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Abstract. This paper contains a geometric argument for some of the connection-

determinant relations discussed in section 3.7 of the book Inverse Problems

for Electrical Networksby Edward B. Curtis and James A. Morrow.

In James A. Morrow and Edward B. Curtis’ book [1], they prove the following
useful property of response matrices Λ of an electrical network: If P and Q are two
disjoint sets of boundary vertices with |P | = |Q| = n, such that det(Λ(P ;Q)) 6= 0,
then there exists an n-connection from P to Q. The proof they give is via a rather
abstract determinantal formula. It is my hope that a more geometric argument
for the same property might be an aid to intuition. In this paper, a more direct
geometric proof of the theorem is obtained.

To do this we will make use of the concept of cutsets of a graph:

Definition 1. (Cutset, Minimal Cutset): Given a graph G = {V,E} (where V

is the set of vertices and E is the set of edges) and two disjoint sets of vertices
P,Q ⊂ V a cutset of the pair P , Q is a set R ⊂ V such that all paths from a vertex
p ∈ P to a vertex q ∈ Q intersect R. A minimal cutset of the pair P , Q is a cutset
of P , Q of minimal order among all such cutsets.

This allows us to quote and use a theorem about cutsets, Menger’s n-Arc The-
orem:

Theorem 1. (Menger, 1927 [2]): Let G be a graph with A and B two disjoint
n-tuples of graph vertices. Then either G contains n pairwise disjoint AB-paths,
or the minimal cutset of A, B in G has order d < n.

Finally, before we begin the proof we introduce the following notation:

Notation. Where A is a matrix, ~u is a vector, and P and Q are two sets of vertices,
let A(P ;Q) be the submatrix of A with row indices in P and column indices in Q.
Let ~u(P ) be the sub-vector of ~u with indices in P , and let ~u[P ] be the sub-vector of
~u excluding entries with indices in P .

We are now prepared to give a geometric proof for the connection-determinant
theorem.

Theorem 2. If P and Q are two disjoint sets of boundary vertices with |P | =
|Q| = n, such that det(Λ(P ;Q)) 6= 0, then there exists an n-connection from P to
Q.

Proof. Let Γ = (G, γ) be an electrical network on a graph with boundary G =
{V, ∂V,E}, and suppose that P and Q are two disjoint sets of boundary vertices
with |P | = |Q| = n, such that det(Λ(P ;Q)) 6= 0.
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Let Ĝ be the graph formed from G by removing all boundary vertices other than
the vertices in P or Q, and all edges incident to those vertices. Let R = {r1, ..., rd}

be a minimal cutset of the pair P , Q, in Ĝ. Therefore, in G, any path from a vertex
pi ∈ P to a vertex qj ∈ Q must pass through some vertex rk ∈ R, or a boundary
vertex s ∈ ∂V − (P ∪ Q). Let ~v ∈ Rn be arbitrary, and let ~u ∈ Rn be the vector

~u = Λ(P ;Q)−1~v. Let ~u′ ∈ R|∂V | be the vector with ~u′(Q) = ~u and ~u′[Q] = ~0.
Consider the vector ~u′ to be a vector of boundary voltages on ∂V ; this gives rise
to a solution of the Dirichlet problem - let ~w ∈ Rd be the vector of voltages on the
vertices r1...rd in the Dirichlet solution. Note that the current into the network at
the set of nodes P is given by (Λ~u′)(P ) = Λ(P,Q)~u = ~v.

Now consider the network Γ′ = (G′, γ) obtained from Γ = (G, γ) by declaring
all the vertices in R to be boundary vertices, and let Λ′ be the response matrix of
this new network. The graph G′ has the same set of vertices V , but a new set of
boundary vertices ∂V ′ = ∂V ∪ R. Apply a boundary voltage ~w′ to Γ′ equal to ~u′

on ∂V and ~w on R. (It is possible that ∂V ∩R will be non-empty, but ~u′(i) = ~w(i)
on any shared vertices i because ~w is part of the solution to the Dirichlet problem
with boundary voltage ~u′, so this boundary voltage is well-defined.) This boundary
voltage gives rise to the same voltages on each vertex in V as the boundary voltage
given by ~u′ on the old graph Γ, so the current response is the same - in particular,
the currents into the graph at the vertices in P are given by ~v. The current is
given by Λ′ ~w′, so (Λ′ ~w′)(P ) = ~v. Since Q + R − P is the set of vertices where ~w′

is nonzero:
(Λ′ ~w′)(P ) = Λ′(P,Q+R− P )~w′(Q+R− P ) = ~v

and since ~v was chosen arbitrarily, we have:

Rank(Λ′(P,Q+R− P )) = n

There is no connection through G′ from any vertex q ∈ Q − R to any vertex
p ∈ P − R, so Λ′(P − R;Q − R) = 0 (where 0 here is the |P − R| × |Q − R|
0-matrix). Because Rank(Λ′(P ;Q + R − P )) = n, the rows of Λ′(P ;Q + R − P )
are linearly independent. Ignoring the rows of Λ′(P ;Q + R − P ) that correspond
to vertices in P ∩R, we have:

Rank(Λ′(P −R;Q+R− P )) = |P −R|

Note that since Λ′(P −R;Q−R) = 0:

Rank(Λ′(P −R;Q+R− P )) = Rank(Λ′(P −R;R− P )) = |P −R|

Finally, have:

|P | − |P ∩R| = |P −R| = Rank(Λ′(P −R;R− P )) ≤ |R− P | = |R| − |P ∩R|

Since n = |P | ≤ |R| = d, the degree of the minimal cutset of the pair P , Q is at
least n; by Menger’s n-Arc theorem there is an n-connection between P and Q. ¤
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