
ON EMBEDDINGS OF CIRCULAR PLANAR GRAPHS

IGOR GORODEZKY

Abstract. This paper considers some elementary graph-topological proper-

ties of circular planar, critical graphs, with a focus on finding all possible

distinct embeddings of a given graph of this type. Methods used are both

topological and combinatorial. We prove that the problem of finding all possi-

ble topologically distinct embeddings is equivalent to the problem of finding all

possible orderings of boundary vertices around the boundary circle. We then

show that the existence of a cutvertex is a necessary and sufficient condition for
the existence of multiple distinct embeddings, and give a naive algorithm for

generating all possible distinct embeddings from a single embedding. Finally,
these results are related to a theorem of Perry ([5]).
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1. Introduction

There has been a significant amount of recent research aiming to supplement the
study of geometric properties of electrical networks, such as Y −∆ equivalence, with
the study of their graph-topological properties (see, for instance, [8] and [9]). This
paper is an attempt to contribute to this effort by investigating planar embeddings
of graphs that represent one well studied type of electrical network.

Planar embeddings of graphs have historically received a great deal of attention;
relevant examples are papers by MacLane ([3]) and Stallmann ([6]). Most previous
results, however, are concerned with the general problem of embedding graphs in
the plane, while the present paper addresses the question of planar embeddings
subject to a particular type of constraint.

We first introduce some of the basic vocabulary of graph theory.

Definition 1.1. A graph G is an ordered pair of sets (V,E), where V is finite and
E is a subset of the set V (2) of unordered pairs of V . V is the set of vertices and
E is the set of edges.

If (u, v) ∈ E for some u, v ∈ V , we say that u and v are adjacent and that they
are endvertices of an edge e in E. If we wish to explicitly identify the endvertices
of some e ∈ E, call them u and v, we will write e as uv, or equivalently vu. The
degree of a vertex v is the number of distinct vertices adjacent to v.

The set of vertices of a particular graph G will be written V (G), and the set of
edges of G will be written E(G). If the graph in question is clear from context, we
will simply write V and E for these sets.

Given a graph G = (V,E), we will often partition V into two sets ∂V and int V ,
so that ∂V ∪ int V = V , ∂V ∩ int V = ∅, and |∂V | ≥ 1. We will call ∂V the set
of boundary vertices, or simply boundary of G, and int V will be the set of interior
vertices, or simply interior of G.

Definition 1.2. G′ is a subgraph of G if V (G′) ⊂ V (G), E(G′) ⊂ E(G), and the
endpoints of all e′ ∈ E(G′) are in V (G′).

Given a graph G, let V ′ be a subset of V (G) and let E ′ be the set of all edges with
endvertices in V ′. Then the subgraph G′ for which V (G′) = V ′ and E(G′) = E′ is
a subgraph of G induced by V ′, written G′ = G(V ′).

Definition 1.3. Let G be a graph, and let p, q be two distinct vertices in V . A path
from p to q in G is a subgraph P of G such that V (P ) = {p = v1, v2, . . . , vk = q},
with all vertices in V (P ) distinct, and E(P ) = {pv2, v2v3, . . . , vk−1q}. We call p and
q the endpoints of the path. Two paths P1 and P2 are disjoint if V (P1)∩V (P2) = ∅.

If A and B are subsets of vertices, each of order n, such that there exists a path
from ai to bi for 1 ≤ i ≤ n, and furthermore all of these paths are disjoint, then we
say that there exists an n-path from A to B.

Definition 1.4. A graph G is connected if for every two distinct vertices u, v ∈ V
there is a path from u to v, or equivalently, from v to u. A graph that is not
connected is disconnected.
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Let G be a disconnected graph, and take W a nonempty subset of V such that
there is a path between any two vertices in W . Then G(W ) is a connected subgraph
of G. If W is such that adding any vertex to W makes G(W ) disconnected, we say
that G(W ) is a component of G. Unless specified otherwise, all graphs discussed in
this paper are assumed to be connected.

2. Embeddings and Contiguity Relations

2.1. Embeddings.

Definition 2.1. A planar embedding of a graph G = (V,E) is a function σ from
G to the plane that assigns to each v ∈ V a point σ(v) in the plane, and to each
e = pq ∈ E a simple, continuous curve σ(e) in the plane from σ(p) to σ(q) (or σ(q)
to σ(p)). Furthermore, σ(u) 6= σ(v) if u 6= v for u, v ∈ V , and if e and f are distinct
edges in E, then σ(e) and σ(f) do not intersect, except possibly at their endpoints.
A graph is called planar if it has a planar embedding.

Definition 2.2. Let σ and τ be two planar embeddings of a graph G. σ and τ
are topologically identical if there exists a homeomorphism η of the plane such that
either η or η composed with a reflection of the plane maps σ(v) to τ(v) and σ(e)
to τ(e), for all v ∈ V, e ∈ E. If two embeddings are not topologically identical they
are topologically distinct.

Observe that given a planar embedding, another planar embedding is defined by
reflecting the original embedding in the plane. For the purposes of this paper, the
embeddings in such a pair will be always considered topologically identical; hence
the reference to a reflection of the plane in the definition above.

Remark 2.3. Our definition of a planar embedding is quite general since an edge
can be mapped to any simple and continuous curve. It is a fact, however, that
every planar embedding is topologically equivalent to a planar embedding in which
all of the curves are straight line segments (see, for instance, [1]). It is thus possible
to assume without loss of generality that a given planar embedding maps edges to
straight line segments.

Of special significance in the theory of electrical networks are planar embeddings
whose image lies in a disk, and which map boundary vertices to the boundary of
that disk. For the remainder of this paper, D will denote an open disk in the plane,
with ∂D as its boundary. We will sometimes refer to ∂D as the boundary circle.

Definition 2.4. A circular planar embedding of a graph G, where V = ∂V ∪ int V ,
is a planar embedding σ that sends boundary vertices to points in ∂D and sends
interior vertices to points in D. If e is an edge in E, σ(e) is a subset of D and does
not intersect ∂D except possibly at its endpoints. A graph is called circular planar
if it has a circular planar embedding.

