
MOBIUS STRIPS, PINWHEELS, AND OTHER TWO-TO-ONE

GENERALIZATIONS OF N-GON-IN-N-GON GRAPHS

NICK REICHERT

Abstract. This paper considers a few new two-to-one graphs, and shows how

they are similar to the well studied n-gon-in-n-gon graphs. Then it argues that

a large class of graphs must necessarily be two-to-one.
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1. The Mobius Graph
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Figure 1. F−K Steps

Consider the leftmost graph in figure 1, where dots represent boundary nodes
and open circles represent interior nodes (for the remainder of this paper, any
intersection of lines not indicated by a circle or a dot is not a node) . Then three
Y − ∆ transformations convert it to the second graph. Finally, three F − K

transformations result in the final graph. Now, the three doubled outer edges can
easily be recovered using quadrilateral relations. The three “diameters”, however,
are more difficult. We can use quadrilateral relations (see figure 2) to solve for the
double edges in much the same way as for the triangle-in-triangle case.
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Figure 2. The Quadrilaterals

From quadrilateral relations, we have

ab = cd ef = gh ij = kl

Furthermore, from the entries in the response matrix we know

c+ h = λ25 g + l = λ36 k + d = λ14

Thus, we can solve for any of the unknowns, c, d, g, h, k, or l. For example,

c =
ab

λ14 −
ij

λ36 −
ef

λ25 − c

This is a quadratic equation in c, suggesting that we have a two to one graph. Near
the end of this paper, this graph, which we shall callMobius3 (the names of graphs
will be justified later in the paper), will be shown to be at most two-to-one.

Remark 1.1. The terminology which I will use in some of the definitions is not
particularly clear, as the word “edge”, traditionally, has multiple meanings. When
I am referring to an edge as part of a graph, I will simply say “edge”. However,
when I am referring to an edge as a edge of an n-gon, I will explicitly say “edge of
the n-gon”.

Definition 1.2. We define (visually) the the Mobiusn to be the graph such that
the 2n boundary nodes can be placed on the vertices of a 2n-gon and the 2n interior
vertices can be placed on the midpoints of the edges of the 2n-gon. Furthermore,
the edges in the Mobiusn graph are those connecting each boundary node to the
two interior nodes closest to it in the plane, as well as the edges connecting the
interior node on the midpoint of a given edge of the 2n-gon to the interior node on
the midpoint of the opposite edge of the 2n-gon.

2. A More Familiar Context

One may ask how the Mobius3 graph relates to other two-to-one graphs, specif-
ically the triangle-in-triangle graph. Instead of considering this relation explicitly,
we will first examine another graph to serve as a bridge between the two, the graph
shown second from the left in figure 3. This graph is obtained by “separating”
each of the interior nodes in the triangle-in-triangle graph radially outward from
the center. Once again, we give a visual definition of the graph.

Definition 2.1. We define the Hexcyln graph to be as follows. First draw two
concentric regular n-gons in the plane, such that the vertices of those n-gons lie on
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n radial lines. Then, place a boundary node at each vertex of those two n-gons,
and an interior node at the midpoint of each edge of each n-gon. The edges in
the Hexcyln graph are precisely those that connect each boundary node to each of
the two interior nodes on the edges of the n-gon adjacent to the vertex where the
boundary node is placed. The rest of the edges connect each pair of interior nodes
lying on the same radial line. See figure 3 for an example of a Hexcyl3 graph.

Pinwheel3Hexcyl3Triangle in Triangle

Figure 3. Some Generalizations of the Triangle in Triangle

To better understand theMobius3 graph, we attempt draw it so that, visually, it
is most analagous to the triangle in triangle. At first glance, it appears that the best
way of doing so is to draw the Mobius3 graph as the graph on the right of figure 3;
certainly, this drawing maintains the rotational symmetry of the triangle-in-triangle
as well as the hexagonal embedding of the Mobius3 graph.

