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Abstract. This paper continues the work done by Tim DeVries in 2003 on

random walk network recoverability. DeVries defined a random walk network

as a special type of graph on which a random walk is performed, and then posed

the question of whether the edge probabilities in the graph could be recovered

from the graph as well as walk-endpoint probabilities from walks beginning

at all vertices in the graph. He presented a conjecture hypothesized by Ryan

Card (which bore a striking similarity to a conjecture posed by Kurt Krenz in
1992) on a necessary and sufficient condition for recoverability. Furthermore,

he proved that the condition was necessary. In this paper it will be shown
that the condition of Card’s Conjecture, while necessary, is not sufficient to
ensure network recoverability. The question of network recoverability is further
discussed in both algebraic and geometric terms. Finally, a refined conjecture
similar to (but more restrictive than) Card’s Conjecture is made.

1. Introduction

In his 2003 paper [1], Tim DeVries quoted the following conjecture, which he
named “Card’s Conjecture”:

Conjecture 1.1. (Card’s Conjecture) A random walk network is recoverable if and
only if all of the edges1 leaving any interior vertex can be simultaneously extended
to vertex-disjoint paths to the boundary.

DeVries proved that it was a necessary condition for recoverability, but was
unable to find a proof for the other direction. It turns out that while the condition
that it must be possible to extend all edges leaving an interior vertex to disjoint
boundary paths is necessary, it is not sufficient for recoverability. (As an aside,
we note that DeVries proof required something that DeVries stated as the “Choke
Lemma” but did not provide a proof for. This lemma is equivalent to Menger’s
n-Arc Theorem, which was proved in 1927. [3])
In the next section, necessary background on random walk networks is given,

including a brief discussion of Card’s Conjecture. In section three, a simple net-
work that is a counterexample to Card’s Conjecture is discussed, and shown to be a
counterexample. In sections four and five, the question of when a network is recov-
erable is discussed, first in algebraic terms, and then in geometric ones. Finally, in
section six, a new conjecture is made, which is meant to replace Card’s Conjecture.

1Even though he dealt entirely with directed graphs, DeVries used the term edge rather than

arc. The same convention will be followed in this paper. Please note that every time the word

edge is used in this paper, a directed edge is meant.
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2. Background

For the following definitions, let G = (V, ∂V,E) be a directed graph with bound-
ary (where V is the set of vertices, ∂V ⊂ V is the subset of boundary vertices, and
E is the set of edges.) Let Int = V − ∂V be the set of interior vertices.

Definition 2.1. A walk is a finite sequence of vertices w = (v1, v2, ..., vk) for some
vi ∈ V with the property that for all 1 ≤ i < k, there is an edge from vi to vi+1.
(The initial vertex of the walk is v1, the ith vertex of the walk is vi, the final vertex
of the walk is vk, and the number k is the length of w). An infinite walk is an
infinite sequence of vertices (v1, v2, ...) for some vi ∈ V with the property that for
all i ∈ N, there is an edge from vi to vi+1. (For infinite walks, the initial and ith
vertices are still defined, but not the final vertex or length.) A uv-walk is a walk
with initial vertex u and final vertex v.

Definition 2.2. We say a walk or infinite walk visits a vertex v if v = vi for some
i. We say a walk or infinite walk visits a vertex v n times if v = vi for exactly n
distinct i. We say a walk or infinite walk visits an edge e if e is the edge from vi to
vi+1 for some value of i, and we say a walk or infinite walk visits an edge e n times
if e is the edge from vi to vi+1 for exactly n distinct values of i.

Definition 2.3. A path is a walk where all vertices visited by the walk are visited
once. A uv-path is a uv-walk that is a path. A boundary path is a path where the
final vertex is a boundary vertex.

Definition 2.4. Let u, v ∈ V be (not necessarily distinct) vertices. We write u ∼ v
if there is an edge to u from v. Note that u ∼ v and v ∼ u are not equivalent.
When u ∼ v we say u is adjacent to v, but again we mean this in a directional
sense, so that just because u is adjacent to v (in the sense that will be used in this
paper) does not mean that v is adjacent to u.

Definition 2.5. (random walk network)
Let G satisfy the following four properties:

(1) If u, v ∈ V are any two (not necessarily distinct) vertices with v ∼ u, there
is exactly one uv-edge.

(2) If u, v are interior vertices, u ∼ v if and only if v ∼ u.
(3) If u is any vertex and v is a boundary vertex, u ∼ v if and only if u = v.
(4) For all interior vertices v, there is a boundary path with initial vertex v.

Let ρ be a function from V ×V to [0, 1] which satisfies the following two equations:

(2.1) For all u ∈ V ,
∑

v:v∼u

ρ(u, v) = 1

(2.2) ρ(u, v) > 0 if and only if v ∼ u

(Since ρ(u, v) is always zero if there is no (directed) edge from u to v, and if there
is such an edge it is unique, ρ can also be thought of as a function on edges. Such
a function ρ - whether defined on edges or on ordered pairs of vertices - is called a
transition probability.) The pair Γ = {G, ρ} is a random walk network.

