 (or higher).
This conjecture raises further questions. How much can the genus of a graph

change under a Y −∆? Under a general F−K?

2.4. A Simple Program. The algorithm for finding a combinatorial embedding
of an arbitrary graph in linear time is very complicated, and would take a while to
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Figure 8. A Graph Such That Any ∆− Y Changes the Genus?

implement (however, it could be a very interesting future REU project to attempt
to do so). Proposed here is a very simple, albeit phenomenally slow algorithm
to determine the genus of a graph. This algorithm is implemented as a Matlab
program in Appendix A.
In the 18th Century, Euler and Descartes independently proved a very important

result, which, as we will see, has applications to graph theory.

Theorem 2.15. (Descartes-Euler Polyhedral Formula) Suppose P is a polyhedron
of genus zero. Let v be the number of vertices of P , E be the number of edges, and
F be the number of faces. Then

(4) V − E + F = 2

A generalized version of this equation was proved by Poincare.

Theorem 2.16. (Poincare Formula)

(5) V − E + F = χ(g)

where χ(g) = 2 − 2g is the Euler Characteristic of the polyhedron, and g is the
genus of the polyhedron.

Before we make use of this theorem, we need one definition.

Definition 2.17. Let G be a simple graph, where d(vi) is the degree of vi. A
face of a combinatorial embedding of G is a sequence k1, k2, ...kn such that for all
1 ≤ i ≤ n, vki

is adjacent to vk(i−1)modn
, as well as vk(i mod n)+1

(here we define

0 mod n to be n). Additionally, we require that if aki
[m] = vk(i−1) mod n

, then

aki
[(m + 1) mod d(vi)] = vk(i mod m)+1

. In other words, if we have a coordinate
embedding of G consistent with the combinatorial embedding of G, then a face of G
is a sequence k1, k2, ...kn so that the polygon whose edges are formed by the cycle
e(vk1

, vk2
), e(vk2

, vk3
), ...e(vkn−1

, vkn
), e(vkn

, vk1
) contains no edges.

Now, suppose we have a combinatorial embedding of an arbitrary graph. Then,
identify the vertices of the graph with vertices of a polyhedron, the edges of the
graph with the edges of a polyhedron, and the faces of a graph with the faces of
a polyhedron. Determine the genus of the polyhedron using Poincare’s Formula,
then that will be the genus of combinatorial embedding of the graph.
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Further justification to appear.

Since we know there are a finite (though very large) number of combinatorial
embeddings of a given graph, we can use Poincare’s Formula to determine the
genus of that graph by checking the genus of all possible combinatorial embeddings.
Furthermore, we can find the n such that a graph G with boundary is genus-n
circular by making use of Lemma 2.8.

3. Medial Graphs

3.1. Background. In this paper, we assume the convention for drawing medial
graphs as defined in [4]. He proved that, in general, medial graphs are two col-
orable; in particular, that we could actually draw them. We examine properties of
medial graphs in an attempt to determine if there is an (easy) way to generalize the
statement in the circular planar case from [7], namely that a circular planar graph
is recoverable iff its medial graph has a lens.
We consider particularly symmetric graphs here, as it makes the medial graph

drawing process simpler. As noted in (1), there are many, many different ways to
embed graphs. We will say two representations of medial graphs are equivalent if
they came from the same combinatorial embedding of a graph. (1) then gives us
an idea of how many different medial graphs we can have for a given graph. This
makes recovering information from medial graphs extremely difficult.

