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1. Introduction

In this paper, some probabilistic analogues to properties of electrical networks will be
developed, based on the idea of a random walk on a directed graph. In order to do this
the precise definition of a probability space is needed. First there must be a set S, some-
times called the measure space or sample space, which contains all possible outcomes being
analyzed.

Definition 1.1. A set A ⊆ P(S) is called an Algebra if:

(1) S ∈ A
(2) If B,C ∈ A then B − C ∈ A, B ∩ C ∈ A, and B ∪ C ∈ A

A is a Borel Algebra if, additionally:

(3) If Bn ∈ A, n ≥ 1, then
⋃

n≥1 Bn ∈ A and
⋂

n≥1 Bn ∈ A.

If A is an algebra, there is a least Borel algebra B containing A called the Borel extension
of A.

Definition 1.2. A function m : A 7→ [1, 0] is called a Borel probability measure if it satisfies
the following requirements:

(1) m(S) = 1
(2) If B,C ∈ A and B ∩ C = ∅, m(B ∪ C) = m(B) +m(C)
(3) If Bn is a sequence of sets such that all Bn ∈ A and Bn → ∅ as n → ∞, then

limn→∞m(Bn) = 0. As a consequence of this, if Bn ∈ A, and Bn ∩ Bm = ∅ when
n 6= m, then m

(
⋃

n≥1 Bn

)

=
∑

n≥1 m(Bn).

A probability space is a 3-tuple (S,A,m) of a measure space, an algebra, and a probability
measure.
Any subset of S that is in A is called measurable, because those are the only sets where

the probability measure is defined. A function f defined on S is called measurable if the set
f−1(q) = {x ∈ S : f(x) = q} is measurable for all q in the range of f . A measurable subset
of S is called an event. A measurable function is called a random variable, and its domain
the state space. Note that a random variable is neither random nor a variable.
Define the probability of an outcome being in a measurable subset R of the measure space,

P[R], to be the measure of that subset, and the probability that the value of a random
variable X equals a value q, P[X = q], to be the measure of f−1 for that value.
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The conditional probability of an event C given D, P[C|D], is fairly complicated to define
precisely, using the notion of conditional expectation and characteristic functions. It means,
intuitively, the likelihood of an event C occurring given that D has already. We need only
the following fact about conditional probabilities:

P[C|D] =
P[C ∩D]

P[D]

A random walk on a directed graph might be supposed to be a sequence Xi of random
variables (in an arbitrary probability space), taking values in the set V of vertices of the
graph. We would want the probability of moving from one vertex to another to depend only
on the value of the present vertex:

P[Xn+1 = v|Xn = w,Xn−1 = x, . . . , X1 = z] = P[Xn+1 = v|Xn = w] = p(v, w)

for all n and all vertices v, w, etc.
The function p(v, w), called the transition function, induces the arcs of the graph; there

is an arc connecting v and w whenever it is possible to move from v to w, that is, when
p(v, w) 6= 0. Using the above fact about conditional probabilities, we can find the probability
of moving through a particular finite sequence of vertices from a given starting point by
multiplying the values of the transition function, for instance:

P[X1 = v,X2 = w,X3 = x|X1 = v] = P[X1 = v] · p(v, w) · p(w, x)/P[X1 = v]

= p(v, w) · p(w, x)

Using the known properties of the probability measure more complicated probabilities, such
as the probability of reaching one vertex from another in a particular number of steps, can
be computed. But working in this way is inadequate to deal with more complicated events
which might involve infinitely many values of the sequence.
We will simply take as our definition of a random walk network to be a set V of vertices,

along with a function p : V × V 7→ R+ satisfying the constraint that
∑

v∈V p(u, v) = 1 for
all u ∈ V . p is simply the transition function described above. The notation u ∼ v will be
used to denote the existence of an arc from u to v; u ∼ v if and only if p(u, v) 6= 0. Next
we will build a probability space where the events are sets of complete infinite processes as
discussed above, which will be as powerful as is necessary to carry out the remainder of the
work.