Definition 2.2. The Pinwheeln graph is defined, visually, by the following al-
gorithm. Place two concentric regular n-gons in the plane so that the vertices of
those n-gons lie on n radial lines. Place the interior and boundary nodes as in the
Hexcyln case. Choose a boundary node on the inner n-gon, and call it bi1. Label
the rest boundary nodes on the inner n-gon in circular order around the vertices
of the inner n-gon. Call the interior node lying on the edge of the inner n-gon
connecting bik and bik+1 iik. Likewise, define bok to be the boundary node lying
on the same radial line as bik, and iok to be the interior node lying on the same
radial line as iik. Then the edges of Pinwheeln connect bok to iok, iok to iik, iok

to bik+1, bik to iik, and iik to bok+1. For an example of a Pinwheel3 graph, see
the graph on the right in figure 3.

Remark 2.3. The Pinwheeln graph is similar to the Hexcyln graph in that they
can both be obtained from the triangle in triangle by separating nodes, except that
the separation is “twisted” in the Pinwheeln graph instead of radial, as in the
Hexcyln graph.

In the n = 3 case, Pinwheel3 is isomorphic to Mobius3, but, when we consider
higher n, we find that the Pinwheeln graph is not always isomorphic to Mobiusn.
In the next section, we find when the two graphs are equivalent, and, when they
are not, say how we should draw the Mobiusn graph so that, visually, it looks the
most simliar to an n-gon-in-n-gon graph.

3. The n = 4 Case

When n = 4, figure 4 shows the equivalence of Pinwheel4 and Hexcyl4 (dotted
lines represent the boundary/edge of the cylinder, dashed lines represent edges on
the hidden surface).
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Figure 4. Different Embeddings Show Equivalence

In this way we see that Hexcyln can be embedded as the union of n hexagons
on the graph (HEXagon on CYLinder gives the name Hexcyl). For instance, one
hexagon in the figure is that consisting of boundaring nodes one and six, and the
edges and interior nodes making up the two paths between them. How, then, do
we embed the Mobiusn graph like an n-gon-in-n-gon? Is Mobius4 isomorphic to
Hexcyl4? The answer, as the following argument shows, is no.
Consider the drawing of theMobius4 graph shown on the left in figure 5. To show

that Mobius4 and Hexcyl4 are not isomorphic, we show that there can be no iso-
morphism taking boundary node k inMobius4 to boundary node hk inHexcyl4 that
satisfies the requirements of isomorphisms. So, choose any point h1 on Hexcyl4. By
symmetry, we do not lose any generality mapping boundary node 1 from Mobius4

to h1. We can also assume, without loss of generality, that that point is on the
outer square of Hexcyl4. Now, 1 is two edges away from exactly two other bound-
ary nodes, node 2 and node 8. So, we can say that if we had an isomorphism from
Mobius4 to Hexcyl4, we would have that h2 and h8 were the boundary node of
the outer square closest to the node at h1. But then, extending this argument,
we see that 3 would have to map to h3 such that the shortest path from h2 to h3

had a length of two edges. There are only two boundary nodes in Hexcyl4 that
satisfy this property, and one of them is h1. So h3 must be the other (if not, then
we have no bijection, contradicting our assertion that we have an isomorphism),
which is located at the point opposite from h1 on the outer square. But by a sim-
ilar argument, h7 must be that same point! Thus we have no bijection, so there
is no isomorphism, so there is a contradiction. So Mobius4 is not isomorphic to
Hexcyl4.
The preceeding argument can easily be generalized to higher n, giving us the

following result.

Proposition 3.1. Mobiusn is not isomorphic to Hexcyln for any n.

As we can see, theMobius graph is equivalent to the Hexcyl graph, except with
one “side” twisted. So when are Mobius and Pinwheel graphs equivalent? The
result is summed up in the following theorem.

Theorem 3.2. The Pinwheeln graph is isomorphic as a graph with boundary to the

Mobiusn graph iff n is odd,and is isomorphic as a graph with boundary to Hexcyln
iff n is even.

Proof. First we consider the case when n is odd. Then we have boundary nodes
lying at the vertices of two concentric n-gons. Number them as shown on the left in
figure 6, so that the outer boundary nodes are labeled with odd numbers and the
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Figure 5. Alternative Embedding of the Mobius Graph

inner boundary nodes are labeled with even ones. Furthermore, label the boundary
nodes around each polygon so that the order is 1, n + 2, 3, n + 4, ...2n − 1, n for
the exterior polygon and n+ 1, 2, n+ 3, 4, ...n− 1, 2n for the interior polygon with
n + 1 and n lying on the same radial line. Then if we embed the Mobiusn graph
in a 2n-gon with boundary nodes in circular order, we see that the two graphs are
isomorphic.
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Figure 6. Reordering of Boundary Nodes: In the Case n is Odd