3.2. Examples. Rather than choosing random combinatorial embeddings of
graphs, we can look at some specific graphs individually. We will try to always
take an circular embedding that is of the smallest genus possible. Figure 9 shows
one way we can find a genus-1 circular embedding of an arbitrary annular graph.
By using this method, we get a very simple, symmetric medial graph. Note the

difference between the medial graph of G(3, 2) in figure 9 and that of [4], which is
extremely difficult to interpret. Figure 9’s embedding quickly generalizes to other
annular graphs of the form G(n,m).
Is there any obvious geometrical difference between the medial of G(3, 2), known

to not be recoverable, and G(4, 2), known to be recoverable? Figure 10 shows the
medial graph of G(4, 2).
Other than some extra regions due to the increased number of nodes and edges,

there are no differences between the two medial graphs whatsoever. This is in stark
contrast to the circular planar case.
Consider another example, shown in figure 11.
Using the same strategy as for the previous annular graphs, we can find a highly

symmetric embedding of the square-in-square graph on the torus. This could po-
tentially yield interesting results since the square-in-square is neither infinite to one
nor one to one—it is two to one ([10]). When we draw the medial graph, something
very interesting is immediately clear: there is a circle in the medial graph around
the boundary circle! Unfortunately, this seems to say nothing about recoverability
properties of the graph, as figure 11 shows. By moving some of the “bars” around,
we get a medial graph corresponding to a recoverable graph (use F − K). By
adding another circle around the boundary circle, we find an infinite to one graph
(parallel connections).
As one last example, we’ll consider the triangle in triangle in triangle graph

shown in figure 12. By arguments made in [10], we find that it is four to one.
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As we have seen, it is extremely important to have a symmetric embedding of the
circular graph if we are to reasonably make any sense of the medial graph. Figure
12 shows a method we could use to find such an embedding.
It is important to realize that the method shown will not always work. In the

case shown, we “shrunk” the boundary circle across holes of the genus-3 surface to
get a circle without any edges inside. Depending on the combinatorial embedding,
it may be impossible to do this. However, it should always work in the n-gon-in-n-
gon-in-n-gon case to give a surface of genus n.

Additional information to appear.

3.3. Strategies For Drawing Medial Graphs. We list some strategies to make
visual representations here, as well as ways to make those representations as simple
as possible. For quick reference, some information is repeated from above.

• Use the method of joining boundary circles to find circular embeddings of
graphs, as shown in figures 9 and 12. Always try to maintain as much
symmetry as possible.

• Figure 12’s method of cutting apart surfaces of high genus can be useful in
some cases, but another helpful strategy, given an embedding on a flattened
representation of a surface, is to maintain the combinatorial representation
on the planar representation. Remember that depending on the directions
hidden surfaces face in a flattened represenation, one may have to reverse
the ordering of edges around nodes in the planar representation.

• Always try to examine embeddings on surfaces of the lowest genus, for
simplicity. If you’re really stuck, you could use Lemma 2.8 in conjunction
with a slightly modified version of appendix A to find a minimal genus
embedding of a circular graph.

3.4. Obtaining Information From Medial Graphs. Needless to say, the ex-
amples shown are extremely dissapointing. First, they provide counterexamples to
the Conjecture 4.1 of [4]. Second, though great care was taken to draw the medial
graphs in such a way so that there properties were most obvious, nothing is very
clear. There are no simple iff conditions as in the circular planar case.
All is not lost, however. The lens property is certainly extendable from the circular
planar case if we make the right restrictions. As long as we have a lens entirely
contained in a region homeomorphic to the disc, we can apply the same argument
to see that the graph is not recoverable. Furthermore, it seems likely that all non-
recoverable graphs contains some type of lens, or, conversely, no recoverable graph
contains lenses of a certain type (see [4] for examples of what these lenses might
be, such as bubbles or (linked) non-region-bounding lenses). It could be fruitful to
examine the medial graphs of several combinatorial embeddings of the same graph
and search for a property invariant relative to such embeddings. Alternatively, one
could consider medial graphs of embeddings that are non-circular, such as those
mentioned in [?]
Another way we might be able to get recoverability information from medial

graphs counting certain properties. Counts were useful, as we say in Theorem 2.16,
for determining the genus of a combinatorial embedding of a graph. Furthermore,
counts were extremely useful in the Cut-Point Lemma from [7], which was very
important in recoverability. For convenience, it is reproduced here.
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Theorem 3.1. (Curtis and Morrow, Cut-Point Lemma) Suppose A is a finite
family of chords in the disc, and assume that A is lensless. Let X and Y be a pair
of cut-points for A. With n(X,Y ), m(X,Y ), and r(X,Y ) defined as above,

