
THE SMALLEST RECOVERABLE FLOWER

NICK REICHERT

Abstract. This paper gives an example of recoverable flower and argues that

it is the smallest one in existence. A big thanks to Tracy Lovejoy, who supplied

many of the arguments in this paper.

1. Introduction

A flower is defined to be a graph with no boundary spikes and no boundary to
boundary connections. This implies

(1) The valence of every boundary node in a flower is at least two.

What, then, is the fewest number of boundary nodes a recoverable flower can
have?

2. Non-existence of Small Recoverable Flowers

We know that since there are n(n−1)/2 independent entries in a response matrix
for a graph with n boundary nodes, we have

(2) No recoverable graph can possibly have more than n(n− 1)/2 edges.

Otherwise, we would have too few equations for the number of unknowns. Thus,
by (1) and (2), there are no recoverable flowers with fewer than five boundary nodes.

Here we condsider the five boundary node case by examining the number of in-
terior nodes. We assume all graphs are connected.

2.1. 0 Interior Nodes. There cannot be zero interior nodes, otherwise all edges
would be boundary to boundary connections and we would not have a flower.

2.2. 1 Interior Node. There cannot be one interior node, because each edge would
have to connect to that node. Then we would have five pairs of parallel connections,
and the graph would not be recoverable.

2.3. 2 Interior Nodes. The graph is shown in figure 1.
One way to see that this graph is not recoverable is to place conductances of one

on all edges in the upper half of the graph and place conductances of two on all
edges on the lower half of the graph. Then by symmetry, that electrical network
must have the same response as one with the conductances reflected across the
horizontal axis.
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Figure 1. Not Recoverable, By Symmetry

Remark 2.1. Notice the arguments for zero, one, or two interior nodes do not
depend on the fact that the flower had five boundary nodes. Thus, we have

(3) Any recoverable flower must have at least three interior nodes

2.4. 3 Interior Nodes. Combining (1), the fact that there are no boundary to
boundary connections, and that we have five boundary nodes, we know that there
must be at least ten edges. Furthermore, we cannot have more than 5(5−1)/2 = 10
edges by (2). So since 10 ≤ # of edges ≤ 10,

(4) A recoverable flower with five boundary nodes must have exactly ten edges.

It follows that there can be no interior to interior connections in a recoverable flower
with five boundary nodes, and that each boundary node has valence of exactly two.
Later, we will see that this is vacuously true, but for the time being, it is a useful
fact. Now, we notice that since an interior node of valence one is a pendant, and
an interior node of valence two is a series connection, we have

(5) Interior nodes must have valence of at least three in a recoverable graph.

Now, considering the three interior node specificially, we can combine (4) and (5)
to see that two interior vertices, call them vi1 and vi2 have valence three, while the
remaining interior vertice, vi3 has valence four. vi1 and vi3 are both adjacent to a
boundary vertice, vb1, because otherwise we would either have at least one pendant
or series connection, or a disconnected graph. Furthermore, vi2 and vi3 are both
adjacent to another boundary vertice, vb2, otherwise we would, once again, have a
pendant or a series connection. To see a visualization of what we know must be
true, so far, for a recoverable five boundary node flower, see figure 2. Continuing,
we note that vi3 is adjacent to a boundary node, vb3, which is adjacent to another
interior node (if this were not the case, we would have a pendant at vi3. WLOG,
assume that interior node is vi1. Then vi1 is adjacent to a boundary node vb4, which
is also adjacent to vi2, otherwise there would be a series at vi2. This determines the
position of the final boundary node, vb5, which is necessarily adjacent to vi2 and
vi3. Then if a five boundary node three interior node graph is to be recoverable, it
must be the graph shown on the left of figure 3. But that graph is Y −∆ equivalent
to the graph on the right of figure 3. That graph contains a series connection and
hence is not recoverable. So we know that there are no five boundary node three
interior node recoverable flowers.

2.5. 4 Interior Nodes. From the discussion following (4), we know that there are
no interior to interior connections in the five boundary node case. This, combined
with (5), implies that a five boundary node four interior node flower must have
at least twelve edges. But from (4), we know it must have exactly ten, giving a
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Figure 2. Where Do We Put the Remaining Boundary Nodes?

Figure 3. A Graph and its Y −∆ equivalent

contradiction. Thus, there are no five boundary node four interior node recoverable
flowers.

2.6. ≥ 5 Interior Nodes. The discussion from the four interior node case easily
generalizes to any higher number of interior nodes. So we can conclude that there
are no five boundary node recoverable graphs.