2. The Probability Space

We define the following measure space S to represent the space of all infinite walks through
the induced graph (as above, a walk being an infinite sequence of vertices, or equivalently a
function from the positive integers to V ):

(1) S = {ω : ω : Z+ 7→ V }

Now define the sets Bk,v ⊆ S, for each positive integer k and finite sequence v of vertices:

(2) Bk,v = {ω : ω(i) = vi for all i ≤ k}

Let A be the closure of the set of all Bk,v with respect to finite union.
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Lemma 2.1. For any set B ∈ A, B =
⋃n

i=1 Bk,si
where k is a constant and all si are unique

sequences of k vertices.

Proof: Each set Bj,v =
⋃

b∈V Bj+1,vb, where vb denotes the sequence of j+1 vertices such
that vbi = vi for i ≤ j and vbj+1 = b. That is because for any ω ∈ Bj,v, ω(j + 1) ∈ V
and so ω ∈ Bj,vb for some b ∈ V and therefore ω ∈

⋃

b∈V Bj+1,vb. On the other hand, any
ω ∈ Bj+1,vb for some b ∈ V must satisfy the requirement that ω(i) = vi for i ≤ j, so by
definition ω ∈ Bj,v. Repeating this for each of the subsets in the union to an arbitrary depth,
Bj,v can be expressed as a union of the form above for any k ≥ j.
Any B ∈ A is a finite union of the form

⋃n

i=1 Bji,si
by definition of A. Let k = max{ji}.

We have already shown that each of those terms can be expressed as a union of the form
⋃ni

j=1 Bk,sj
. Combining all of those unions and eliminating identical terms, we have an

expression for B in the desired form.

Theorem 2.2. A is an algebra.

Proof: By definition of A, all finite unions of sets in A are also in A.
ω(0) ∈ V for any ω, so each ω ∈ S is contained in B0,v for some v ∈ V , and each B0,v is a

subset of S by definition, so S =
⋃n

i=1 B0,vi
where V = {v1, . . . , vn}. Therefore, since S is a

finite union of elements of A, S ∈ A.
S itself is clearly the union of the sets Bk,v for all possible unique sequences v of k vertices,

so any ω 6∈ B is clearly in some set Bk,v that does not appear in the union expression for B
shown to exist in Lemma 2.1, and any member of a set Bk,v that does not appear in that
expression must differ from the sequence si defining any set that does appear in the union
expression at some index i ≤ k. This proves that S − B equals the union of all of the Bk,v

that do not appear in the above union expression for B, a finite union of elements of A, so
S −B ∈ A for any B ∈ A.
Any finite intersection can be expressed in terms of unions and complements, so all finite

intersections of sets in A are also in A.
Therefore S ∈ A and A is closed with respect to finite union, finite intersection, and

complement, so A is an algebra.

Define a measure fa on A for each a ∈ V , computed according to the following rules:

fa(Bk,v) =

{

1 · p(v0, v1) · . . . · p(vk−1, vk) if v0 = a
0 if v0 6= a

(3)

fa

(

n
⋃

j=1

Bj

)

=
n
∑

j=1

fa(Bj) if Bj ∈ A, Bk ∩Bl = ∅ when k 6= l(4)

fa has been defined to agree with the basic probabilities of events described in the first
section; by the first rule, the measure of a finite sequence of transitions is the product of the
transition probabilities. The second rule defines the measure of disjoint unions in the manner
in which they would be computed were fa a probability measure. However, fa is effectively
defined above as a function of set-theoretic expressions. Before it can be argued that fa is a
Borel probability measure, it must be shown that fa as defined is in fact a function on sets,
which assigns a unique value to each set in A which is independent of the expression chosen
to represent it.
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Below, the symbol =L will be used to denote lexical equality between set-theoretic ex-
pressions (that is, they are exactly the same string of characters). Otherwise the = sign will
denote set equality or numeric equality, depending on the type of the operands, as usual.