Definition 2.5. Let σ and τ be two circular planar embeddings of a graph G. σ
and τ are topologically identical if there exists a homeomorphism η from D ∪ ∂D
to itself such that either η or η composed with a reflection of D in the plane maps
∂D to ∂D, and also maps σ(v) to τ(v) and σ(e) to τ(e), for v ∈ V, e ∈ E. If two
embeddings are not topologically identical they are topologically distinct.
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Since this paper deals strictly with circular planar embeddings, we will henceforth
refer to a circular planar embedding simply as an embedding. A planar embedding
that is not circular will be explicitly identified as such. When a particular embed-
ding σ is clear from context, we will often refer to the image of a vertex v or edge
e as simply v and e, respectively, and not σ(v) and σ(e).

We will generally differentiate between embeddings only up to the conditions
of Definition 2.5; that is, we will not differentiate between topologically identical
embeddings. Thus it will be useful to refer to equivalence classes of embeddings
under homeomorphism (possibly composed with a planar reflection), which are
finite in number, rather than to the individual embeddings, of which there are
uncountably many. We term these embedding classes. When it must be explicitly
identified, an embedding class may be represented by any one of its constituents.

2.2. Boundary Contiguity.

Remark 2.6. Fix an embedding of some circular planar graph G for which |∂V | >
1. Consider two distinct boundary vertices v and u. We will often reference the
fact that v and u partition ∂D into two arcs A1 and A2, so that ∂D = A1 ∪A2 ∪
{v} ∪ {u}.

Definition 2.7. Let G be a circular planar graph with |∂V | > 1, and fix an
embedding σ of G. The images of two boundary vertices u and v partition ∂D into
two arcs A1 and A2 as in the Remark above. v and u are said to be contiguous with
respect to σ if either A1 or A2 contains the image of no other boundary vertex. We
denote contiguity by v ∼ u.

An embedding of a circular planar graph gives a non-transitive relation ∼ on
the set of boundary vertices which we will term a contiguity relation. A particular
contiguity relation will be denoted by Θ (consider Θ to be an ordered subset of
V 2 such that v ∼ u if and only if (v, u) ∈ Θ). Now, fix once and for all an
orientation around the boundary circle, say clockwise. Further, fix a labeling of
the set of boundary vertices v1, v2, . . . , vn, where n = |∂V |. Given a contiguity
relation, the boundary vertices may be listed in the clockwise order they appear
around ∂D; we call this a circular ordering. A given contiguity relation gives 2n
possible circular orderings of the boundary vertices, since the listing can begin with
any of the n boundary vertices, and any circular ordering can be reversed to give
another circular ordering (corresponding to a reflection in the plane). If it becomes
necessary to explicitly exhibit the contiguity relation generated by a particular
embedding, we will do so by writing one of the 2n possible circular orderings as
a sequence θ = v1v2 . . . vn (it is clear that any such θ completely determines a
contiguity relation).

Remark 2.8. LetG be a circular planar graph with |∂V | ≥ 4, and fix an embedding
σ of G. Two boundary vertices u and v partition ∂D into two arcs A1 and A2 as
in Remark 2.6. Observe that if v ¿ u with respect to the contiguity relation given
by this particular embedding, then there must exist at least one boundary vertex
with its image in A1, and there also must exist at least one boundary vertex with
its image in A2. This fact will be often used, though rarely cited.

From its very definition, an embedding of a circular planar graph G uniquely
specifies a contiguity relation on the boundary vertices of G. Furthermore, all
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embeddings in a given embedding class give the same contiguity relation. It is
possible, however, that two topologically distinct embeddings will produce the same
contiguity relation (see, for example, Fig. 1). That is, two embedding classes
correspond to the same contiguity relation. There is a class of circular planar
graphs, introduced in the next section, for which the possible contiguity relations
on G are in one-to-one correspondence with the embedding classes of G.

2.3. Critical Graphs.

Definition 2.9. Let G be a graph, and let p, q be two distinct vertices in V . A
connection from p to q is a path P from p to q with the additional condition that
if v ∈ V (P ) such that v 6= p and v 6= q, then v ∈ int V .

Let G be a circular planar graph, fix an embedding of G, and consider two
subsets of ∂V , P = (p1, . . . , pk) and Q = (q1, . . . , qk), k > 1, such that given any
two distinct pi, pj ∈ P , all q ∈ Q lie on one of the two arcs into which the images of
pi and pj partition ∂D. We call P and Q a k-circular pair, or simply circular pair
if the cardinality of P and Q is clear from context. Given a circular pair P and Q,
a k-connection from P to Q is a set of k disjoint connections, each from a vertex
in P to a vertex in Q.

Definition 2.10. Given a graph G, we define two ways of removing an edge e from
E. If both endvertices of e are in ∂V , we may simply delete the edge by removing it
from the set E. Otherwise, we contract the two endvertices of e; if e = uv, remove
e from E, remove v from V , and make adjacent to u all vertices that were adjacent
to v.

Definition 2.11. A circular planar graph G is critical if removing any edge breaks
some connection through G.

Though the above definitions require a fixed embedding of G, Proposition 2.13
below demonstrates that criticality is nonetheless a graph-topological property of
circular planar graphs; that is, two topologically distinct embeddings of a circular
planar graph possess the same k-connections (they are, using terminology from [9],
of the same connectivity type). In proving this result (and a few others) we will
make use of the following consequence of the Jordan Curve Theorem.

1
2

5

1
2

5

3

4

3

4

(a) (b)

Figure 1. A graph for which two distinct embeddings give the
same contiguity relation. This graph is not critical.
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Lemma 2.12. Given a circular planar graph G with |∂V | ≥ 4, let u1, u2, v1, v2

be four distinct boundary vertices, and observe that given an embedding σ of G, u1

and u2 partition ∂D into two arcs A1 and A2 as in Remark 2.6. Assume that there
exist two disjoint paths Pu and Pv, where Pu is a path from u1 to u2 and Pv is a
path from v1 to v2. Then either v1, v2 ∈ A1 or v1, v2 ∈ A2.

Proof. Let the image under σ of a path in G be the union of the images of all
edges and vertices that the path contains, so that the images of Pu and Pv, denoted
σ(Pu) and σ(Pv), are continuous simple curves through D with endpoints in ∂D.
By the Jordan Curve Theorem, σ(Pu) partitions D into two disconnected regions,
one with boundary σ(Pu) ∪A1 and the other with boundary σ(Pu) ∪A2 (see Fig.
2). Call these region I and region II, respectively.