Let Γ be a random walk network, and let Sf be the set of all walks and S∞ the
set of all infinite walks on Γ. Given a walk w ∈ Sf with length n, let Bw be the
set of all infinite walks w′ ∈ S∞ such that the initial n terms of w

′ is the sequence
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w. Let A ⊂ P(S∞) be the set defined by the properties: (i) for all walks w on Γ,
Bw ∈ A; and (ii) A is closed under complement and finite and countable union.
Note that Bu =

⋃

v:v∼uB(euv) where (euv) is the walk consisting of the single edge
from u to v.
Let f : Sf → (0, 1] be the function:

(2.3) f(w) =

{

∏k−1
i=1 ρ(vi, vi+1) if k > 1

1 if k = 1

for w = (v1, ..., vk) ∈ Sf . For each v ∈ V , define the measure Pv on A by:

(2.4a) Pv(Bw) =

{

f(w) if v is the initial vertex of w

0 otherwise

(2.4b) Pv

(

⋃

i∈N

Bi

)

=
∑

i∈N

mv(Bi) for Bi ∈ A pairwise disjoint sets

(2.4c) Pv(S −B) = 1− Pv(B) for B ∈ A

Theorem 2.1. A is a Borel algebra, and Pv is a probability measure on A.

For definitions of a Borel algebra and a probability measure, as well as for a
proof of this theorem, see Andrew Lewis’ paper “Random Walk Networks” [2]. This
makes everything we will say about the probabilities of various events rigorous as
the measure (with the respect to this probability measure) of a corresponding set
in A. The interperetation for Pv(B) is the probability that a random walk on Γ
with initial vertex v and transition probabilities ρ will be an element of the set B.

Proposition 2.2. Given a random walk network Γ = {G, ρ}, and a vertex v of G,
let Wv be the set of infinite walks w = (v1, v2, ...) that visit v. Then Wv ∈ A.

Proof. Let W
(n)
v be the set of infinite walks w = (v1, ...) with nth vertex v, where

v is not the kth vertex for k < n. Let W
′(n)
v be the set of walks with length n and

final vertex v that visit v once. Note that W
′(n)
v is finite, since there are at most

|V |n walks of length n. Then:

(2.5) W (n)
v =

⋃

w∈W
′(n)
v

Bw

and

(2.6) Wv =
⋃

n∈N

W (n)
v

so Wv ∈ A. ¤

We can therefore talk about the probability Pu(Wv) for any pair of vertices u
and v that a walk with initial vertex u will visit v. We will write this as P (u→ v).

Lemma 2.3. Given a random walk network Γ = {G, ρ} and vertices u and v of G,

(2.7) P (u→ v) =
∑

w∈W ′

f(w)

where W ′ is the set of all uv-walks that visit v once.
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Proof. We have P (u → v) = Pu(Wv), where Wv =
⋃

n∈N W
(n)
v , and W

(n)
v =

⋃

w∈W
′(n)
v

Bw, where W
′(n)
v is the set of walks with length n and final vertex v, that

visit v once. Note that Wv =
⋃

n∈N W
(n)
v is a disjoint union, since an infinite walk

w that visits v is in the set W
(n)
v where n is the least natural number such that v

is the nth vertex, and in no other set W
(m)
v . Since Pu(Bw) = f(w) for all walks w

with initial vertex u, and Bw ∩Bw′ = ∅ for w,w′ ∈W
′(n)
v , w 6= w′:

(2.8) Pu(W
(n)
v ) =

∑

w∈W
′(n)
uv

f(w)

where W
′(n)
uv is the set of uv-walks with length n that visit v once. Therefore, we

have

Pu(Wv) = Pu

(

⋃

n∈N

W (n)
v

)

=
∑

n∈N

∑

w∈W
′(n)
uv

f(w)

=
∑

w∈W ′

f(w)

(2.9)

¤

Proposition 2.4. Given a random walk network Γ = {G, ρ}, let q be an interior
vertex of G with n adjacent vertices Q = {q1, ..., qn}, and let s be a boundary vertex.
Then:

(2.10) P (q → s) =

n
∑

i=1

ρ(q, qi)P (qi → s)

Proof. From Lemma 2.3, we have:

(2.11) P (q → s) =
∑

w∈W

f(w)

where W is the set of all qs-walks that visit s once. Any walk with initial vertex q
must have second vertex qi for some qi ∈ Q, so any walk w ∈ W is q followed by
a qis-walk. Let Wi ⊂ W be the set of walks w ∈ W with second vertex qi, and let
W ′

i be the set formed from Wi be removing the initial q from each walk w ∈ Wi.
We must have:

P (q → s) =

n
∑

i=1

∑

w∈Wi

f(w)

=

n
∑

i=1

∑

w∈W ′

i

ρ(q, qi)f(w)

=

n
∑

i=1

ρ(q, qi)P (qi → s)

¤

For the following two definitions, let the vertices of V be ordered from 1 to
N = k+ d (where k is the number of interior vertices, d is the number of boundary
vertices) in such a way that the boundary vertices are labeled from 1 to d, and
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the interior vertices are labeled from d + 1 to d + k = N . Then we can write
V = {v1, ..., vN}, ∂V = {v1, ..., vd}, Int = {vd+1, ..., vd+k}.