Lemma 2.3. For every set-theoretic expression E defining a set in A as a union of sets

Bk,v, there is an expression Nk(E) with the following properties:

(1) Nk(E) =L Bk,s1 ∪ Bk,s2 ∪ · · · ∪ Bk,sn
for n finite and s1 . . . sn distinct sequences of k

vertices.

(2) Nk(E) = E
(3) fa(Nk(E)) = fa(E)

Proof: Let M =L

⋃n

i=1 Bk,si
(written as a long string of binary unions of the form listed

above) be the expression for the union proven to exist in Lemma 2.1. It clearly meets the
first two requirements, so we need only show that the operation of replacing a term Bj,v with
⋃

b∈V Bj+1,vb, through repetition of which E can be obtained from the original expression
from the set, does not change the value of fa. By the first rule specifying the computation of
fa (assuming we are dealing only with sets of non-zero measure, all elements of which must
begin with a),

fa(Bj+1,vb) = p(a, v2) · p(v2, v3) · . . . · p(vj, b)

= fa(Bj,v)p(vj, b)

So:

∑

b∈V

fa(Bj+1,vb) =
∑

b∈V

fa(Bj,v)p(vj, b)

= fa(Bj,v)
∑

b∈V

p(vj, b)

= fa(Bj,v)

Since all of the operations producing M from the original expression E were of that type,

(5) fa(M) = fa(E)

So Nk(E) =M .

Corollary 2.4. For an expression B defining a set in A such that Nk(B) exists where

fa(Nk(B)) = fa(B), an expression Nj(B) also exists for any j > k, and preserves the value

of fa.

Proof: Applying the process for producing Nk(B) further all terms are Bi,v with i = j
must produce an expression with the desired property.

Lemma 2.5. If B,C are expressions for sets in A, and B = C, then fa(B) = fa(C).

Proof: By Lemma 2.3, Nk1
(B) and Nk2

(C) exist for B and C, and so by Corollary 2.4
Nk(B) and Nk(C) exist where k = max{k1, k2}. Since B = C, each of those two expressions
must contain exactly the same terms, because all of the sets Bk,v are disjoint so any element
of B can be contained in exactly one such set, and any expression representing B in terms
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only of those sets must contain any set which contains elements of B. But if they contain
exactly the same terms then by the rules for computing fa they must have the same value
of fa, and because the generation of those expressions preserves fa values, fa(B) = fa(C).
This is sufficient to show that fa has a single well-defined value for each set in A. By

Lemma 2.1 every set in A can be expressed as a union of disjoint Bk,v, and the value of fa on
that set can be computed only in terms of a representation in terms of such an expression. It
has been shown that every possible such expression will have the same fa value if it defines
the same set, and that is the unique value of fa for that set.

We now establish some properties of sets in A which will make it possible to prove that
fa is a Borel probability measure, by way of topology. A topological space is a pair 〈Y, T 〉,
where Y is a non-empty set and T satisfies the following properties:

(1) Y ∈ T and ∅ ∈ T
(2) If B,C ∈ T , B ∩ C ∈ T
(3) If Bα ∈ T , then

⋃

αBα ∈ T (The index set need not be countable)

The elements of T are called open sets, and any complement of an open set is a closed set.
Some useful topological theorems and definitions follow (proven in [8]):

Theorem 2.6. The set of closed sets in a topological space is closed under finite union and

intersection.

Theorem 2.7. A topological space X is compact if and only if for every collection of closed

sets F , if the intersection of the sets in every finite subset of F is non-empty, then the

intersection of all sets in F is non-empty.

Definition 2.8. If Xα = 〈Yα, Tα〉 is an indexed set of topological spaces, the product topol-

ogy on×α Yα has as its basis all sets of the form×αOα, where Oα = Yα except for finitely
many α. The basis for a topology is a subset of the topology, and any element of the topology
can be formed by a union of intersections of elements of the basis. The space consisting of

×α Yα and the product topology will be denoted by×αXα.

Theorem 2.9 (Tychonoff). If Xα is an indexed family of compact topological spaces, then

the product space×αXα is compact.