Assume that v1 and v2 are on the boundaries of different regions: v1 ∈ A1, say,
and v2 ∈ A2. Then σ(Pv) is a path that connects points in region I with points in
region II since it must pass through each region. Since the two regions are discon-
nected they are pathwise disconnected, so a continuous simple curve that begins
in one region and ends in the other must intersect the boundary. Consequentially,
σ(Pv) intersects σ(Pu), which implies that the images of Pu and Pv intersect at
the image of a vertex (since they cannot intersect at the image of an edge), which
implies in turn that they share a vertex. This contradicts our assumption that Pu

and Pv are distinct, which implies that v1 and v2 cannot be on the boundaries of
different regions. That is, either v1, v2 ∈ A1 or v1, v2 ∈ A2. ¤

A2 A1

P

P

u

v

u

u

v

v

1

1

2

2
region I

region II

Figure 2. The images of u1 and u2 partition ∂D. The gray path
is forbidden, since a path starting at v1 may not terminate on A2;
it must terminate on A1.

Proposition 2.13. Let σ and τ be two embeddings of a circular planar graph G.
Assume that there exists, with respect to σ, a k-connection between a circular pair
P and Q. Then there exists a partition of P ∪Q into two sets R and S such that
with respect to τ , these sets are a k-circular pair and a k-connection exists between
them.
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Proof. The proof is by induction on k. If k = 1, then the hypothesis states that
there exists a connection between the pair of boundary vertices in question, which is
a graph-topological fact and hence must remain true with respect to all embeddings
of G. Now, assume that P and Q are an h-circular pair for some h > 1, and assume
the proposition true for k < h. Label the vertices of P and Q so that they appear
in the circular order p1, p2, . . . , ph, qh, . . . , q1 around ∂D with respect to σ. Note
that with this notation, the h-connection connects each pi to qi.

Consider the sets P ′ = {p1, . . . , pk−1}, Q
′ = {q1, . . . , qk−1}, subsets of P and

Q, respectively. P ′ and Q′ are an (h− 1)-circular pair with an (h− 1)-connection
between them, so by the inductive hypothesis P ′ ∪Q′ can be partitioned into two
sets R′ and S′ such that with respect to τ , these sets are an (h − 1)-circular pair
and an (h− 1)-connection exists between them.

Now, label the vertices of R′ and S′ so that they appear in the circular order
r′1, r

′
2, . . . , r

′
h−1, s

′
h−1, . . . , s

′
1 around ∂D with respect to τ . It remains to show that

τ maps the vertices pk and qk unto ∂D in a way that allows the definition of an
h-circular pair. The boundary vertices r′1, r

′
h−1, s

′
h−1, s

′
1 partition ∂D into four arcs;

denote the arc between vertices x and y as A(x, y). By the inductive assumption,
there exist disjoint connections between the pair of vertices r′1, s

′
1 and the pair of

vertices pk, qk. By Lemma 2.12, either pk, qk ∈ A(r′1, s
′
1) or pk, qk ∈ A(r′1, r

′
h−1) ∪

A(r′h−1, s
′
h−1)∪A(s′h−1, s

′
1). There also exist disjoint connections between the pair

of vertices r′h−1, s
′
h−1 and the pair of vertices pk, qk, so again by Lemma 2.12, either

pk, qk ∈ A(r′h−1, s
′
h−1) or pk, qk ∈ A(s′h−1, s

′
1) ∪A(s′1, r

′
1) ∪A(r′1, r

′
h−1).

In other words, it must be the case that either pk, qk ∈ A(r′1, s
′
1) or pk, qk ∈

A(r′h−1, s
′
h−1). If the former, then the vertices in R′ ∪ S′ ∪ {pk, qk} appear in the

circular order qk, r
′
1, . . . , r

′
h−1, s

′
h−1, . . . , s

′
1, pk (assuming, without loss of generality,

that pk precedes qk clockwise around ∂D). Thus R = R′ ∪ {qk} and S = S′ ∪ {pk}
are an h-circular pair with an h-connection between them. If the latter, then
the vertices appear in the circular order r′1, . . . , r

′
h−1, pk, qk, s

′
h−1, . . . , s

′
1, so that

R = R′ ∪ {pk} and S = S′ ∪ {qk} are an h-circular pair with an h-connection
between them. In either case the claim is true for h, completing the proof. ¤

Critical graphs are of great significance in the theory of electrical networks; it
is always possible to solve the Dirichlet problem on an electrical network that is
represented by a circular planar, critical graph (see [2]). They also possess the
following important graph-topological property.

Theorem 2.14. Suppose G is a circular planar, critical graph. If two embeddings
of G give the same contiguity relation on ∂V then they are topologically identical.

Proof. Fix a contiguity relation Θ, and let σ and τ be embeddings of G that both
give Θ. We will show that σ and τ are topologically identical by induction on
|int V |.

If |int V | = 0, an embedding of G is completely determined by the embedding
of ∂V on ∂D; it is easily shown (by an induction on |∂V |, for instance) that for
a graph with no interior vertices, two embeddings that give the same contiguity
relation must be topologically identical.
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Now suppose that |int V | = k, and assume the claim true for k − 1 ≥ 0. From
[2] we know that since G is critical and has at least one interior vertex, there is at
least one e = uv ∈ E that satisfies one of the following two conditions:

(1) u and v are boundary vertices.
(2) u is an interior vertex and v is a boundary vertex adjacent to no vertices

but u.

Furthermore, if an edge satisfies one of these conditions and is removed as per
Definition 2.10, the resulting graph is still critical. It immediately follows that it is
possible to generate a graph G′ from G, such that G′ is critical and has an edge e
that satisfies (2), by deleting a finite number of edges in G that satisfy (1). Now
contract e to get a new graph G′′; G′′ is critical and |int V (G′′)| = k−1. Thus, our
strategy will be to establish relationships between embedding classes of G, G′, and
G′′ in order that the inductive hypothesis applied to G′′ should imply the claim we
are seeking to prove for G.

Let us first consider embeddings of G′. G′ is a subgraph of G, so it follows that
an embedding of G restricts to an embedding of G′; if e is the edge to be deleted
then restrict the embedding to the edges E(G)−{e} instead of the entirety of E(G)
(all of V (G) is still mapped since V (G) = V (G′)). This restriction is unique up to
homeomorphism in the following sense. Let µ and ν be two embeddings of G that
restrict to embeddings of G′, call them µ′ and ν′, respectively.