m(X,Y ) + r(X,Y )− n(X,Y ) = 0

There is a prononounced similarity between Theorem 2.16 and Theorem 3.1,
namely, they are both of the form A+B + C = D. It seems unlikely that there is
just a coincidence. Perhaps there is a generalized Cut-Point Lemma for non-planar
graphs that relates cut-points to the genus.
If, as it may be, there is a way to generalize the Cut-Point Lemma, how could we

make analagous recovery arguments for non-planar graphs? The theorem for recov-
erability for circular planar graphs depended on the idea of well-connected graphs Gk,
graphs with the property that, as discussed by [7], for every circular pair of se-
quences of boundary nodes (P ;Q) = (p1, p2, ...pk; q1, q2, ...qk), there is a k-connection
from P to Q. Certainly, this doesn’t make much sense in the non-planar case—the
Jordan Curve Theorem no longer applies, so it doesn’t make much sense to talk
about circular pairs. However, there may be other ways to extend what we mean
by well connected graphs. Perhaps there is a different type of “circular.” One
could attack this problem by considering z-sequences of medial graphs (see [?]).
In particular, a planar graph Gk is well connected iff its z-sequence is of the form
1, 2, ..k, 1, 2, ...k. By defining other, non-planar graphs in terms of their z-sequences,
we may be able to generalize the idea of well-connected graphs.
One final possibility for gaining information from medial graphs would be to

consider them in matrix form. Choose some arbitrary geodesic, and order the
remaining geodesics in order around the boundary circle (so that we have the z-
sequence). Then, for define a matrix M = (mij) with width equal to twice the
number of boundary nodes and height equal to the maximum number of times
any single geodesic is intersected. Let the ith column of M correspond to the ith
element of the z-sequence, so that (mij) is the jth geodesic to intersect the ith
geodesic. If j is greater than the number of times geodesic i is intersected, define
(mij) to be zero. Note that the columns ofM are only determined up to cyclic per-
mutations of any z-sequence. The matrix below is an example of such a numerical
representation of the medial graph given in figure 12, where the z-sequence starting
from the top and proceeding clockwise is {1, 2, 3, 4, 5, 6, 1, 4, 5, 2, 3, 6}.

















2 1 4 3 6 5 4 1 2 5 6 3

4 5 6 1 2 3 2 3 6 1 4 5

6 3 2 5 4 1 6 5 4 3 2 1

2 1 4 3 6 5 4 1 2 5 6 3

4 5 6 1 2 3 2 3 6 1 4 5

















In the circular planar case, we can see very quickly from the medial graph whether
or not there is a lens—we just check to see if there is a column in which the same
nonzero number occurs twice. However, there is a lot more information than that!
What can we deduce about graphs from this medial matrix? Note that, as defined
here, the matrix will not suffice to represent all types of medial graphs. We must
decide on a good convention for representing bubbles (see figure 11) as well.
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4. Conclusion

So far, medial graphs in the non-planar case have been disappointing. As the
previous discussion suggests, however, all is not lost. Most likely, any information
that comes from medial graphs will be of a form similar to the Cut-Point Lemma
and the Poincare Formula. At this point, though, nothing is clear.

5. Further Research

Here are some topics for further research. Most are discussed in detail above.

• Medial graphs on non-orientable surfaces
• Amalgamating non-planar medial graphs (see [11])
• Generalizing well-connected graphs
• Generalizing the Cut-Point Lemma
• Medial graphs in the non-circular case
• An implementation of [1]’s embedding algorithm
• Examining matrix representations of medial graphs
• Ideally, combining some of the above items to solve the inverse problem in
general

Appendix A. A Matlab Program For Determining the Genus of a

Graph

The program consists of three files:

• genus.m
• genusoce.m
• permute.m
• possibilities.m

The main file is genus.m, which the user calls to test for the genus of the graph.
genus.m takes an n∗n symmetric adjacency matrixM = (mij) such that mij = 1 if
vi is adjacent to vj , and mij = 0 if vi is not adjacent to vj . It is assumed that this
graph contains no loops. Failure to place entries correctly in the adjacency matrix
will result in error. The program does not check that the adjacency matrix is valid
when it starts; instead, an error will occur during computations.

