CONNECTIONS AND DETERMINANTS: A GEOMETRIC FORMULATION

DAVID DIAMONDSTONE

Abstract

This paper contains a geometric argument for some of the connectiondeterminant relations discussed in section 3.7 of the book Inverse Problems for Electrical Networksby Edward B. Curtis and James A. Morrow.

In James A. Morrow and Edward B. Curtis' book [1], they prove the following useful property of response matrices Λ of an electrical network: If P and Q are two disjoint sets of boundary vertices with $|P|=|Q|=n$, such that $\operatorname{det}(\Lambda(P ; Q)) \neq 0$, then there exists an n-connection from P to Q. The proof they give is via a rather abstract determinantal formula. It is my hope that a more geometric argument for the same property might be an aid to intuition. In this paper, a more direct geometric proof of the theorem is obtained.

To do this we will make use of the concept of cutsets of a graph:
Definition 1. (Cutset, Minimal Cutset): Given a graph $G=\{V, E\}$ (where V is the set of vertices and E is the set of edges) and two disjoint sets of vertices $P, Q \subset V a$ cutset of the pair P, Q is a set $R \subset V$ such that all paths from a vertex $p \in P$ to a vertex $q \in Q$ intersect R. A minimal cutset of the pair P, Q is a cutset of P, Q of minimal order among all such cutsets.

This allows us to quote and use a theorem about cutsets, Menger's n-Arc Theorem:

Theorem 1. (Menger, 1927 [2]): Let G be a graph with A and B two disjoint n-tuples of graph vertices. Then either G contains n pairwise disjoint $A B$-paths, or the minimal cutset of A, B in G has order $d<n$.

Finally, before we begin the proof we introduce the following notation:
Notation. Where A is a matrix, \vec{u} is a vector, and P and Q are two sets of vertices, let $A(P ; Q)$ be the submatrix of A with row indices in P and column indices in Q. Let $\vec{u}(P)$ be the sub-vector of \vec{u} with indices in P, and let $\vec{u}[P]$ be the sub-vector of \vec{u} excluding entries with indices in P.

We are now prepared to give a geometric proof for the connection-determinant theorem.

Theorem 2. If P and Q are two disjoint sets of boundary vertices with $|P|=$ $|Q|=n$, such that $\operatorname{det}(\Lambda(P ; Q)) \neq 0$, then there exists an n-connection from P to Q.

Proof. Let $\Gamma=(G, \gamma)$ be an electrical network on a graph with boundary $G=$ $\{V, \partial V, E\}$, and suppose that P and Q are two disjoint sets of boundary vertices with $|P|=|Q|=n$, such that $\operatorname{det}(\Lambda(P ; Q)) \neq 0$.

Let \hat{G} be the graph formed from G by removing all boundary vertices other than the vertices in P or Q, and all edges incident to those vertices. Let $R=\left\{r_{1}, \ldots, r_{d}\right\}$ be a minimal cutset of the pair P, Q, in \hat{G}. Therefore, in G, any path from a vertex $p_{i} \in P$ to a vertex $q_{j} \in Q$ must pass through some vertex $r_{k} \in R$, or a boundary vertex $s \in \partial V-(P \cup Q)$. Let $\vec{v} \in \mathbb{R}^{n}$ be arbitrary, and let $\vec{u} \in \mathbb{R}^{n}$ be the vector $\vec{u}=\Lambda(P ; Q)^{-1} \vec{v}$. Let $\vec{u}^{\prime} \in \mathbb{R}^{|\partial V|}$ be the vector with $\vec{u}^{\prime}(Q)=\vec{u}$ and $\vec{u}^{\prime}[Q]=\overrightarrow{0}$. Consider the vector \vec{u}^{\prime} to be a vector of boundary voltages on ∂V; this gives rise to a solution of the Dirichlet problem - let $\vec{w} \in \mathbb{R}^{d}$ be the vector of voltages on the vertices $r_{1} \ldots r_{d}$ in the Dirichlet solution. Note that the current into the network at the set of nodes P is given by $\left(\Lambda \vec{u}^{\prime}\right)(P)=\Lambda(P, Q) \vec{u}=\vec{v}$.

Now consider the network $\Gamma^{\prime}=\left(G^{\prime}, \gamma\right)$ obtained from $\Gamma=(G, \gamma)$ by declaring all the vertices in R to be boundary vertices, and let Λ^{\prime} be the response matrix of this new network. The graph G^{\prime} has the same set of vertices V, but a new set of boundary vertices $\partial V^{\prime}=\partial V \cup R$. Apply a boundary voltage \vec{w}^{\prime} to Γ^{\prime} equal to \vec{u}^{\prime} on ∂V and \vec{w} on R. (It is possible that $\partial V \cap R$ will be non-empty, but $\vec{u}^{\prime}(i)=\vec{w}(i)$ on any shared vertices i because \vec{w} is part of the solution to the Dirichlet problem with boundary voltage \vec{u}^{\prime}, so this boundary voltage is well-defined.) This boundary voltage gives rise to the same voltages on each vertex in V as the boundary voltage given by \vec{u}^{\prime} on the old graph Γ, so the current response is the same - in particular, the currents into the graph at the vertices in P are given by \vec{v}. The current is given by $\Lambda^{\prime} \vec{w}^{\prime}$, so $\left(\Lambda^{\prime} \vec{w}^{\prime}\right)(P)=\vec{v}$. Since $Q+R-P$ is the set of vertices where \vec{w}^{\prime} is nonzero:

$$
\left(\Lambda^{\prime} \vec{w}^{\prime}\right)(P)=\Lambda^{\prime}(P, Q+R-P) \vec{w}^{\prime}(Q+R-P)=\vec{v}
$$

and since \vec{v} was chosen arbitrarily, we have:

$$
\operatorname{Rank}\left(\Lambda^{\prime}(P, Q+R-P)\right)=n
$$

There is no connection through G^{\prime} from any vertex $q \in Q-R$ to any vertex $p \in P-R$, so $\Lambda^{\prime}(P-R ; Q-R)=0$ (where 0 here is the $|P-R| \times|Q-R|$ 0-matrix). Because $\operatorname{Rank}\left(\Lambda^{\prime}(P ; Q+R-P)\right)=n$, the rows of $\Lambda^{\prime}(P ; Q+R-P)$ are linearly independent. Ignoring the rows of $\Lambda^{\prime}(P ; Q+R-P)$ that correspond to vertices in $P \cap R$, we have:

$$
\operatorname{Rank}\left(\Lambda^{\prime}(P-R ; Q+R-P)\right)=|P-R|
$$

Note that since $\Lambda^{\prime}(P-R ; Q-R)=0$:

$$
\operatorname{Rank}\left(\Lambda^{\prime}(P-R ; Q+R-P)\right)=\operatorname{Rank}\left(\Lambda^{\prime}(P-R ; R-P)\right)=|P-R|
$$

Finally, have:

$$
|P|-|P \cap R|=|P-R|=\operatorname{Rank}\left(\Lambda^{\prime}(P-R ; R-P)\right) \leq|R-P|=|R|-|P \cap R|
$$

Since $n=|P| \leq|R|=d$, the degree of the minimal cutset of the pair P, Q is at least n; by Menger's n-Arc theorem there is an n-connection between P and Q.

References

[1] Curtis, Edward B. \& Morrow, James A., Inverse Problems for Electrical Networks, Series on Applied Mathematics - Vol. 13, World Scientifc, New Jersey, 2000.
[2] Menger, Karl, Kurventheorie, Teubner, Berlin, Germany, 1932.
Brandeis University
E-mail address: ded@brandeis.edu