Assume now that µ′ and ν′ are topologically identical, that is, there exists a
homeomorphism of the plane from µ′ to ν′ (where we implicitly refer to the image of
the graph under the embedding). We claim that µ and ν are topologically identical
as well. To see this, first consider some embedding of G and note that restricting it
to an embedding of G′ creates an empty cell inside D′ (the disk that contains the
image of G′) that previously contained the image of the deleted edge e and whose
boundary contains the vertices that were the endpoints of e, call them t and w. By
drawing an arbitrary simple continuous curve from t to w and associating it with
the edge e, we create an embedding of G from an embedding of G′, one that is
homeomorphic to the original embedding of G (the one that begat the embedding
of G′). This is illustrated in Fig. 3.

To see why the two embeddings, call them ρold and ρnew, where ρold is the
original embedding, are homeomorphic, first note that it is a fact that given two
disks in the plane, each with a simple continuous curve in its interior, there exists
a homeomorphism between the disks that maps one curve to the other. Now, ρold

defines a cell in D that contains ρold(e), and ρnew defines a cell in D that contains
ρnew(e). Both these cells are homeomorphic to the disk, so we see that by the
above fact there exists a homeomorphism between them. ρold and ρnew differ only
in the interior of the cell containing the image of e, so this homeomorphism of cells
is actually a homeomorphism between the embeddings ρold and ρnew, making them
topologically identical.

Returning to µ′ and ν′, we see that we can extend them as in the discussion
above to embeddings of G, call these µ̄ and ν̄, respectively. It is the case that µ̄
is topologically identical to ν̄, because there exists a homeomorphism between the
cell of the image of of µ̄ containing e and the cell of the image of of µ̄ containing
e; composing this homeomorphism with the homeomorphism between µ′ and ν′
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(a) (b) (c)

Figure 3. (a) An edge between two boundary vertices inside a
cell. The cell is bordered by the edges drawn in bold and by an
arc of the boundary circle. (b) The edge is removed to give an
embedding of a subgraph, which can in turn (c) be extended to
an embedding of the original graph with the addition of a curve
between the boundary vertices. The embeddings in (a) and (c) are
topologically identical.

gives us a homeomorphism between µ̄ and ν̄. But by the discussion above, µ̄ is
topologically identical to µ and ν̄ is topologically identical to ν. Thus we see that
if µ′ and ν′ are topologically identical, then µ and ν are topologically identical as
well.

Note also that using the observations above it is easy to prove that the contiguity
relation on G with respect to some embedding ρ is the same as the contiguity
relation on G′ with respect to the restriction of ρ. This will be an important
element of our proof.

The relationship between embedding classes of G′ and embedding classes of G′′

is stronger than the one between embedding classes of G and embedding classes of
G′ above. In particular, there is a bijection between embedding classes of G′ and
those of G′′. To show this, assume that the edge to be contracted in G′ is e = uv,
where u is the interior vertex and v is the boundary vertex. Given an embedding γ
of G′ and assuming it maps edges to straight line segments, define a subregion D′

of D as all of D excepting the interior of the cell, with respect to γ, that contains
e (see Fig. 4). By choosing a point d in D′ colinear with e and assuming that D′

is star shaped with respect to this point, it is possible to construct a straight line
homotopy that sends the image of u to the image of v, thus producing an embedding
of G′′.

Intuitively, what happens is the following. The image of u is mapped along the
straight line image of e, with its path parametrized so that it is at γ(u) when t = 0
and at γ(v) when t = 1. Now, consider any point z that lies on the image under
γ of an edge that has u as an endpoint. Draw a line from d to ∂D that passes
through z, and map z along that line, from t = 0 to t = 1.

This is formalized as follows (henceforth, referencing a vertex or and edge will
imply referencing its image under γ). Assume that γ maps e to the parameterized
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straight line segment fv(t) = v(1 − t) + ut, 0 ≤ t ≤ 1, from v to u. Now, let W
be the set of vertices in V (G′) adjacent to u, excluding v, and assume that for
vi ∈ W, 1 ≤ i ≤ |W |, the edge uvi is mapped to the parameterized straight line
segment fi(t) = vi(1− t) + ut, 0 ≤ t ≤ 1.

First, consider the homotopy that sends e to the point v (that is, sends e to
progressively shorter straight lines), given by

Hv(s, t) = fv(t)(1− s) + vs, 0 ≤ s ≤ 1

Substituting for fv(t), this can also be written as

Hv(α) = v(1− α) + uα

where α = t(1− s).

Now, for vi ∈ W , this induces a homotopy Hi that sends the image of the edge
uvi to a straight line segment from vi to the image of u with respect to Hv, given by
Hv(s, 1) = u(1− s) + vs for each intermediate step in the homotopy Hv. It should
be noted that this explains our notation; we refer to homotopy in the singular since
the homotopies Hi are all automatically defined once we define Hv. At any rate,
these are given by

Hi(s, t) = vi(1− t) +Hv(s, 1)t = vi(1− t) + (u(1− s) + vs)t, 0 ≤ s ≤ 1

A quick calculation reveals that for vi, vj ∈W the assumption that there exist s, t
such that Hi(s, t) = Hj(s, t) implies i = j. Similarly, for vi ∈ W the assumption
that there exist s, t such that Hi(s, t) = Hv(s, t) implies vi = v. Thus the line
segments in the intermediate steps of our constructed homotopy never intersect,
meaning that the image of G′ given by some intermediate step of the homotopy
is homeomorphic to the image of G′ given by any other intermediate step. In
particular, the initial (s = 0) and final (s = 1) images are homeomorphic. This
implies that any two embeddings of G′′ constructed in this way from an embedding
of G′ are homeomorphic to each other, thus topologically identical.

This construction gives a well defined function F from the embedding classes
of G′ to those of G′′. Further, a reverse procedure can be defined almost identi-
cally that constructs a homotopy from an embedding of G′′ to an embedding of
G′; it suffices to reverse the ”direction” of the homotopy above. This defines the
inverse of F ; we confirm that F is injective as follows. If two topologically identical
embeddings of G′′ are constructed as above from two embeddings of G′, then the
topological differences between the two embeddings of G′ are restricted to the cells
that contain e, the edge that was contracted. But as we saw earlier, any two such
cells are homeomorphic, meaning the two embeddings of G′ are topologically iden-
tical. Conversely, say two topologically identical embeddings of G′ are constructed
using the “reverse” homotopy from two embeddings of G′′. Then, in particular, the
subregions D′1 and D′2, defined as above, corresponding to each of the two embed-
dings of G′ are homeomorphic. This implies that the original embeddings of G′′

were themselves homeomorphic.