Definition 2.6. Given a random walk network Γ, we define the transition matrix,
T = (tij), for Γ by:

(2.12) tij = ρ(vi, vj)

T can be written in block form as:

(2.13) T =

(

I 0

X Y

)

where I is the d× d identity matrix, 0 is the d× k zero matrix, and X and Y are
k × d and k × k, respectively.

Definition 2.7. Given a random walk network Γ, we define the absorption matrix,
B = (bij), for Γ as the |Int| × |∂V | matrix:

(2.14) bij = P (vi+d → vj)

We define the extended absorption matrix, B̂, to be the |V | × |∂V | matrix:

(2.15) b̂ij = P (vi → vj)

The extended absorption matrix B̂ gives the probabilities that a walk from an
interior or boundary vertex i will visit a boundary vertex j, whereas the absorption
matrix B gives the probabilities that a walk from an interior vertex i will visit a
boundary vertex j. We see immediately that B and B̂ contain the same information,

since the only edges out of boundary vertices are loops, so B̂ takes block form

(

I
B

)

where I is the |∂V | × |∂V | identity matrix.

Theorem 2.5. If Γ = {G, ρ} is a random walk network on a directed graph with
boundary G = {V, ∂V,E} (where |∂V | = d and |V − ∂V | = k), with transition
matrix T and absorbtion matrix B, then:

(2.16) B = (I − Y )−1X, where T =

(

I 0

X Y

)

where I is the d× d identity matrix, 0 is the d× k zero matrix, and X and Y are
d× k and x× k, respectively. Furthermore, the probability that a random walk will
reach the boundary from any vertex in the interior is 1.

For a proof, see [1].

Definition 2.8. Given a directed graph with boundary G = (V, ∂V,E) which
satisfies all the properties required to define a random walk network on G, Let T
be the set of transition matrices on G. We then define the transition to absorption
map for G as the function ϕG : T →M|Int|×|∂V |(R) that sends a transition matrix
T to the associated absorption matrix B.

Definition 2.9. A pair G, B is said to be recoverable if there is a unique transition
matrix T on the graph G such that ϕ(T ) = B. A graph G is called recoverable if
ϕG is injective. Given an edge euv ∈ E from u to v, ρ(euv) is said to be recoverable
from G and B if T (u; v) is constant on all T ∈ T such that ϕG(T ) = B.

In his 2003 paper “Recoverability of Random Walk Networks” [1], Tim DeVries
gave Card’s Conjecture and proved one direction of it:
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Theorem 2.6. (DeVries, 2003) If a random walk network is recoverable, then all
of the edges leaving any interior vertex can be simultaneously extended to vertex-
disjoint paths to the boundary.

Unfortunately, the other half of the conjecture is false.

3. A Counterexample to Card’s Conjecture

Consider the random walk network in figure 3.1, which we will call Ca to denote
its dependence on the parameter a. It is easy to check that all of the edges leaving
any interior vertex can be simultaneously extended to vertex-disjoint paths to the
boundary.
The transition matrix Ta for Ca is the following:

(3.1) T (a) =





























1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
1
3

1
3 0 0 0 0 0 0 1

3
0 1

3
1
3 0 0 0 0 0 1

3
0 0 1

3
1
3 0 0 0 0 1

3
1
3 0 0 1

3 0 0 0 0 1
3

0 0 0 0 a 1
2 − a a 1

2 − a 0





























=

(

I 0

X Ya

)

where I is the 4× 4 identity matrix, 0 is the 4× 5 zero matrix,

X =













1
3

1
3 0 0

0 1
3

1
3 0

0 0 1
3

1
3

1
3 0 0 1

3
0 0 0 0













, and Ya =













0 0 0 0 1
3

0 0 0 0 1
3

0 0 0 0 1
3

0 0 0 0 1
3

a 1
2 − a a 1

2 − a 0













.