The set S can be thought of as the infinite-dimensional Cartesian product×∞

i=1 V ; an
infinite sequence is effectively the same thing as an infinite-dimensional tuple. Using the
discrete topology P(V ) as the topology for V , consider the topological space

X =
∞

×
i=1

〈V,P(V )〉 = 〈S, T 〉

Lemma 2.10. Every set in A is a closed set in X.

Proof: First we show that the sets {ω : ω(j) = v} are closed sets inX, for arbitrary j ∈ Z+

and v ∈ V . This is equivalent to the statement that the complement, {ω : ω(j) ∈ V − {v}},

is in T . That statement is true, because the complement is equal to the set×∞

i=1 Xi where
Xj = V − {v} and Xi = V for i 6= j, which is an element of the basis for T .
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Then Bk,v =
⋂k

i=1{ω : ω(i) = vi} is also a closed set, because the set of closed sets in X is
closed under finite intersection. Every set in A is a closed set because each can be expressed
as a finite union of Bk,v and the set of closed sets in X is closed under finite union.

Lemma 2.11. For every sequence of non-empty sets Bi ∈ A, limi→∞Bi 6= ∅.

Proof: 〈V,P(V )〉 is a compact space. The set of closed sets in that space is also P(V ),
because it includes the complement of every subset of V , which is itself the set of all subsets
of V . Any possible intersection of a collection of sets in P(V ) is finite, so for any given
collection the collection itself is one of its finite subsets and if the intersection of any finite
subset is non-empty the intersection of all elements must be non-empty. By Tychonoff’s
theorem X is therefore compact. Then Bi, as a sequence of closed, non-empty sets which
are subsets of each other (and therefore all finite intersections of them are non-empty), must
have a non-empty intersection by Lemma 2.7: limi→∞Bi =

⋂∞
i=1 Bi 6= ∅. Therefore, if

limi→∞ fa(Bi) 6= 0, limi→∞Bi 6= ∅.
There is a simple consequence of Lemma 2.11 which bears noting.

Corollary 2.12. If Bi is a sequence of non-empty sets, C = limi→∞Bi 6∈ A.

Proof: Otherwise, the sequence Di = Bi−C (or C−Bi if the convergence is from below)
would be a sequence of non-empty sets in A converging to ∅, contradicting Lemma 2.11.
Now we can show the following:

Theorem 2.13. fa is a Borel probability measure.

Proof:

(1) Since S =
⋃n

i=1 B0,vi
as shown above,

fa(S) =
n
∑

i=1

fa(B0,vi
) = fa(B0,a) = 1

because by definition fa(B0,v) = 0 when v 6= a and fa(B0,a) = 1 since no terms
appear in the product after the first, which is 1.

(2) Satisfied by definition.
(3) Suppose limi→∞ fa(Bi) 6= 0. This implies that Bi 6= ∅ for all i, as otherwise at

that i, and for all greater i, fa(Bi) would be zero and thus limi→∞ fa(Bi) would be
zero. Then, by Lemma 2.11, limi→∞Bi 6= ∅, the contrapositive of which is that, if
limi→∞Bi = ∅, then limi→∞ fa(Bi) = 0.

The Kolmogorov extension theorem states the existence of a Borel probability measure ma

defined on B, the Borel extension of A, which agrees with fa for sets in A. The remainder
of this paper will user (S,B,ma) as the probability space.

3. Basic Random Variables

Definition 3.1. The probability of a random variable assuming a given value, under measure
ma, will be denoted as:

(6) Pa[X = c] = ma(X
−1(c))
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Definition 3.2. If X is a number-valued random variable the expected value of X under
measure ma is defined as follows:

(7) Ea[X] =
∑

x

xPa[X = x]

Now define Xj : S 7→ V by Xj(ω) = ω(j), j ∈ Z+.

Theorem 3.3. Xj is a random variable

Proof: We must show that the set X−1
j (q) = {ω : ω(j) = q} is measurable. For every

possible sequence s of j vertices, define s′ to be a sequence of j + 1 vertices with s′i = si
when i < j and s′j = q. Every element of X−1

j (q) has elements of V at positions 0 through

j − 1, so it is an element of the set Bj,s′ for some s
′ defined above, and X−1

j (q) ⊆
⋃

s′ Bj,s′ .