Thus F is bijective (it is clearly surjective since our homotopy is defined for
any embedding of G′), so there exists a bijection between embedding classes of
G′ and those of G′′. Note also that the contiguity relation on G′ with respect to
some embedding γ is the same as the contiguity relation on G′′ with respect to the
embedding constructed from γ using our homotopy (the proof is by contradiction,
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using the “reverse” homotopy that creates an embedding of G′ from an embedding
of G′′).

Let us return to σ and τ , the two embeddings of G that share a contiguity
relation. From the discussion above, we know σ and τ correspond to embeddings of
G′, σ′ and τ ′, which in turn correspond to embeddings of G′′; call these σ′′ and τ ′′.
Recall also that these successive restrictions do not alter the contiguity relation.
Now, by our inductive hypothesis, σ′′ and τ ′′ are topologically identical. Since there
is a bijection between embedding classes of G′ and those of G′′, this means that
σ′ and τ ′ are also topologically identical. This in turn, as we’ve observed above,
implies that σ and τ are topologically identical, completing the proof. ¤

Theorem 2.14 tells us that for circular planar, critical graphs, the study of em-
beddings is equivalent to the study of contiguity relations; results concerning the
latter translate into results concerning the former. This is the strategy adopted for
the remainder of the paper.

3. Multiple Embeddings

3.1. Preliminaries.

We are almost ready to prove a necessary and sufficient condition for the ex-
istence of multiple embedding classes for a circular planar, critical graph. Before
we do, we must cite without proof a fundamental theorem of graph theory due to
Menger.

Definition 3.1. Let G be a graph and consider a subset W of V . We say that W
separates G if the subgraph G(V −W ) has more than one component.

D’ D’

(a) (b)

d

u

v

Figure 4. Constructing a homotopy from (a) an embedding of G′

to (b) an embedding of G′′. Because each intermediate step of the
homotopy is a homeomorphism, the procedure can be reversed to
construct a homotopy from an embedding of G′′ to an embedding
of G′.
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Definition 3.2. G a graph. A vertex v ∈ V is called a cutvertex if v ∈ ∂V and {v}
separates G, or if v ∈ int V , {v} separates G, and each component of G(V − {v})
contains fewer than |V | − 1 vertices.

This definition, for boundary vertices, is slightly stronger than the canonical
one; for instance, if v ∈ int V is a vertex adjacent to a vertex u with degree 1 such
that G(V −{v}) has two components, then v is not a cutvertex because one of the
components must be the single vertex u, and so the other contains exactly |V | − 1
vertices. If, however, v was adjacent to two vertices of degree 1, then it would
indeed be a cutvertex. Compare, for instance, vertices 12 and 13 in Fig. 7.

Remark 3.3. Let G be a circular planar, critical graph with a boundary vertex u
of degree 1 adjacent to another vertex v. If v ∈ int V , then as we saw this does not
imply that G has multiple distinct embedding classes (to wit, using terminology
from the proof of Theorem 2.14, contracting u and v would have no effect on the
number of distinct embedding classes). If, however, v ∈ ∂V , then the discussion
below demonstrates that there exist at least two distinct embedding classes of G
(assuming |∂V | ≥ 4).

G, u, and v ∈ ∂V as above. Consider an embedding of G, which gives some
circular ordering of ∂V around ∂D. It is easy to see that u and v must be con-
tiguous, since there is an edge connecting them and we stipulated that the images
of no two edges intersect. Thus the circular ordering around ∂D must include as
a subsequence either . . . puvq . . . or . . . pvuq . . . , where p and q are in ∂V . If the
former, then it is possible to give an embedding of G where this subsequence of the
circular ordering is replaced by the latter subsequence above. This is done by plac-
ing u between v and q on ∂D, and drawing a curve from u to v, which is possible
since u and v are on the boundary of a cell in D. A similar statement holds if the
latter is the case.

Thus in either case, one embedding immediately gives rise to an alternative
contiguity relation, which by Theorem 2.14 corresponds to another, topologically
distinct embedding.

Consider a graph G with a cutvertex v. A component of G(V − {v}) will be
called a v-component of G. We will denote the set of all cutvertices of a graph G
by C(G).

Definition 3.4. Let G be a graph and consider two subsets A and B of V . Suppose
that a subset W of V separates G. If A and B are in different components of
G(V −W ) we say that W separates A and B.

Theorem 3.5 (Menger, 1927). Let G be a graph with A and B two disjoint
n-tuples of vertices. Then either G contains an n-path from A to B, or there exists
a set of fewer than n vertices that separates A and B.

3.2. A Necessary and Sufficient Condition.

Lemma 3.6. Suppose G is a circular planar, critical graph, |∂V | ≥ 4, such that
given any two pairs of boundary vertices (u, v) and (p, q) that appear in any circular
ordering of ∂V in the order uvpq (up to rotation), there exists a path from u to
v and another disjoint path from p to q. Then G has only one possible contiguity
relation, and hence only one embedding class.
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Proof. It suffices to show that given an embedding of G that gives some contiguity
relation, any other embedding must also give the same relation, since then Theorem
2.14 would imply that the two embeddings are topologically equivalent. Fix some
embedding σ of G that gives a contiguity relation Θ and suppose u ∼ v with respect
to Θ. Now consider a different embedding τ of G that gives an contiguity relation
Θ′. Assume that u ¿ v with respect to Θ′. As noted in Remark 2.8, this implies
that there exist boundary vertices p and q such that u, v, p, and q appear in the
circular ordering upvq or uqvp around ∂D with respect to Θ′. We will assume the
former without loss of generality.

We will assume that p is the only boundary vertex between u and v with respect
to τ ; the more general case follows immediately by induction. Consider these four
vertices in σ(G). Since u ∼ v in Θ, we can assume without loss of generality that
these vertices appear in the circular order uvpq with respect to Θ. Thus there exists
by hypothesis a pair of disjoint paths, one from u to v and another from p to q.
These paths are disjoint with respect to any embedding, which in particular means
that they are disjoint with respect to τ . Lemma 2.12 now implies that with respect
to τ , the four vertices in question must be in one of the following circular orderings
around ∂D: uvpq or uvqp. Either of these possibilities contradicts our assumption
that u ¿ v with respect to Θ′, because this assumption implied that the circular
ordering with respect to τ is upvq. Thus any pair of contiguous vertices in Θ is also
contiguous in Θ′, meaning Θ = Θ′. Consequentially, any two embeddings of G are
topologically identical by Theorem 2.14. ¤

Theorem 3.7. A circular planar, critical graph G has at least two embedding
classes if and only if it contains a cutvertex.