A.1. genus.m. Note: Not all K’s in the following paragraph are the same. Sorry
for the confusion, this will be fixed.
The function genus(K) takes an adjacency matrix and creates an arbitrary com-

binatorial embedding. This embedding is represented as an n∗mmatrixM = (mij),
where n is the number of nodes and m is the largest valence of any node. The ith
row of M corresponds to ai as defined in 2.5. mij is zero if j is greater than the
number of elements of ai. Then, genus(K) uses possibilities(K) to determine how
many combinatorial embeddings of K there are. It then executes a for loop that
cycles through every possible permutation of the rows of M , and uses genusoce(K)
to calculate the genus of each of those combinatorial embeddings. Finally, it returns
the minimum genus, as well as the number of combinatorial embeddings that were
of that genus.

function g = genus(K);
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maxvalence = 0;

vert = size(K,1);

horiz = size(K,2);

for(i = 1: vert)

counter = 0;

for(j = 1: horiz)

if K(i,j) ~= 0

counter = counter + 1;

end

end

if counter > maxvalence

maxvalence = counter;

end

end

L = zeros(vert, maxvalence);

for(i = 1: vert)

counter = 1;

for(j = 1: horiz)

if K(i,j) ~= 0

L(i, counter) = j;

counter = counter + 1;

end

end

end

stopcount = possibilities(K);

mingenus = genusoce(L);

totalmin = 0;

for (i = 0: stopcount - 1)

G = L;

gen = genusoce(permutate(i,G));

if gen == mingenus

totalmin = totalmin + 1;

end

if gen < mingenus

mingenus = gen;

totalmin = 1;

end

end

disp(stopcount - 1);

disp(’Minimum Genus:’)

disp(mingenus);

disp(’Possible Ways to Embed in That Genus:’)
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disp(totalmin);

g = mingenus;

A.2. genusoce.m. genusoce(K) takes the matrix M as defined in subsection A.1.
Then, it counts the number of vertices by determining the vertical size of M , and
the edges by counting the number of nonzero entries inM and dividing by two (since
each edge ends on two vertices). Finally, it calculates the number of faces as follows:

(1) Define a new zero matrix C with the same dimensions as K.
Look at each element of (kij) of K. If it is zero or is nonzero in C, skip to (5).
Otherwise, continue.
(2) Call k(ij) the starting entry, and the current entry.
(3) Go to the vertex given by the current entry (e.g. go that row of M). Search
that row until i is found. Call the entry to the right of the one equaling i (or
the first entry if the entry equal to i is the last non-zero entry in the row) current
vertex.
(4) If the current vertex is not the starting vertex, jump to (3).
(5) Repeat until all entries of K have been considered, or equivalently, C = K.

function g = genusoce(K)

faces = 0;

vertices = size(K,1);

maxvalence = size(K,2);

edges = 0;

for(i = 1: vertices)

for(j = 1: maxvalence)

if K(i,j) ~= 0

edges = edges + 1;

end

end

end

edges = edges/2;

C = zeros(vertices,maxvalence);

for(i = 1: vertices)

for(j = 1: maxvalence)

if K(i, j) ~=0 && C(i, j) == 0

prev = 0;

faces = faces + 1;

startvertex = i;

C(i, j) = K(i, j);

t = j - 1;

if t == 0

t = maxvalence;
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end

while K(i, t) == 0

t = t - 1;

end

prev = K(i, t);

currentvertex = i;

loopvertex = K(i,j);

while ~(loopvertex == startvertex && prev == currentvertex)

counter = 1;

while K(loopvertex,counter) ~= currentvertex

counter = counter + 1;

end

currentvertex = loopvertex;

counter = mod(counter, maxvalence) + 1;

while K(currentvertex, counter) == 0

counter = mod(counter, maxvalence) + 1;

end

C(currentvertex, counter) = K(currentvertex, counter);

loopvertex = K(currentvertex, counter);

end

end

end

end

g = (2 - vertices + edges - faces)/2;