5

1

a

3

7

2

1/2−a

a 1/3

1/3

4

6

8

1/3

1/3 1/3

1/3

1/3

1/31/3

1/3

1/3

1/3

1/2−a

Figure 3.1. The random walk network Ca. (The center vertex
is vertex 9. Black vertices are boundary, white are interior.) The
parameter a may be any real number 0 < a < 1

2 .
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Now consider a walk beginning at the center vertex (9) of Ca. Ca has north-south
symmetry, so the probability of such a walk visiting vertex 1 and vertex 4 are the
same, and likewise for vertices 2 and 3. Likewise, Ca has east-west symmetry, so the
probability of a walk visiting 1 and 2 are the same, and therefore all probabilities
are the same, hence all must be 1

4 . A walk ‘step’ from any side vertex (5, 6, 7, or

8) has a 1
3 probability of going to the adjacent boundary vertices, and a

1
3 chance

of going to the center, at which point a walk has a 1
4 probability of ending up at

each of the four boundary vertices, so the probabilities are 13 +
1
3 ×

1
4 =

5
12 of ending

up at the adjacent two boundary vertices, and 1
12 of ending up at the other two

boundary vertices. Thus our absorbtion matrix Ba must be the following, which is
constant as a function of a!

(3.2) Ba =













5
12

5
12

1
12

1
12

1
12

5
12

5
12

1
12

1
12

1
12

5
12

5
12

5
12

1
12

1
12

5
12

1
4

1
4

1
4

1
4













Since the absorbtion matrix does not depend on a, the inverse problem for this
graph and absorbtion matrix does not have a unique solution. Therefore Card’s
Conjecture must be false. (It is also possible to show algebraically that Ba =
(I − Ya)

−1X is a constant function of a.)

4. Further Musings on Recoverability

Let Γ = {G, ρ} be a random walk network with transition matrix T written in
block form as

T =

(

I 0

X Y

)

where the four blocks represent boundary-boundary, boundary-interior, interior-
boundary, and interior-interior connections, respectively. Let B = (bij) be the
absorbtion matrix, B = (I−Y )−1X, and recall that bij = P (u→ v) where u is the
ith interior vertex and v is the jth boundary vertex. Consider an interior vertex q
with n adjacent vertices Q = {q1, ..., qn}, and a boundary vertex s. Recall equation
2.10:

P (q → s) =
n
∑

i=1

ρ(q, qi)P (qi → s)

If we wish to solve the inverse problem for ρ from our graph G and the absorbtion
matrix B, P (q → s) is an entry in B, and P (qi → s) is an entry in the extended

absorption matrix B̂, so we may take these to be known, and ρ(q, qi) to be unknown.
This is therefore a system of |∂V | equations in n variables. Because B is in fact
the absorbtion matrix for some function ρ defined on pairs of vertices of G, these
equations will be consistent, and there will be a unique solution if and only if n of
the equations are linearly independent. Thus the system is uniquely solvable if and
only if there is a set S = {s1, ..., sn} of n boundary vertices such that det(B̂(Q;S)
is nonzero.

Theorem 4.1. Let Γ = {G, ρ} be a random walk network with absorption matrix B

and extended absorption matrix B̂. If q is an interior vertex of G with n adjacent
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vertices Q = {q1, ..., qn}, then the probabilities ρ(q, x) on the edges leaving q are
recoverable from G and B if and only if there exists a set S = {s1, ..., sn} of n

boundary vertices such that det(B̂(Q;S)) is nonzero.

Proof. From the argument immediately prior to the statement of this theorem,
we see that the probabilities are recoverable if there is such a set S. If there
is no such set S, then any set S ′ of n boundary vertices not adjacent to q has
det(B̂(Q;S′)) = 0, so rank(B̂(Q; ∂V )) ≤ n− 1, hence:

(4.1) dim(ker(B̂(Q; ∂V )T )) ≥ 1

Let ~y = (y1...yn)
T be a nonzero (column) vector of the kernel of B̂(Q; ∂V )T . Since

the column sums of B̂(Q; ∂V ))T are 1, ~y ¦ ~1 = 0 where ~1 ∈ Rn is the vector of
all ones. Let ~x be the (column) vector (ρ(q, q1)...ρ(q, qn))

T of probabilities on the
edges leaving vertex q. Note that:

(4.2) B̂(Q; ∂V )T~x = (B̂(q; ∂V ))T

Let m be the minimum entry in ~x. Since ρ(q, qi) is positive whenever qi ∼ q (which
is true for all i), m > 0. Let c ∈ (0, 1) be sufficiently small that |cyi| < m for all i.
Then let ~x′ = ~x+ c~y and let x′i be defined by ~x

′ = (x′1...x
′
n). The sum of all entries

in ~x′ is 1, since ~1 ¦ ~x = 1 and ~1 ¦ ~y = 0; all entries in ~x′ are positive, by the triangle
inequality, since all entries in ~x are positive, and are greater in magnitude than all
entries of c~y. From the definition of ~x′, we obtain:

(4.3) B̂(Q; ∂V )T~x′ = B̂(Q; ∂V )T (~x+ c~y) = (B̂(q; ∂V ))T

Let ρ′ be a new function on V × V defined by:

(4.4) ρ′(u, v) =

{

ρ(u, v) if u 6= q or v /∈ Q

x′i if u = q and v = qi

Note that ρ′ is a transition probability. Let Γ′ = {G, ρ′} be a new random walk
network on the original graph G with the new probability function ρ′, and let B′

be the absorbtion matrix of Γ′. We denote the probability that a random walk
beginning at u will visit v by P (u → v) in Γ, and by P ′(u → v) in Γ′, and we
denote the probability of an infinite walk from a vertex u being in a set W ∈ A
by Pu(W ) or P

′
u(W ) similarly. Let P(q)(u→ v) denote the probability that a walk

beginning at u will visit v before visiting q in Γ; formally:

(4.5) P(q)(u→ v) = Pu(W )

where W is the set of all infinite walks with initial vertex u that visit v before
visiting q. We can show W ∈ A in a manner analogous to the proof of Proposition
2.2. Again, we define P ′(q)(u→ v) similarly.
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Then, given a vertex v ∈ ∂V :

P (q → v) =
n
∑

i=1

ρ(q, qi)P (qi → v)

=

n
∑

i=1

ρ′(q, qi)P (qi → v)

=
n
∑

i=1

ρ′(q, qi)
[

P(q)(qi → v) + P (qi → q)P (q → v)
]

=

[

n
∑

i=1

ρ′(q, qi)P(q)(qi → v)

]

+ P (q → v)

[

n
∑

i=1

ρ′(q, qi)P (qi → q)

]

So,

P (q → v)− P (q → v)

[

n
∑

i=1

ρ′(q, qi)P (qi → q)

]

=

n
∑

i=1

ρ′(q, qi)P(q)(qi → v)

(4.6) P (q → v) =

∑n
i=1 ρ

′(q, qi)P
′
(q)(qi → v)

1−
∑n

i=1 ρ
′(q, qi)P ′(qi → q)

since P ′(q)(qi → v) = P(q)(qi → v) and P ′(qi → q) = P (qi → q) since no walk that

contributes to either probability visits any of the edges where ρ′ is different from ρ.
We know that the denominator is nonzero, since it is the probability that a walk
beginning at q will not visit q more than once, which cannot be 1 because there is
a boundary path with initial vertex q, so the probability that a walk from q will
reach the boundary without visiting q a second time is nonzero.
A similar chain of equations dealing with the network Γ′ shows that

(4.7) P ′(q → v) =

∑n
i=1 ρ

′(q, qi)P
′
(q)(qi → v)

1−
∑n

i=1 ρ
′(q, qi)P ′(qi → q)

Therefore, we must have P ′(q → v) = P (q → v) for all v ∈ ∂V .
Let W be the set of infinite walks that visit v, let W ′ be the set of infinite walks

that visit v without first having visited q, and let W ′′ be the set of infinite walks
that visit q. Then:

B′(u; v) = P ′(u→ v) = P ′u(W ) = P ′(W ′) + P ′(q → v)P ′(W ′′)

= P (W ′) + P (q → v)P (W ′′) = P (W ) = P (u→ v) = B(u; v)
(4.8)

We see that B′ = B; there are two transition probabilities with the same associ-
ated absorbtion probability and different probabilities on edges leaving q, so the
probabilities on the edges leaving q are not recoverable. ¤

5. From Algebra to Geometry

Now let us go back and examine the determinant of B̂(Q,S). From the definition
of the determinant, we have:
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det(B̂(Q;S)) =
∑

σ∈Sn

sgn(σ)
n
∏

i=1

b̂iσ(i)

=
∑

σ∈Sn

sgn(σ)
n
∏

i=1

P (qi → sσ(i))

=
∑

σ∈Sn

sgn(σ)
n
∏

i=1

∑

w∈W (qi,sσ(i))

f(w)

(5.1)

where W (qi, s) is the set of qis-walks that visit s once.

Let an n-walk be a set ω = {w1, ..., wn} of n walks. Let f̂ be a function from the

set of n-walks to R, defined by f̂(ω) =
∏

w∈ω f(w) where f is defined as in (2.7).
Let Ω(Q,S) be the set of all n-walks ω = {w1, ..., wn} such that every element of
Q is the initial vertex of one of the wi, and every element of S is the final vertex
of one of the wi. Let σ(ω) be the permutation σ ∈ Sn such that sσ(i) is the final

point of the walk wj ∈ ω with initial point qi for all i ∈ {1, ..., n}
2 Given σ ∈ Sn,

let Ω(σ) be the set Ω(σ) = {ω ∈ Ω(Q,S)|σ(ω) = σ}. Then:

det(B̂(Q;S)) =
∑

σ∈Sn

sgn(σ)
n
∏

i=1

∑

w∈W (qi,sσ(i))

f(w)

=
∑

σ∈Sn

sgn(σ)





∑

w1∈W (q1,sσ(1))

f(w1)



 ...