Proof. Assume here that |∂V | ≥ 4; otherwise, the result is clear by inspection (see
[8]).

If G contains a cutvertex v, then it is easy to exhibit two different contiguity
relations on ∂V , hence two distinct embedding classes of G. Note first that if
v ∈ ∂V and v is adjacent to a boundary vertex u of degree 1, then by Remark
3.3 the theorem is true. This allows us to assume that each v-component contains
fewer than |V | − 1 vertices.

If v ∈ ∂V and one embedding gives a contiguity relation Θ, we construct Θ′ as
follows. Choose the θ ∈ Θ that begins with v, so that θ = vv1v2 . . . vn−1. Let vi+1

be the first boundary vertex in this sequence such that there exists a path from
vi+1 to vn−1 that does not go through v. Now write θ′ = vvivi−1 . . . v1vi+1 . . . vn−1.

If v separates G into subgraphs H and K, then as Fig. 5 illustrates, this is
equivalent to reflecting H while fixing K in the plane. This gives Θ′ not equal to
Θ, hence two distinct embedding classes by Theorem 2.14. Note that we implicitly
assumed that not all v-components contain only one vertex. If this is the case,
then it is possible to generate, given an embedding, a contiguity relation that
corresponds to a topologically distinct embedding by placing v on ∂D between
different v-components, in a manner similar to that of Remark 3.3.

If v ∈ int V the procedure is similar. If θ = v1v2 . . . vn, let vi be the first
boundary vertex such that a path from v1 to vi must go through v, and let vj be
the first boundary vertex such that there exists a path from v1 to vj that does not
go through v. Now write θ′ = v1 . . . vi−1vj−1vj−2 . . . vivjvj+1 . . . vn. It is again easy
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v1

vi

vi−1

vi+1

vi+2

vn−2

vn−1

vi+1

vi+2

vn−2

vn−1

v1

’

(a) (b)
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v

v

vi

i−1

K
H

Figure 5. (a) An embedding of a graph G that has a cutvertex
as a boundary vertex. (b) A distinct embedding produced by re-
flecting the subgraph H to get a new subgraph H ′. Vertices vi+2

and vn−2 are not necessarily contiguous, and neither are vertices
v1 and vi−1.

(a) (b)
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Figure 6. (a) An embedding of a graph G that has a cutvertex
as an interior vertex, and (b) a distinct embedding produced by
reflecting the subgraph H to get a new subgraph H ′. Vertices v1

and vi−1 are not necessarily contiguous, and neither are vertices vi

and vj−1 nor vertices vj and vn.

to check that the contiguity relation given by Θ′ as constructed above is distinct
from the original Θ. Again, this implies the existence of two embedding classes.
An illustration of this procedure is given in Fig. 6.

It remains to prove the other direction; assume now that G has two distinct
embeddings. Assume further that the boundary vertex is not of the type discussed
in Remark 3.3. G cannot have all 2-paths exist, since that would be equivalent to
the assumptions of Lemma 3.6 and would thus imply that all embeddings of G are
identical. Thus there exist two disjoint pairs of boundary vertices, A = {u1, u2}
and B = {v1, v2}, that appear in a circular order around ∂D and have no 2-path
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between them. By Menger’s Theorem, there exists a vertex v that separates A and
B, which implies that v is a cutvertex. ¤

We end this section with a corollary concerning a class of circular planar, critical
graphs for which any two embeddings are topologically identical. As defined in [2],
a circular planar, critical graph is well connected if all possible k-connections exist.

Corollary 3.8. If a circular planar, critical graph G is well connected, then G has
only one embedding class.

Proof. If |∂V | ≤ 3, it is clear by inspection that G has no cutvertices. If |∂V | ≥ 4,
we know that all 2-connections exist. The existence of a cutvertex would contradict
this fact, so by Theorem 3.7 any two embeddings of G are identical. ¤

4. Enumerating Embedding Classes

4.1. The Combinatorial Representation.

Now that Theorem 3.7 provides a necessary and sufficient condition for the exis-
tence of multiple embedding classes, one naturally seeks to enumerate these classes
for a given circular planar, critical graph. Though no kind of closed form expression
for the number of embeddings can be given at this time, we will prove a result that
illustrates a method for enumerating embeddings on an ad hoc basis. For this we re-
quire the following combinatorial, as opposed to topological, means of representing
embedding classes, adapted from [6].

Consider a circular planar graph G, number the set of vertices arbitrarily, and
fix a circular orientation, say clockwise. A planar embedding of G can be specified
by specifying, for each vertex in V (G), a cyclic permutation given by the clockwise
sequence of vertices adjacent to v with respect to this particular embedding. We will
often refer to a sequence that represents the permutation, with the understanding
that if the vertex in question is adjacent to k distinct vertices, then there are k such
possible sequences.

We will call the collection of these permutations for all vertices in G a combi-
natorial representation (or simply representation) of the embedding, and denote it
by π. Given v ∈ V (G), the particular permutation that corresponds to v will be
denoted π(v).

As a consequence of regarding an embedding and its planar reflection to be
topologically equivalent, we will not differentiate between a representation π and the
representation π′ given by reversing all permutations of π (which clearly corresponds
to a planar reflection).

It is a fact (see [6]) that an embedding class has a unique combinatorial repre-
sentation. It is worth noting, however, that according to our definition of an em-
bedding, it is possible for two topologically distinct embeddings to have the same
combinatorial representation; in particular, this happens if the graph in question
has more than four boundary vertices, and contains a boundary vertex of degree
2 that is adjacent to at least one other boundary vertex (note that such a vertex
must be in the boundary because the existence of an interior vertex of degree 2
violates criticality). Note that this vertex is a cutvertex.
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An example is the circular planar, critical graph in Figure 7. The embedding in
the figure, in which vertex 5 is contiguous to vertex 6 and vertex 7 is contiguous to
vertex 8, immediately implies a second embedding in which vertex 5 is contiguous
to vertex 7 and vertex 6 is contiguous to vertex 8, while all other contiguity relations
are fixed. These two embeddings are topologically distinct, since they correspond
to different contiguity relations. Their combinatorial representations, however, are
identical.

