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Abstract

The purpose of studying connectivity types is to look for a way to

classify in a fairly comprehensive manner all critical circular planar n-

boundary node graphs. We start by looking at the four-boundary node

and five-boundary node graphs. Moreover, by listing out all the examples

of these two cases, it is possible that we can find bases of connectivity

types that imply a set of larger connectivity types. This would allow

us to come up with a method of generalizing n-boundary node critical

circular planar graphs.

1 Introduction

In [1], the topic of connectivity types has been mentioned briefly but has not
been studied in detail. By looking at all Y-∆ equivalent well-connected n-
boundary node graph and systematically deleting boundary to boundary edges
or contracting boundary nodes, we retain critical circular planar graphs. Thus
it allows us to list all connected critical circular planar graphs that possess n-
boundary nodes in a neat and comprehensive manner. I begin by definining the
sets of terminologies that are employed in this paper.

Definition 1. Given a graph, G = (V,E), suppose P=(p1, ..., pk) and Q=(q1, ..., qk)
are two sequences of boundary nodes. P and Q are connected through G if there
is a permutation τ of the indices 1,...,k, and k disjoint paths α1, ...,αk in G, such
that for each i, the path αi starts at pi, ends at qτ(i), and passes through no
other boundary nodes. To say that the paths α1, ...,αk are disjoint means that i
different from j implies αi and αj have no vertex in common. The set α1, ...,αk

is called a k − connection from P to Q. A path which joins one boundary node
to another boundary node is a 1-connection.

A connectivity type of a certain graph G is understood to be the set of
all possible k-connections of G. For example, a well-connected graph with four
boundary nodes has two 2-connections and six 1-connections, and a well-connected

graph with five boundary nodes has

(

5
2

)

2-connections and the same num-

ber of 1-connections. Hence we classify the well-connected five boundary node
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Figure 1: Graph and its Medial Graph

graph as having “ten 2-connections and ten 1-connections.” However, there is a
sublety to this. Two graphs can possess the same “counts” of connections, ie.,
both may have two 2-connections and a 1-connection, but they do not possess
the same connectivity type. However, it is readily evident that these two graphs
are isomorphic.

Definition 2. Suppose G is a critical circular planar graph with n boundary
nodes so that v1, ..., vn occur in a circular order around a circle C, and the rest of
G is in the interior of C. The medial graph M(G) has n geodesics each of which
intersects C twice, hence in 2n distinct positions. Label them t1, ..., t2n, so that
v1 < t1 < t2 < v2 < ... < vn < t2n−1 < t2n < v1 is in a circular order around C.
We obtain a z− sequence by labeling the geodesics in a circular order, starting
with g1, which begins at t1, and continuing with g2, until we get have labeled
all n geodesics in a circular order, but only counting each geodesic once.

For practical purposes, from here on out let us refer of a unique z−sequence

by fixing an embedding of the boundary nodes. Figure 1 illustrates the well-
connected four boundary node graph and its medial graph, and Figure 2 illus-
trates its z − sequence.

Theorem 1. Given a critical circular planar graph G, a graph is Y-∆ equivalent
to G if and only if their z − sequences are the same.

Proof. The proof is straighforward. a Y-∆ transformation of a particular crit-
ical circular planar graph corresponds to motions in the geodesics, but its
z − sequence is still the same, and conversely, two graphs that have the same
z− sequence have the same medial graphs, but this implies that two graphs are
Y-∆ equivalent.

We know that two graphs are Y-∆ equivalent if and only if they possess the
same connectivity types. Hence we deduce the following lemma.
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Figure 2: z − sequence of the well connected 4 boundary node graph

Lemma 1. Two graphs have the same z − sequences if and only if their con-
nectivity types are the same.

This allows us to classify graphs and their connectivity types by z−sequences.
Our question can be rephrased like this: Can we locate all connectivity types
by a set of unlacings of the z − sequence? Specifically, is it possible to find a
connectivity type that corresponds to a unique z − sequence? We examine the
four boundary node case. In Figure 3 we have all possible four boundary node
critical circular planar graphs up to an isomorphism.
According to [2], it is possible by a set of motions of geodesics to arrive at

all possible combinations of z− sequences. This motivates the next conjecture.

Conjecture 1. By unlacing the z − sequence of any n-boundary node critical
circular planar graph, it is possible to find all connectivity types of a specific
n-boundary node graph.

However, there is a more intuitive way of looking at the sets of connectivity
types. Suppose we know that breaking a set of edges or contracting a set of
boundary nodes, or even both, gives us a set of broken connections. Is there a
way we can find a core group of broken connections that imply all other broken
connections, specifically in the n-boundary node critical circular planar case? In
other terms, can we find a basis of equations that imply a larger set of equations?
This motivates the next group of terminologies.

Definition 3. An algebraic variety is a generalization to n dimensions of alge-
braic curves. An algebraic variety V is defined as the set of points in the reals
satisfying a system of polynomial equations fi(x1, ..., xn) = 0 for i = 1, 2 ,...
formally written as V ⊂ Rn. According to the Hilbert Basis Theorem, a finite
number of equations suffices.

We can think ot Rn as the space of entries in the upper diagonal of the
response matrix, with n entries, corresponding to n edge conductivities. The
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Figure 3: All 4-boundary node critical circular planar graphs
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set V is the set of all edge conductivities remaining, where V = dim (m). The
codimension, which is n-m, implies the set of edge conductivities that have been
broken.

Definition 4. If the number of equations in an algebraic variety is equal to
the codimension of V, then the space of response matrices forms a complete

intersection.

The idea is that there is a basis of equations which spans a wider range
of equations. In our graph case, by deleting three edges, we sometimes come
up with five equations, ie, two determinantal conditions, which imply broken
2-connections or three λ conditions, which imply broken 1- connections. A
complete intersection means that there exists a basis of three equations that
represents these five conditions.

Theorem 2. For all four-boundary node critical circular planar graphs, there
always exists a complete intersection.

Proof. The proof goes by way of exhaustion. I have exhausted all four boundary
node critical circular planar graphs and found a basis for each one of them. (I
will give one example of this in class)

Conjecture 2. For any two n-boundary node critical circular planar graph, if
their “counts” of connections are the same, then either the two graphs are Y-∆
equivalent or are graph isomorphisms.

We know that if two graphs have the same connectivity types, then they
are Y-∆ equivalent. However, if this conjecture holds true, then by looking at
“counts” of connections we can determine a basis without having to look at all
examples of graphs which have the same counts.

Conjecture 3. For any n-boundary node critical circular planar graph, there
exists a complete intersection.

A good way to start looking at this problem is with the six-term identity.
We can readily see that sets of broken 1-connections do not necessarily imply
sets of broken 2 or higher connections.
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