∑

wn∈W (qn,sσ(n))

f(wn)





=
∑

σ∈Sn

sgn(σ)
∑

w1∈W (q1,sσ(1))

...
∑

wn∈W (qn,sσ(n))

f(w1)...f(wn)

=
∑

σ∈Sn

sgn(σ)
∑

ω∈Ω(σ)

f̂(ω)

=
∑

σ∈Sn

∑

ω∈Ω(σ)

f̂(ω)sgn(σ(ω))

=
∑

ω∈Ω(Q,S)

f̂(ω)sgn(σ(ω))

(5.2)

Here we have gone from a purely algebraic construction (determinant) to a more
geometric one (a certain sum of values of a function defined on n-walks).

6. A New Conjecture for Recoverability

Let us consider (5.2):

det(B̂(Q;S)) =
∑

ω∈Ω(Q,S)

f̂(ω)sgn(σ(ω))

2The permutation σ(ω) is dependent on how we order the sets Q and S, so we must be con-

sistent with our orderings of these sets throughout any discussion. However, we will be interested

primarily in whether the two permutations σ(ω1), σ(ω2) ∈ Sn “induced” by two n-walks ω1, ω2

are the same, or have the same sign, and that is independent of the orderings of Q and S.
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One way of analyzing when this is non-zero is to cancel n-walks with opposite

signs of σ(ω) on which f̂ is the same. While it is possible for different n-walks to

‘accidentally’ give the same value f̂ , we will consider sets of n-walks on which f̂
is necessarily constant - i.e. both n-walks visit each edge of the graph the same
number of times.

Definition 6.1. Given an n-walk ω = {w1, ..., wn}, and a vertex or edge x ∈ V or
E, we say ω visits x if wi visits x for some i, and we say ω visits x k times if the
sum from i = 1 to n of the number of times wi visits x is k.

Definition 6.2. Given an n-walk ω = {w1, ..., wn}, the set of initial vertices of ω,
VI(ω), is the set of vertices that are initial vertices of one of the walks wi, and the
set of final vertices of ω, VF (ω), is the set of vertices that are final vertices of one
of the walks wi.

Definition 6.3. Given an n-walk ω, we define R(ω) to be the set of all n-walks
ω′ such that VI(ω

′) = VI(ω), VF (ω
′) = VF (ω), and for all e ∈ E, the number of

times e is visited by ω′ is equal to the number of times e is visited by ω. We define
R+(ω) as the set {ω′ ∈ R(ω)|sgn(σ(ω′)) = 1}, and we define R−(ω) to be the set
R(ω)−R+(ω).

Observation. Since f(w) is the product of the edge probabilities ρ(e) on all edges
visited by w raised to the power of the number of times edge e was visited, we can

rewrite f̂(ω) as:

f̂(ω) =
∏

w∈ω

f(w)

=
∏

e∈E

ρ(e)ke
(6.1)

where ke is the number of times edge e is visited by ω. Therefore, f̂(ω
′) = f̂(ω) for

all ω′ ∈ R(ω).

Observation. Since we know that f̂(ω′) = f̂(ω) for all ω′ ∈ R(ω), equation (5.2):

det(B̂(Q;S)) =
∑

ω∈Ω(Q,S)

f̂(ω)sgn(σ(ω))

can be rewritten

(6.2) det(B̂(Q;S)) =
∑

R(ω):ω∈Ω(Q,S)

f̂(ω)(|R+(ω)| − |R−(ω)|)

This allows us to consider various n-walks ω and look at the cancellations in
(5.2) between the terms for elements in R(ω). For example, if none of the walks in
ω share any vertices with each other, then an initial vertex q ∈ VI(ω) is connected
by edges used by the n-walk to the endpoint of the walk with initial vertex q, and
to no other. Therefore any other n-walk in R(ω) must have the same final vertex
for the walk with initial vertex q, and since q is arbitrary, we see that σ(ω′) = σ(ω)
for all ω′ ∈ R(ω).
If two walks in ω each visit a vertex v once, and no other vertex is visited by

more than one walk in ω, then to each n-walk ω′ ∈ R(ω) we can associate another
n-walk ω̃′ ∈ R(ω) where all walks disjoint from v are the same, and the two walks
passing through v are modified in the following way: let w1, w2 ∈ ω be the two
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walks which intersect v, and let w
(1)
1 and w

(2)
1 denote the portions of w1 before

(and including) and after v, respectively; declare w
(1)
2 and w

(2)
2 to be the before-

and after-v portions of w2 similarly; and replace w1 and w2 by two walks which are

the concatenation of w
(1)
1 and w

(2)
2 , and the concatenation of w

(1)
2 and w

(2)
1 . Note

that ˜̃ω′ = ω′, so the map ω′ 7→ ω̃′ is a bijection that reverses the sign of σ(ω′).
Therefore, R(ω) must contain the same number of elements ω′ with sgn(σ(ω′))
positive as elements where it is negative.
Now we are ready to give a refined conjecture along the same lines as Card’s

Conjecture. This conjecture is meant to give sufficient conditions for a network Γ
to be recoverable. 3

Conjecture 6.1. (Refined Walk Network Recoverability Conjecture) If Γ is a
random walk with interior vertex q, where Q = {q1, ..., qn} is the set of vertices
adjacent to q, such that there is a set S of n boundary vertices so that for all n-
walks ω = {w1, ..., wn} ∈ Ω(Q,S) where the wi are disjoint paths we have that
sgn(σ(ω)) = 1, and there exists an n-walk ν in Ω(Q,S) that is a set of disjoint
paths, then the probabilities ρ(q, qi) are recoverable from G and B. If all interior
vertices have that property, then Γ is recoverable.