5

6

89

3 4

1

2

7

14

15

12

11
10

13

Figure 7. An embedding of a circular planar, critical graph.

As a brief aside, note that just as it is possible to formulate a combinatorial
definition of a planar embedding, it is possible to formulate a combinatorial defi-
nition of a circular planar embedding. In particular, define a subset of vertices as
boundary vertices, and demand an embedding of the graph in which the boundary
vertices all appear on the boundary of the same face of the graph (it would remain
to prove that this is equivalent to the topological definition).

This is actually a special case of a more general type of constraint on the combi-
natorial representation of a graph discussed in [7]. In that paper, Stallmann defines
a data structure that allows for the generation of all planar embedding of a graph
subject to a set of such constraints. In particular, this allows one to enumerate
all embeddings of a circular planar graph subject to a particular set of constraints
corresponding to the requirement that all boundary vertices appear around one face
in a certain order.

However, this does not allow for the enumeration of all embeddings of a circular
planar graph since there exists, in general, more than one distinct set of constraints
for a given graph that expresses the fact that the boundary vertices are on the
same face. This is because the boundary vertices may appear in more than one
possible order around a face. Thus one would need to first find all possible such
sets of constraints. This is not trivial, but might be a simplification of the original
problem.

At any rate, we shall not require such a definition for our purposes; the standard
combinatorial representation will do fine, though we must be weary of cases in
which multiple embeddings correspond to the same representation.

Our enumeration strategy will be based on the isolation of subgraphs of circular
planar, critical graphs that have only one embedding class. Recall that C(G) denotes
the set of cutvertices of a graph G. Also, we will from now on say that a cutvertex
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is adjacent to a particular subgraph if it is adjacent to one or more of the vertices
in that subgraph.

Let G be a circular planar, critical graph and let G′ = G(V −C(G)), the subgraph
induced after removing all cutvertices. Let H be a component of G′ that contains
k boundary vertices, and let CH be the set of cutvertices adjacent to H. We call H
and the cutvertices adjacent to it, i.e. the subgraph induced by V (H)∪CH , a rigid
component of G. Note that cutvertices are part of more than one rigid component.

Also note that k ≥ 1 for any such H because of the following. Assume that k = 0
for some H, and that H is adjacent to one cutvertex in G (the general case of an
arbitrary number of cutvertices follows by induction). Since all vertices in H are in
the interior, contracting them all does not break any connections. This contradicts
the assumption that G is critical.

Proposition 4.1. Let H be a rigid component of a circular planar, critical graph.
H has only one embedding class and only one combinatorial representation.

Proof. Let σ be an embedding of G and consider the subgraph H. For all v ∈ CH ,
if v is in the interior, declare it to be boundary. Call this resulting graph H ′. The
boundary vertices of H ′ are the boundary vertices of H and CH ; no elements of
CH are in interior cells of H ′, so H ′ is clearly circular planar. Furthermore, H ′ is
critical; this is obvious if CH ⊂ ∂V , as well as otherwise, since in the latter case
any connection through G that went through a cutvertex (originally in the interior)
and terminated at a boundary vertex not in H now terminates at that cutvertex
and is still considered a connection through G, so assuming that H ′ is not critical
would imply that G is not critical.

Now, H ′ has no cutvertices by definition, so by Theorem 3.7, H ′ has a unique
embedding class. This implies that H ′ has a unique combinatorial representation,
which in turn implies the same for H. Thus H, which has no cutvertices (cutvertices
of G cannot be cutvertices of H), must also have only one embedding class, since
multiple embedding classes would imply multiple embedding classes of H ′. ¤

Finally, we have the following result due to Stallmann ([6]). The result is true
for any vertex, though for our purposes it has been phrased to discuss cutvertices
only. Consider a graph G and a vertex v of G. Now consider some permutation α
of the vertices adjacent to v, which in turn gives a sequence of vertices around v.
We say that this sequence is embedding-consistent if there exists a combinatorial
representation π of G such that π(v) = α.

Lemma 4.2 (Stallmann). Let G be a graph, and take a vertex v ∈ C(G). A
sequence given by a permutation π(v) around v is embedding-consistent if and only
if the following two conditions hold:

(1) the subsequence of π corresponding to each v-component that is adjacent to
v is embedding-consistent for that v-component;

(2) π does not contain a subsequence of the form eiejfifj, where ei, fi belong
to one v-component and ej , fj belong to another.

4.2. An Enumeration Algorithm.
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Proposition 4.1 and Lemma 4.2 outline a thorough, though inefficient, procedure
for finding all embeddings of a circular planar graph. We do this by deriving all
possible combinatorial representations from one combinatorial representation of
the graph, then accounting for multiple embeddings that correspond to the same
combinatorial representation. To wit, take a circular planar, critical graph G with
an embedding σ and corresponding representation π. For some vertex u ∈ V that
belongs to a rigid component of G and is not a cutvertex, Proposition 4.1 tells us
that for any embedding of G giving a representation ρ, ρ(u) is either π(u) or the
inverse of π(u). Thus, we need only look at cutvertices in order to generate all
possible combinatorial representations of a graph. We outline an algorithm below.
We also describe the algorithm as it acts on circular ordering of G, which is another,
and more efficient, way to approach this procedure.

Step 1: Choose some v ∈ C(G), and assume that there are k v-components.
By Lemma 4.2 the sequence given by the permutation π(v) can be partitioned into
consecutive subsequences corresponding to each v-component. These can be rear-
ranged to form a sequence of vertices around v that is still embedding-consistent;
this can be done in (k− 1)! unique ways and satisfy Stallmann’s Lemma (there are
k! permutations of exactly k items, but each permutation can be written in k ways,
so there are k!/k unique permutations).

Note that this is equivalent to partitioning ∂V (∂V − {v} if v is a boundary
vertex) into sets of boundary vertices such that two boundary vertices are in the
same partition if they are in the same v-component, which in turn divides a circular
ordering θ of ∂V , not counting v if it is in the boundary, into k consecutive sub-
sequences (it is easy to see that no circular ordering can contain a subsequence of
the form v1u1v2u2, where v1, v2 are in one v-component and u1, u2 are in another,
distinct v-component, and where none of the four vertices are cutvertices). The
rearrangement above is thus equivalent to rearranging these subsequences of θ in
every possible distinct way to get a new, valid circular ordering (for the subsequent
placement of v, if v ∈ ∂V , see Step 3).