A.3. permutate.m. permutate(K,i) takes as input a matrix M as defined in sub-
section A.1, as well as an integer i such that 0 ≤ i ≤ possibilities(L) − 1 where
L is the original adjacency matrix. Then, using an ordering of all possible ways
to permute the nonzero entries of M in each row, it takes the ith element of that
ordering (assuming that the ordering is indexed from zero to possibilities(L)). It
then returns that element. This ordering is illustrated by the following example.

Consider the ordered set 1,2,3,4. We want to have an ordered list of all possible
permutations of this set, except for those that are equivalent via cyclic permutation
to a permutation already on the list. Then the list is as follows:

(0) {1, 2, 3, 4}

(1) {1, 2, 4, 3}

(2) {1, 3, 2, 4}

(3) {1, 3, 4, 2}

(4) {1, 4, 2, 3}
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(5) {1, 4, 3, 2}

where the number in parenthesis is the number of the element on the list, corre-
sponding to the integer i. If i = 0, do nothing. If i = 1, swap the last two digits. If
3! < i ≤ k ∗ (2!), swap the third element from the right with the (3− k)th element
from the right. Subtract k ∗ (2!) from i, and repeat the process until i = 0.

This shows how we can order the cyclic permutations of a set. If number of
nonzero elements is more than four, then add additional if statements with 4 and
3 replacing 3 and 2, and so on.

Now we can extend this idea to a matrix. If the first row has n nonzero
elements, and we are given i > (n − 1)!, call permutate on M with the first row

removed, and as the input integer send i′ =
⌊

i
(n−1)!

⌋

. Then, on the matrix M ′

that is returned, execute permutate with i′′ = i mod (n − 1)!. We now have an
ordering to the list of ways to permute the individual rows of a matrix so that now
two permutations are equal after a cyclic permutation.

function g = permutate(i,G);

vert = size(G,1);

horiz = size(G,2);

lastentry = horiz;

while(G(1,lastentry) == 0)

lastentry = lastentry - 1;

end

if i >= factorial(lastentry - 1)

H = G;

r = floor(i / factorial(lastentry - 1));

i = mod(i, factorial(lastentry - 1));

G(2:vert,1:horiz) = permutate(r,H(2:vert,1:horiz));

end

j = 1;

while i >= factorial(j);

j = j + 1;

end

k = 1;

while i >= k*factorial(j - 1)

k = k + 1;

end

k = k - 1;
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a = G(1, horiz + 1 - j + k);

G(1, horiz + 1 - j + k) = G(1, horiz + 1 - j);

G(1, horiz + 1 - j) = a;

i = i - k * factorial(j - 1);

if i ~= 0

G = permutate(i,G);

end

g = G;

A.4. possibilities.m. This function takes an adjacency matrix A and returns the
number of combinatorial embeddings of that matrix, as given by (1).

function g = possibilities(K)

t = 1;

for(i = 1: size(K,1))

s = 0;

for(j = 1: size(K,2))

s = s+K(i,j);

end

t = t*factorial(s-1);

end

g = t;
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Figure 9. Steps To Draw a Highly Symmetric Medial Graph of G(3, 2).



GENERALIZED CIRCULAR MEDIAL GRAPHS 21

NODE

Figure 10. An Medial Graph of An Embedding of G(4, 2) Similar
to the Given Embedding of G(3, 2). Notice There Are No Geomet-
rical Differences Other Than What We Would Expect.
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Figure 11. Three Graphs With Different Recoverability Proper-
ties. Clockwise From Top: Two to One Graph, Infinite to One
Graph, and One to One Graph.



GENERALIZED CIRCULAR MEDIAL GRAPHS 23

Figure 12. To Appear.