In order to give a justification for why I made this conjecture (6.1), I will make
the following purely graph-theoretical conjecture (which makes no reference to edge
weights) which will imply conjecture 6.1, and give an argument for why it should
be true.

Conjecture 6.2. If Q ⊂ Int and S ⊂ ∂V are two sets of n interior and boundary
vertices, respectively, such that for all n-walks ω = {w1, ..., wn} ∈ Ω(Q,S) where
the wi are disjoint paths we have that sgn(σ(ω)) = 1, then for all ω ∈ Ω(Q,S),
|R+(ω)| ≥ |R−(ω)|.

An argument for why this conjecture might be true:
First we will consider a specific case where n = 2 for the sake of simplicity. Let

the n-walk ω = {w1, w2} from the set of initial vertices {1, 2} to the set of final
vertices {3, 4} be as in figure 6.1. Note that the only n-walk from {1, 2} to {3, 4}
where the walks are disjoint paths has a path with initial vertex 1 and final vertex
3, and a path with initial vertex 2 and final vertex 4. Then in figure 6.2 where we
see the set of 2-walks R(ω) there are four 2-walks with 1→ 4 and 2→ 3, and five
2-walks with 1→ 3 and 2→ 4, so the conjecture is true in this case.
In general, we see that in any case where a group of edges can be used in more

than one way by the n-walk, those vertices form a loop. If the loop is used partially
by one walk and partially by another walk, it’s a crossing, and if it’s used entirely
by one walk, it is not a crossing. Then each crossing corresponds to a swap in the
permutation, so we can write the permutation as a product of swaps that correspond
to crossings like this, and we see that the permutation is of the same sign as the
permutation of the n disjoint paths if and only if the number of crossings is even.
The fewer the crossings, the more the loops that are not crossings, and such loops

3It is possible that this conjecture also gives necessary conditions, but I am hesitant to even

conjecture that as of yet. A proof of necessity would require that it be shown that there is an

appropriate selection of transition probabilities such that certain subdeterminants of B̂ would be

zero. This would be very similar to an unproven conjecture with regards to electrical networks,

which have been better studied.
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3 4

Figure 6.1. A sample 2-walk ω.

Figure 6.2. The set R(ω).

can be attached to any of the walks that pass through some part of the loop. In
other words, there is some “stuff” that occurs where there are potential crossings.
Where there is a crossing, that restricts how the “stuff” is used, but if there is no
crossing, there is more freedom in how the n-walk uses the “stuff,” so on average,
there are more walks with fewer crossings than with more. Since there are walks
with zero crossings and no walks with negative numbers of crossings, and there is
a limit to how many crossings there can be, the numbers of possible crossings that
are even are less, on average, than the numbers of possible crossings that are odd,
so there are more n-walks with even numbers of crossings. However, there are many
intricacies to this problem that will make difficult a rigorous proof.
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Claim. Conjecture 6.2 implies conjecture 6.1.

Proof. To prove the claim, we will give a proof of conjecture 6.1, with the results
of conjecture 6.2 assumed to be true.
If all n-walks ω from Q to S that are sets of disjoint paths have sgn(σ(ω)) = 1,

then more things with a given value of f̂ will have positive sign than negative, so
equation (6.2)

det(B̂(Q;S)) =
∑

R(ω):ω∈Ω(Q,S)

f̂(ω)(|R+(ω)| − |R−(ω)|)

will be a sum of non-negative terms, since f̂ is identically positive, and |R+(ω)| −
|R−(ω)| is non-negative. Since there exists a walk ν that is a set of disjoint paths,
the term in the sum corresponding to R(ν) will be positive, so the sum will be

positive, and we have det(B̂(Q;S)) 6= 0, for any transition probability ρ. Since

det(B̂(Q;S)) 6= 0, the probabilities on the edges leaving q are recoverable from G
and B. If all interior vertices have the property, then the probabilities on the edges
leaving all interior vertices are recoverable, and since all edges are either leaving
an interior vertex or are a loop where ρ must equal 1, all edge probabilities are
recoverable, so Γ is recoverable from G and B. Since this is true for any transition
probability ρ, the map ϕG is injective, so Γ is recoverable. ¤

