CONNECTIONS AND DETERMINANTS: A GEOMETRIC FORMULATION

DAVID DIAMONDSTONE

ABSTRACT. This paper contains a geometric argument for some of the connectiondeterminant relations discussed in section 3.7 of the book *Inverse Problems* for *Electrical Networks* by Edward B. Curtis and James A. Morrow.

In James A. Morrow and Edward B. Curtis' book [1], they prove the following useful property of response matrices Λ of an electrical network: If P and Q are two disjoint sets of boundary vertices with |P| = |Q| = n, such that $det(\Lambda(P;Q)) \neq 0$, then there exists an *n*-connection from P to Q. The proof they give is via a rather abstract determinantal formula. It is my hope that a more geometric argument for the same property might be an aid to intuition. In this paper, a more direct geometric proof of the theorem is obtained.

To do this we will make use of the concept of cutsets of a graph:

Definition 1. (Cutset, Minimal Cutset): Given a graph $G = \{V, E\}$ (where V is the set of vertices and E is the set of edges) and two disjoint sets of vertices $P, Q \subset V$ a cutset of the pair P, Q is a set $R \subset V$ such that all paths from a vertex $p \in P$ to a vertex $q \in Q$ intersect R. A minimal cutset of the pair P, Q is a cutset of P, Q of minimal order among all such cutsets.

This allows us to quote and use a theorem about cutsets, Menger's n-Arc Theorem:

Theorem 1. (Menger, 1927 [2]): Let G be a graph with A and B two disjoint n-tuples of graph vertices. Then either G contains n pairwise disjoint AB-paths, or the minimal cutset of A, B in G has order d < n.

Finally, before we begin the proof we introduce the following notation:

Notation. Where A is a matrix, \vec{u} is a vector, and P and Q are two sets of vertices, let A(P;Q) be the submatrix of A with row indices in P and column indices in Q. Let $\vec{u}(P)$ be the sub-vector of \vec{u} with indices in P, and let $\vec{u}[P]$ be the sub-vector of \vec{u} excluding entries with indices in P.

We are now prepared to give a geometric proof for the connection-determinant theorem.

Theorem 2. If P and Q are two disjoint sets of boundary vertices with |P| = |Q| = n, such that $det(\Lambda(P;Q)) \neq 0$, then there exists an n-connection from P to Q.

Proof. Let $\Gamma = (G, \gamma)$ be an electrical network on a graph with boundary $G = \{V, \partial V, E\}$, and suppose that P and Q are two disjoint sets of boundary vertices with |P| = |Q| = n, such that $det(\Lambda(P; Q)) \neq 0$.

DAVID DIAMONDSTONE

Let \hat{G} be the graph formed from G by removing all boundary vertices other than the vertices in P or Q, and all edges incident to those vertices. Let $R = \{r_1, ..., r_d\}$ be a minimal cutset of the pair P, Q, in \hat{G} . Therefore, in G, any path from a vertex $p_i \in P$ to a vertex $q_j \in Q$ must pass through some vertex $r_k \in R$, or a boundary vertex $s \in \partial V - (P \cup Q)$. Let $\vec{v} \in \mathbb{R}^n$ be arbitrary, and let $\vec{u} \in \mathbb{R}^n$ be the vector $\vec{u} = \Lambda(P; Q)^{-1}\vec{v}$. Let $\vec{u}' \in \mathbb{R}^{|\partial V|}$ be the vector with $\vec{u}'(Q) = \vec{u}$ and $\vec{u}'[Q] = \vec{0}$. Consider the vector \vec{u}' to be a vector of boundary voltages on ∂V ; this gives rise to a solution of the Dirichlet problem - let $\vec{w} \in \mathbb{R}^d$ be the vector of voltages on the vertices $r_1...r_d$ in the Dirichlet solution. Note that the current into the network at the set of nodes P is given by $(\Lambda \vec{u}')(P) = \Lambda(P, Q)\vec{u} = \vec{v}$.

Now consider the network $\Gamma' = (G', \gamma)$ obtained from $\Gamma = (G, \gamma)$ by declaring all the vertices in R to be boundary vertices, and let Λ' be the response matrix of this new network. The graph G' has the same set of vertices V, but a new set of boundary vertices $\partial V' = \partial V \cup R$. Apply a boundary voltage \vec{w}' to Γ' equal to \vec{u}' on ∂V and \vec{w} on R. (It is possible that $\partial V \cap R$ will be non-empty, but $\vec{u}'(i) = \vec{w}(i)$ on any shared vertices i because \vec{w} is part of the solution to the Dirichlet problem with boundary voltage \vec{u}' , so this boundary voltage is well-defined.) This boundary voltage gives rise to the same voltages on each vertex in V as the boundary voltage given by \vec{u}' on the old graph Γ , so the current response is the same - in particular, the currents into the graph at the vertices in P are given by \vec{v} . The current is given by $\Lambda'\vec{w}'$, so $(\Lambda'\vec{w}')(P) = \vec{v}$. Since Q + R - P is the set of vertices where \vec{w}' is nonzero:

$$(\Lambda'\vec{w}')(P) = \Lambda'(P, Q + R - P)\vec{w}'(Q + R - P) = \vec{v}$$

and since \vec{v} was chosen arbitrarily, we have:

$$Rank(\Lambda'(P, Q + R - P)) = n$$

There is no connection through G' from any vertex $q \in Q - R$ to any vertex $p \in P - R$, so $\Lambda'(P - R; Q - R) = 0$ (where 0 here is the $|P - R| \times |Q - R|$ 0-matrix). Because $Rank(\Lambda'(P; Q + R - P)) = n$, the rows of $\Lambda'(P; Q + R - P)$ are linearly independent. Ignoring the rows of $\Lambda'(P; Q + R - P)$ that correspond to vertices in $P \cap R$, we have:

$$Rank(\Lambda'(P-R;Q+R-P)) = |P-R|$$

Note that since $\Lambda'(P-R;Q-R) = 0$:

$$Rank(\Lambda'(P-R;Q+R-P)) = Rank(\Lambda'(P-R;R-P)) = |P-R|$$

Finally, have:

$$|P| - |P \cap R| = |P - R| = Rank(\Lambda'(P - R; R - P)) \le |R - P| = |R| - |P \cap R|$$

Since $n = |P| \le |R| = d$, the degree of the minimal cutset of the pair P, Q is at least n; by Menger's *n*-Arc theorem there is an *n*-connection between P and Q. \Box

References

- Curtis, Edward B. & Morrow, James A., *Inverse Problems for Electrical Networks*, Series on Applied Mathematics - Vol. 13, World Scientifc, New Jersey, 2000.
- [2] Menger, Karl, Kurventheorie, Teubner, Berlin, Germany, 1932.

BRANDEIS UNIVERSITY

E-mail address: ded@brandeis.edu