Remark 2.2. It should be noted that some of the above arguments can be general-
ized to any number of boundary and interior nodes. Let i be the number of interior
nodes, and let b be the number of boundary nodes. Since each interior node must
have valence of at least three, we know that there are at least 3i edges adjacent to
interior nodes (note that interior to interior connections are counted twice*, once for
each end, whereas boundary to interior connections are only counted once). Now,
all edges adjacent to interior nodes must be accounted for. Otherwise we would
have an interior node an interior node with valence less than three, which would
give us a non-recoverable graph. These restrictions give rise to two inequalities.
For a recoverable flower with no interior to interior connections, we find, we note

that there are a minimum of 3i adjacent to interior nodes. Since we have a maxi-
mum of b(b− 1)/2 edges adjacent to those interior nodes (since we are considering
the case where all edges connect an interior node to a boundary node) we have
3i − b(b − 1)/2 ≤ 0, with the inequality instead of equality because we could have
more than three edges adjacent to a given interior node. This can be rewritten as

(6) i ≤
b(b− 1)

6
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For a recoverable flower with minimal boundary to interior connections (specif-
ically, each boundary node has valence two), we can derive a similar inequality.
Once again, we have a minimum of 3i edges, remembering to double count when
necessary*. Since each boundary node is adjacent to exactly two edges, boundary
to interior connections account for 2b of those edges. We know, from (2), that there
are at most b(b− 1)/2− 2b edges remaining, which, by assumption, are all interior
to interior connections. As noted*, interior to interior connections must be counted
twice, so we have that 3i− 2b− 2(b(b− 1)/2− 2b) ≤ 0, or equivalently,

(7) i ≤
b(b− 1)− 2b

3

Whenever b > 5 (i.e. for all recoverable flowers), the second inequality is less
restrictive than the first. Furthermore, it is the most general in that it applies to
every recoverable flower. Note that equality can only hold in (7) if exactly two edges
are adjacent to each boundary node (though this is not a sufficient condition). If
more edges are adjacent to boundary nodes, it is possible to put a better bound
on the maximum number of interior nodes we can have and retain recoverability.
This is due to the fact that inerior to interior connections are double counted, and
boundary to interior connections are not.

3. Six Boundary Nodes

Theorem 3.1. The smallest number of boundary nodes a recoverable flower can

have is six. Furthermore, it may have exactly six.

Proof. The proof that six is a lower bound is above. The proof that six is the
greatest lower bound is the graph on the left of figure 4, which is recoverable
because it is Y −∆ equivalent to a graph (shown in the middle and on the right)
composed entirely of boundary to boundary edges and which contains no parallel
connections. ¤

Figure 4. The Smallest Recoverable Flower, and its Y −∆ Equivalent

Remark 3.2. The graph on the right of figure 4 shows the embedding on the
octahedron of a graph that is Y −∆ equivalent to the six boundary node recoverable
flower, with the nodes at vertices, and the edges of the graph lying on the edges of
the octahedron. Perhaps there are interesting properties of graphs that are Y −∆
equivalent to ones that can be embedded on Platonic Solids. Note that one would
have to be careful with their approach—one way to generalize the graph on the
left would be to consider a twenty boundary node, five interior node flower such
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that there was a two edge path from each interior node to every other interior
node, with the vertex separating those edges being a boundary vertex. The choice
of twenty boundary nodes in the five interior node case is due to the fact that
5 choose 2 = 20 (in the four interior node case, we had 4 choose 2 = 6, which was
the number of boundary nodes). Then, if we consider an dodecahedron, we could,
in similar fashion to the octahedral case, place boundary nodes of the −K ′d graph
on the vertices of the surface—but then, none of the edges of the graph would lie on
the edges of the dodecahedron! Perhaps it would be better to place the boundary
nodes at the centers of the faces of an icosahedron, and find a way to draw the
graph on that surface.

Remark 3.3. When we say “smallest recoverable flower” we mean the flower with
the smallest number of boundary nodes, as well as smallest number of edges. How-
ever, it may be possible to have a six-node recoverable flower with fewer interior
nodes than the example given. If it existed, however, it would have to have three
interior nodes. It would be interesting to give an example of such a graph, or to
show that it cannot exist. The only way I can think of to show non-existence would
be a proof by cases (of which there would be many—between fifty and one hundred
or so) to show that each such flower is non-recoverable. Hopefully, there is a more
elegant way to prove this result. Furthermore, I do not know if there are any other
six node recoverable flowers at all—though we do know from Remark 2.1 that it
would have to have three, four, five, or six interior nodes.
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