Step 2: Each v-component can be drawn in two ways; the way it is already
drawn in the given embedding, or ”flipped” (see the proof of Theorem 3.7). That
is, if the subsequence of π(v) corresponding to this v-component is u1u2 . . . us, then
it can be replaced with us . . . u1, giving a sequence of vertices around v that is
still permutation consistent. Considering this step of the algorithm in terms of
a circular ordering, this is equivalent to reversing the subsequence of boundary

vertices belonging to the v-component in question. Thus there are now 2k (̇k − 1)!
ways of arranging v-components around v.

Any new embedding-consistent sequence around v gives a combinatorial repre-
sentation in the following way; the sequence around v changes in the way specified
in the previous steps. If any subsequences of the original sequence around v were
reversed, reverse all sequences around vertices in the v-component corresponding
to that subsequence.

Step 3: As noted previously, it is possible for distinct embedding to give the
same combinatorial representation. This happens only when there exists a cutver-
tex that is a boundary vertex. This is because if all cutvertices are in the interior,
then all boundary vertices belong to rigid components, hence the ordering of rigid
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components around the cutvertices as specified above uniquely determines a conti-
guity relation, and hence an embedding by Theorem 2.14.

If v is a cutvertex in ∂V , we must note that it can be placed on ∂D between any
two v-components; that is, in k different ways. In terms of a circular ordering, this
is equivalent to the ability to place v, given an arrangement of subsequences of θ
as given in Step 1, between any two of these subsequences.

Step 4: Repeat for all v ∈ C(G).

Citing Stallmann’s Lemma, We have finally accounted for all possible embedding
classes of G. It is important to note, however, that in general the representations
generated by the algorithm are not distinct; that is, the algorithm will generate a
particular representation more than once (see the example below). In particular,
if the above algorithm generates some representation, it will also generate its re-
flection. Because of this an explicit formula for the number of embeddings is not
immediate.

Remark 4.3. The algorithm, when applied to a circular ordering of a circular
planar, critical graph G, finds all possible contiguity relations on ∂V . This was an
open question conceived independently of the effort to find all embedding classes
of circular planar, critical graphs, though Theorem 2.14 showed that these two
questions are equivalent.

4.3. An Example.

As an example, consider the circular planar, critical graph in Figure 7. Here,
C(G) = {6, 10, 11, 13}, where vertex 6 is a boundary vertex. If we start the algo-
rithm with, say, cutvertex 10, and choose a circular ordering θ = 123456789, we see
that the 10-components partition θ into subsequences 1234567 and 89. This gives
the following two distinct possible circular orderings of ∂V , each representing an
embedding class:

123456789

124356798

If we use cutvertex 6 instead we would partition θ into subsequences 7 and
8912345. Recalling that we may place 6 between these subsequences in two ways
when generating new circular orderings, we get these distinct possible circular or-
derings:

123456789

123457689

Having applied the algorithm to all cutvertices and removed duplicate entries,
we are left with the following possible embedding classes, given here by the circular
orderings they impose on ∂V :

123456789

124356789

123457689

123456798

124357689

124356798
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123457698

This graph provides a good example of a situation in which the same combinatorial
representation is given twice by the algorithm. In particular, the 11-components
are G({6, 7, 11}) and G(V −{6, 7}). Fixing the latter and reflecting the former gives
an embedding the corresponds to the circular ordering 123457689. Now consider
vertex 6, with 6-components G({6, 7}) and G(V −{7}). Fixing both 6-components
and embedding 6 between vertices 5 and 6 instead of between 6 and 8 also gives
the same embedding. Both of these approaches would have been taken by the
algorithm, so that the embedding giving the circular ordering 123457689 would
appear (at least) twice.

5. On a Theorem of Perry

We end this paper by looking at its results and potential applicability in the
context of a theorem by Perry, proven in [5]. This theorem and its application to
the graph in Fig. 8, discussed below, were the initial motivation for this paper.

Definition 5.1. The dual graph, G⊥, of a circular planar graph G is a circular
planar graph that is defined as follows. Fix an embedding of G. The graph G
together with ∂D partition the disc into a finite number of disjoint cells. The
vertices of the dual graph are defined by placing a vertex in each cell. If one of
the edges of a cell is an arc of ∂D, place the vertex on this arc and declare it a
boundary vertex. For each edge in the original graph, there is one edge in the dual
graph that intersects the original edge and connects the two vertices drawn in the
adjacent cells.
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(d) (f)(e)

Figure 8. Two different contiguity relations on a circular planar,
critical graph. (a) A representative of the embedding class given
by one contiguity relation, (b) a graph that is Y − ∆ equivalent
to (a), (c) the dual of (a). (d) A representative of the embedding
class given by another contiguity relation, (e) a graph that is Y −∆
equivalent to (d), (f) the dual of (d).
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An example is found in Fig. 8. Observe that defining G⊥ simultaneously specifies
an embedding of G⊥.

Theorem 5.2 (Perry). Given a circular planar, critical graph G, the dual graph
G⊥ is Y −∆ equivalent to G if and only if G is well-connected.

This theorem, as well as previous work on which it is based (e.g. [2]), operates
under the implicit assumption of a fixed embedding of the graph G, since otherwise
a dual cannot be defined. Consider now the two planar graphs in (a) and (d) of
Fig. 8.

The graph in Fig. 8a is not well-connected, hence is not Y − ∆ equivalent to
its dual. It is, however, Y − ∆ equivalent to the graph in Fig. 8e, which is the
dual of the graph in Fig. 8d. Observe that Fig. 8d is simply a topologically dis-
tinct embedding of the graph in Fig. 8a. In this special case, the fact that two
topologically distinct embeddings of a graph represent the same connectivity type
translates into a somewhat subtle geometric relationship between the two embed-
dings (more accurately, between the embedding classes they represent). In light of
Corollary 3.8, it is easy to see why Theorem 5.2 would ignore this type of relation-
ship. A graph-topological generalization of this theorem would be an interesting
consequence of a mathematical framework that classifies electrical networks by their
graph-topological, not geometric, properties.
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