And every element of any of the sets Bj,s′ is an element of X
−1
j (q) by definition since it has

q as its jth vertex, so X−1
j (q) ⊇

⋃

s′ Bj,s′ and therefore X
−1
j (q) =

⋃

s′ Bj,s′ . Because it is a
union of elements of B, it is measurable.

Next, define τp(ω) : S 7→ Z+ by τp(ω) = min{k : ω(k) = p}, p ∈ V .

Theorem 3.4. τp is a random variable.

Proof: We will show that the sets Tk = {ω : τp(ω) ≤ k} are measurable. Then

τ−p 1(k) = {ω : τp(ω) = k} = Tk − Tk−1

will also be measurable and τp will be a random variable.

Tk = {ω : τp(ω) ≤ k}

= {ω : min{j : ω(j) = p} ≤ k}

= {ω : ω(i) = p for some i ≤ k}

=
k
⋃

i=0

{ω : ω(i) = p}

Since the sets {ω : ω(i) = p} were shown to be measurable above, and the sets Tk are finite
unions of the those sets, they are also measurable.
τP for a set of vertices P is defined similarly, and is a random variable since the set τ

−1
P (v)

is the union of the corresponding sets for each p ∈ P , which are measurable as shown above.

Theorem 3.5. XτS
is a random variable, S ⊂ V .

Proof:

X−1
τS
(v) = {ω : ω(τS(ω)) = v}

= {ω : τS(ω) = n, ω(n) = v for some n ∈ Z+}

=
⋃

n≥0

{ω : τS(ω) = n, ω(n) = v}

=
⋃

n≥0

{ω : τS(ω) = n} ∩ {ω : ω(n) = v}
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Each of the two terms of inner intersection were shown to be measurable previously, so as
the countable union of intersections of such terms, the entire set is measurable.

For a function φ defined on S, φ(XτS
) is also a random variable; the inverse set for a

value k of φ (there are finitely many if S is finite) is the union of the inverse sets of XτS

for each vertex on which φ(v) = k, which is a finite union of measurable sets and therefore
measurable.
If φ is real-valued, the expected value of φ(XτS

) is well-defined for each measure ma.

4. γ-harmonic functions and the Dirichlet Problem

We now consider the particular case of graphs with designated boundaries, where the V is
partitioned into disjoint subsets ∂V and int V . For definitions of γ-harmonicity and related
concepts, see [1].
To show that a function is γ-harmonic, it is sufficient to show that it satisfies the mean

value property:

(8) f(u) =

∑

v:u∼v γ(u, v)f(v)
∑

v:u∼v γ(u, v)

Theorem 4.1. For fixed w ∈ ∂V , u(v) = Pv[Xτ∂V
= w], v ∈ int V , is γ-harmonic with

γ(u, v) = p(u, v)

Proof: The set being measured is the union of sets Bk,s where all of the Bk,s have
the property that the first boundary vertex that occurs in the sequence s is w. These
individual sets are disjoint as long as the sequences s are not equal to or subsequences of
each other, because if that is the case then, as all ω in each set equal s for the first k
vertices, all ω in one set must differ from all in another somewhere in initial segment. And
sets defined by sequences equal to, or subsequences of, the sequence defining another set
make no contribution to the measure computation since they are subsets of other sets in the
union. Let P be the set of disjoint sequences formed by taking the set of sequences defining
components in the union above, and removing any sequences equal to or subsequences of
other sequences in P , because those will not make any contribution to the measure. Then
by the definition of mv,

Pv[Xτ∂V
= w] =

∑

s∈P

mv(B|s|,s)

Let Su = {ω ∈ S : ω(1) = u}. B|s|,s ⊆ S, and S =
⋃

u∈V Su, so B|s|,s =
⋃

u∈V Su ∩ B|s|,s.
Then:

∑

s∈P

mv(B|s|,s) =
∑

s∈P

∑

u∈V

mv(Su ∩B|s|,s) =
∑

u∈V

∑

s∈P

mv(Su ∩B|s|,s)