Finally, we prove the case when n is even. Label the boundary nodes as before,
except with the outer boundary node sequence being 1, n+1, 3, n+3, ...n−1, 2n−1
and the inner one being 2, n + 2, 4, n + 4, ...n, 2n. We then have a drawing of
Pinwheeln. Next, place two conentric n-gons in the plane. Place boundary nodes
at the vertices of the two n-gons, and interior nodes at the midtpoints of the
two n − gons. Place an edge between boundary node and each interior node at
the midpoint of each side adjacent to each boundary node. Also, place an edge
between each pair of interior nodes lying on the same radial ray. Label the boundary
nodes on the outer n-gon 1, 2, ...n and the boundary nodes on the inner n-gon
n + 1, n + 2, ...2n. In addition, we require that 1 and n + 1 lie on the same radial
ray. Then we see that the two graphs are isomorphic (see figure 7).

We have so far shown that Pinwheeln is isomorphic to Mobiusn when n is
odd and isomorphic to Hexcyln when n is even. To see that these are not just if
statements, but iff statements, we simply refer to Proposition 3.1. ¤
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Figure 7. Reordering of Boundary Nodes: In the Case n is Even

4. Recoverability

What are the recoverability properties of these graphs? Are they also two-to-
one? To answer this question, we first look in detail at the four-boundary-node
subgraphs of which they are comprised.
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Figure 8. Subgraphs of type I, II, and III

Definition 4.1. We will say that a graph is a generalized n − gon − in − n − gon

if it is a cycle C1C2C3...CnC1 of n subgraphs of type I, II, or III such that nodes 1
and 2 of Ci are identified with nodes 3 and 4 of Ci+1, respectively.

Remark 4.2. Each Ci in a generalized n-gon-in-n-gon graph need not be the same.
Figure 8 shows an example of a generalized n-gon-in-n-gon graph with this property.
Note the asymmetries of the graph.

With this in mind, we are ready to state a general recoverability result.

Theorem 4.3. All generalized n-gon-in-n-gon graphs are at most two-to-one.

Proof. Consider the subgraphs of type I, II, and III. The F - K transformation
applied to those subgraphs result in the graphs shown in figure 8.
The double edges in theF−K ′d graphs can be found using quadrilateral relations

on the edges 14, 13, 24, and 23 since none of those edges overlap with the edges
from other subgraphs. Thus, the problem of solving for recoverability in this case
simply reduces to the original n-gon-in-n-gon case. For a more rigorous proof,
refer to the discussion of the counting principle in [?, F renchPan].

¤
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Figure 9. A Generalized Hexagon in Hexagon
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Figure 10. The F−K Transformation Applied to the Three Subgraphs

From this we see that the Pinwheel, Hexcyl, andMobius graphs are all at most
2-1.

5. Conclusion

From the re-embedding of the Mobius3 graph from a hexagon to a twisted
triangle-in-triangle, we see that what originally looked like a completely new type
of two-to-one graph is quite similar to one that is well known. The difference be-
tween the two simply reduces to splitting interior nodes. However, by mixing and
matching different types of splits, we find a large class of two-to-one graphs with
significant asymmetries, something much different from the normal n-gon-in-n-gon
case

6. Further Research

Ideally, this idea should be extendable to “stacked” n-gons-in-n-gons—for exam-
ple, if we have three concentric triangles, for a total of nine boundary nodes, what
are the subgraphs for which we can generalize recoverability properties? What
might those recoverability properties be? The question of splitting interior nodes
is very interesting because, in the three triangle case as an example, it is possible
to separate nodes to get two-to-one, four-to-one, and infinity-to-one graphs. What
if we take k concentric n-gons-in-n-gons and identify the boundary (and possibly
interior) nodes of the outermost layer with the innermost layer. How about identify-
ing different nodes? Should each boundary node only be connected to two interior
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nodes? What characterizes the response matrices of these graphs? For further
reading on n-to-1 networks, see references.
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Figure 11. Recoverable, 2-1, 4-1, and ∞-1 Graphs. Note that
their rotational symmetry is not necessarily required—perhaps
there is some way to mix and match subgraphs as in the gener-
alized n-gon-in-n-gon case.