7. Appendix: MATLAB code to recover a network from G and B

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% RWNrecover.m %

% When given the adjacency matrix and absorbtion matrix for a random walk %

% network, returns the transition matrix T if the network is recoverable %

% from G and B, otherwise it prints a message stating that the pair (G,B) %

% is not recoverable. %

% %

% Call as RWNrecover(G,B) where G is the graph adjacency matrix, and B is %

% the absorbtion matrix. %

% %

% Author: David Diamondstone; diamondstone@brandeis.edu %

% August 11, 2004 %

% Written as part of the 2004 Summer REU on inverse problems at the %

% University of Washington. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function T=RWNrecover(G,B)

% Recover |dV| and |Int| from the dimensions of B

v=size(B);

d=v(2); % |dV|

n=v(1); % |Int|

N=n+d; % |V|

% Create the extended absorption matrix B_hat
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I=eye(d);

B_hat=zeros(N,d);

for i=1:d

for j=1:d

B_hat(i,j)=I(i,j);

end

end

for i=1:n

for j=1:d

B_hat(d+i,j)=B(i,j);

end

end

% Check that G is a legal adjacency matrix for a graph with d boundary

% vertices and n interior vertices

v=size(G);

if ~((v(1)==N)&&(v(2)==N))

disp(’G is not a valid adjacency matrix for B.’)

% G has wrong dimensions

else if ~(G(1:d,1:d)==eye(d))

disp(’G is not a valid adjacency matrix for B.’)

% either G has non-loop boundary-boundary edges, or at least one

% boundary vertex has no loop

else if ~(G(1:d,1+d:n+d)==zeros(d,n))

disp(’G is not a valid adjacency matrix for B.’)

% G has boundary to interior edges

else if ~(G(1+d:n+d,1+d:n+d)==transpose(G(1+d:n+d,1+d:n+d)))

% G has non-symmetric interior-interior adjacencies

disp(’G is not a valid adjacency matrix for B.’)

else if ~(G(1+d:n+d,1+d:n+d).*eye(n,n)==zeros(n,n))

disp(’G is not a valid adjacency matrix for B.’)

% G hasloops on interior vertices

end; end; end; end; end;

% Check that row sums of B are 1

B_bad=0;

for i=1:n

rowsum=0;

for j=1:d

rowsum=rowsum+B(i,j);

end

if ~((rowsum<1.0000001)&&(rowsum>.9999999))

B_bad=1;

end

end

if B_bad
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disp(’B is not a valid absorption matrix’)

end

% begin edge recovery

% q ranges over interior vertices

% for each value of q, either a system of linear equations is solved that

% uniquely determine the transition probabilities on edges leaving q, or it

% is determined that no such system exists (in which the pair G, B is not

% recoverable.)

T=G;

for q=1+d:n+d

adj_n=0;

for i=1:N

adj_n=adj_n+G(q,i);

end

% adj_n now gives the number of vertices adjacent to q

adj_v=zeros(1,adj_n);

j=1;

for i=1:adj_n

while G(q,j)==0

j=j+1;

end

adj_v(i)=j;

j=j+1;

end

if rank(B_hat(adj_v,1:d))<adj_n

disp(’non recoverable pair G, B’)

else

% find adj_n columns of B_hat(adj_v,1:d)) that are linearly

% independent vectors

boundary_v=(1:adj_n);

for i=1:adj_n

while rank(B_hat(adj_v,boundary_v(1:i)))<i

boundary_v(i:adj_n)=boundary_v(i:adj_n)+ones(1,1+adj_n-i);

end

end

% boundary_v is now a vector of boundary vertices such that

% B_hat(adj_v,boundary_v) is invertible

end

% now that we have our set of boundary vertices, we can use them to

% find the edge probabilities leaving q by

% vec_rho_e=B_hat(adj_v,boundary_v)^(-1)*B_hat(q,boundary_v)

vec_rho_e=transpose(B_hat(adj_v,boundary_v))^(-1)*transpose(B_hat(q,boundary_v));

for i=1:adj_n

T(q,adj_v(i))=vec_rho_e(i);

end
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% The entries of the row of T corresponding to edges leaving q have now

% been determined.

end

% by looping over all interior vertices q, T is completely determined.

% Check that the absorption matrix corresponding to T is B.

B_from_T=(eye(n)-T(1+d:n+d,1+d:n+d))^-1*T(1+d:n+d,1:d);

if ~(B==B_from_T)

disp(’error: B is not a valid absorption matrix for the graph G’)

% note: this can only happen if there is no set of transition probabilities

% on G that gives rise to the absorption matrix B, because it means that

% some of the systems of equations which we solved a subset of to determine

% T had some equations outside of the subset we used that were inconsistent

% with the ones we used, which can’t happen if B is actually an absorption

% matrix for the graph.

else

disp(’The transition matrix for the pair G, B is:’)

end
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