Let Qu = {s ∈ P : Su ∩ B|s|,s ∩ {ω : ω(0) = v} 6= ∅,mv(B|s|,s) 6= 0}. mv(Su ∩ B|s|,s) is
only non-zero if s ∈ Qu, because if either the measured set is empty, or it consists entirely
of paths not beginning at v, the measure will be zero. If that is the case Su ∩ B|s|,s = B|s|,s
because v must be the first element and u the next in s. Therefore:
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∑

u∈V

∑

s∈P

mv(Su ∩B|s|,s) =
∑

u∈V

∑

s∈Qu

mv(B|s|,s)

=
∑

u∈V

p(v, u)
∑

s∈Qu

mv(B|s|,s)

p(v, u)

Each sequence s inQu begins with u, so p(v, u) appears as a factor in the product expansion
of mv(B|s|,s), and the remainder of mv(B|s|,s) is a product of transition probabilities along
a particular finite subsequence of vertices starting at u and ending at a boundary vertex,
with only interior vertices in between. This remainder equals mu(B|s′|,s′) for the sequence s

′

consisting of the remaining vertices in s other than u. There must be one in the sum for each
sequence s′ in P where mu(B|s′|,s′) 6= 0, because otherwise there would be a measurable set
of paths between v and the boundary passing through only interior vertices not accounted
for in the original sum, contradicting the definition of P . Then:

∑

u∈V

p(v, u)
∑

s∈Qu

mv(B|s|,s)

p(v, u)
=
∑

u∈V

p(v, u)
∑

s∈P

mu(B|s|,s)

Noting that p(v, u) = 0 when v 6∼ u, and applying the definition of the set P :

(9) Pv[Xτ∂V
= w] =

∑

u:v∼u

p(v, u)Pu[Xτ∂V
= w]

Which, as
∑

u:v∼u p(v, u) = 1, establishes γ-harmonicity.

Given a cutset C between v and ∂V , we can extend this result to the following:

Corollary 4.2. Pv[Xτ∂V
= w] =

∑

u∈C Pv[XτC
= u]Pu[Xτ∂V

= w]

Proof: Since C is a cutset between v and ∂V , any measurable ω must contain some
occurrence of an element of C before any element of ∂V . Then every ω in a measurable
set can be divided into three parts; one, before the first occurrence of a vertex in C, two,
between there and the first vertex in ∂V , and third, after ∂V is reached. Grouping the
expression for Pv[Xτ∂V

= w] depending on the value of the first vertex u in C, and factoring
out the part of the product terms occurring before C is reached, we must have all products
of transition probabilities for sequences of vertices beginning at u and reaching w before any
other vertex in ∂V , which is the definition of Pu[Xτ∂V

= w]. And the terms factored out
must contain all products of transition probabilities for sequences of vertices beginning at v
and reaching u before any other vertex in C, which is the definition of Pv[XτC

= u]. Taking
the sum of expressions for all u ∈ C yields the final result.
This version is consistent with Theorem 4.1 when C = {u : v ∼ u}, as then

Pv[XτC
= u] = p(v, u).

We can pose a Dirichlet problem on random walk networks, given a partition of V into
disjoint sets int V and ∂V : For a real-valued function φ defined on ∂V , find a function
defined on all of V which is γ-harmonic on int V and equals φ on ∂V , with γ(u, v) = p(u, v).
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Theorem 4.3. u(v) = Ev[φ(Xτ∂V
)] for v ∈ int V solves the Dirichlet problem for φ defined

on ∂V

Proof: Let B be the set of values of φ; it is finite because there are finitely many boundary
vertices.

(10) Ev[φ(Xτ∂V
) =

∑

x∈B

xPv[φ(Xτ∂V
) = x]

Pv[φ(Xτ∂V
) = x] is the measure of the union of sets where Xτ∂V

= v for some boundary
vertex v where φ(v) = x. Each of those sets is disjoint, because if one vertex is the first
boundary vertex to occur in a sequence, another one cannot be, and therefore their measure
is just the sum of the measure of those sets. Then:

Pv[φ(Xτ∂V
) = k] =

∑

w:φ(w)=k

Pv[Xτ∂V
= w]

=
∑

w:φ(w)=k

∑

u:v∼u

p(v, u)Pu[Xτ∂V
= w]

The last substitution being valid because of the previous theorem.

Ev[φ(Xτ∂V
)] =

∑

x∈B

x
∑

w:φ(w)=x

∑

u:v∼u

p(v, u)Pu[Xτ∂V
= w]

=
∑

u:v∼u

p(v, u)
∑

x∈B

x
∑

w:φ(w)=x

Pu[Xτ∂V
= w]

Or, by definition:

(11) Ev[φ(Xτ∂V
)] =

∑

u:v∼u

p(v, u)Eu[φ(Xτ∂V
)]

Therefore, u(v) is γ-harmonic on int V and trivially equals φ on the boundary, hence it
is a solution to the Dirichlet problem. Relying on the known uniqueness of these solutions,
we have another interpretation of a harmonic function on a weighted graph; interpreting the
graph as a probability transition network, the values of the function represent the expected
value of the function at the first boundary vertex in a sequence of transitions beginning at
each interior vertex.

5. Other Results

For a fixed v ∈ int V , the function µv(w) = Pv[Xτ∂V
= w] defined for w ∈ ∂V is the har-

monic measure of w with respect to v. It is a valid probability measure on P(∂V ). Because
different values of τ∂V correspond to disjoint events, it must satisfy the second and third
requirements above by definition of mv. To see that for each v

∑

w∈∂V µv(w) = 1, consider
the function h(v) =

∑

w∈∂V Pv[Xτ∂V
= w]. It is harmonic in int V because each term of the

sum is, and also equals
∑

w∈∂V µv(w) = 1 at each v ∈ int V . And because Pv[Xτ∂V
= w] = 1

at w and 0 on ∂V − {w}, h is 1 at each boundary vertex, and so by uniqueness must be
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uniformly 1 at every vertex.

Define another function, τ+
p (ω) : S 7→ Z+ by τ+

p (ω) = min{k > 0 : ω(k) = p}, p ∈ V .
It can be shown to be a random variable by an analogous argument to that used to prove
Theorem 3.4, using T+

k = {ω : τ+
p (ω) ≤ k} =

⋃k

i=1{ω : ω(i) = p} in place of Tk. Xτ+
∂V

therefore is also a random variable.
Consider the function (on V ) f(v) = Pv[Xτ+

∂V
= w]. At any interior vertex, f must equal

Pv[Xτ∂V
= w], because any path beginning at an interior vertex must make at least one

transition before reaching the boundary and the only measure sets of paths at that interior
vertex are those beginning at it. At boundary nodes, using a similar method to the proof of
Theorem 4.1 it can be shown that:

(12) Pv[Xτ+
∂V
= w] =

∑

u:v∼u

p(v, u)Pu[Xτ∂V
= w]

Noting that for v ∈ ∂V − {w}, Pv[Xτ∂V
= w] = 0, the above quantity, interpreted in an

electrical sense, equals the current out of v due to the potential u(v) = Pv[Xτ∂V
= w] on the

network. As Pw[Xτ∂V
= w] = 1, the potential difference between v and w is 1, and there

is no potential difference between v and other boundary vertices, so all of the current must
be due to w and f(w) also equals the effective conductance between w and v. And by a
similar argument to Theorem 4.3, the “current” at a boundary vertex v due to an arbitrary
potential φ on ∂V can be shown to equal Ev[φ(Xτ+

∂V
)].

6. Inverse Problems

For now see [5] and [2] for information on recovering transition probabilities from interior-
boundary absorption probabilities.
The results of [6] and [3] can be applied to random walk networks to solve the analogue of

the electrical inverse problem, keeping in mind the above interpretation of response matrix
entries (effective conductances). The restrictions on values of transition probabilities lead to
some networks being recoverable.
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