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1 Definitions (the cool part)

Definition 1.1. A cell-conductivity network Γ (in Ω) is an ordered pair (G, γ),
where G = (C,CB , E) is a graph and γ : C → R is a conductivity function.

• C = {C1, C2, . . . , Cn} is a set of cells, which are disjoint open subsets of
Ω such that

⋃
clCi = Ω.

• CB consists of the boundary cells, which are those cells such that ∂Ci∩∂Ω
is non-empty.

• E is the edge relation on C, which marks two cells as being adjacent iff
∂Ci ∩ ∂Cj is non-empty.

We will often write G instead of C and ∂G instead of CB , and denote adjacency
by ∼.

Each cell has an associated conductivity γi, and current flow into a cell is
determined by

(Kv)i =
∑

j∼i

γj(vj − vi) (1)

A cell-conductivity network thus defined is identical to a vertex-conductivity
network, but with a new geometric association: the ‘vertices’ now fill space. (In
fact, given any vertex-conductivity network on a graph Ĝ embedded in a region,
we can construct a corresponding cell-conductivity network by considering the
faces of the dual graph of Ĝ.) With this understanding, we can extend a function
on G in a natural way to a step-function on Ω, simply by painting the value at
each cell across the part of Ω covered by that cell.

For x ∈ intΩ, cell(x) will denote the cell containing x, and for x ∈ ∂Ω,
cell(x) will denote the cell whose boundary contains x. We will write |Ci|Ω for
the measure of Ci in Ω, and |Ci|∂Ω for the ∂Ω-measure of ∂Ci ∩ ∂Ω.

Definition 1.2. For a function φ defined on G or ∂G, define the extension φ̃

on Ω or ∂Ω (resp.) such that φ̃(x) = φ(cell(x)).
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Next we will define extensions of operators that act on functions defined on
graphs to operators acting on functions defined on continuous region.

Definition 1.3. Let (X, X̃) and (Y, Ỹ ) each be either (G,Ω) or (∂G, ∂Ω). Con-
sider L, a linear operator from Map(X,R) to Map(Y,R), which we will extend

to L̃ : Map(X̃,R) → Map(Ỹ ,R). Let K be the matrix representation of L.
We can also think of K as an integration kernel for L, where the integration is
with respect to a uniform discrete measure. That is,

Lφ(y) = (Lφ)i =

∫

X

K(y, x)φ(x) dx =
∑

j

Kijφj (2)

So we define the extension K̃ of the kernel K by

K̃(y, x) = K(cell(y), cell(x)) (3)

and finally we define the extended operator L̃ by

L̃φ(y) =

∫

X̃

K̃(y, x)φ(x)

|cell(x)|X̃
dx (4)

Note that under this definition L̃φ̃ = L̃φ. We will refer to operators acting
on functions on G or ∂G as “discrete operators” and to those acting on Ω or
∂Ω as “continuous operators”.

Definition 1.4. For a sequence of functions φk : Gk → R and a function
φ : Ω → R, we say φk converges to φ iff φ̃k → φ. Likewise, a sequence of
discrete operators (i.e. matrices) Lk converges to a continuous linear operator

L iff L̃k → L.

We can think of convergence of conductivity functions on Gk to a function
on Ω in any of the traditional senses of convergence: uniform, pointwise, Lp, etc.
We will use the L2 norm for functions on intΩ and the L2 norm with respect
to boundary-measure on ∂Ω. For convergence of operators we use the ‘natural’
norm ‖A‖ = sup{‖Av‖ : ‖v‖ = 1}.

It can also be useful to think of a function on a finite set as a vector. From
this perspective, the L2 norm ‖ṽ‖2 is identical to the weighted Euclidean norm

‖v‖2ω =
∑

i

ωiv
2
i (5)

where ωi is the measure of cell i. Denote the corresponding inner product by
〈, 〉ω. Note that 〈u, v〉ω =

∫
Ω
ũṽ.

There are a few facts to check about extensions and extensional convergence.
These are all uninteresting. Pay no attention.

1. Ãφ = Ãφ̃
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2. If A and B are discrete operators, then ÃB = ÃB̃

3. φ̃+ ψ = φ̃+ ψ̃

4. If A and B are linear operators, then ‖AB‖ ≤ ‖A‖‖B‖

Suppose that Ak → A, Bk → B, φk → φ, and ψk → ψ.

1. cAk → cA

2. AkBk → AB

3. Ik → I, where Ik and I are the identity operators on their respective
domains.

4. AkA
−1
k → I

5. φk + ψk → φ+ ψ

6. Akφk → Aφ

2 Thus saith the mathematician

Theorem 2.1. Suppose that Γk = (Gk, γk) is a sequence of cell-conductivity

networks embedded in a region Ω. Let Λk be the response matrix for Γk. Fur-

thermore, let the sequence Γk satisfy certain hypotheses. Then if Λk → Λ and

γk → γ, then Λ is the response matrix for (Ω, γ); in other words, γ is a solution

of the inverse problem on Ω determined by Λ.

Proof. For φ : ∂Ω → R with the right continuity/differentiability conditions,
we need to demonstrate some γ-harmonic function u : Ω→ R such that on the
boundary u = φ and n · ∇u = ψ = Λφ.

Kids, don’t try this at home. Initiating hand-waving.
Let Kk be the Kirchhoff matrix for Γk. Also, let the operator K be defined

piecewise as n·γ∇ on ∂Ω and as∇·γ∇ on intΩ. We will show thatKk converges
in operator-space to K.

If Gk is a lattice then we can do this in pieces: differencing converges to a
partial derivative, multiplication by γi goes to multiplication by γ, and summa-
tion goes to divergence. The limit of a composition is the composition of the
limits, so this gives Kk → K.

Kk is not an invertible operator, but we can make it injective by restricting
the domain, and bijective by restricting the codomain. Let Vk be the range
of Kk and V be the range of K; these are subspaces of one less dimension
than the original function spaces, and Vk ⊂ V . The Neumann problem has
a unique solution up to the addition of a constant, and restricting to a space
of codimension one effectively ‘grounds’ the system, yielding a unique solution.
Let Lk = Kk|Vk

, and let L = K|V . Consider as functions onto their ranges, Lk

and L are bijective. Lk and L are invertible.
Our next goal is to prove that L−1k converges to L−1. We will do this by

way of
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Lemma 2.2. Let Ak, Bk, A, and B live in an operator-space with a natural

norm ‖ · ‖ and identity I. Suppose that Ak converges to A, AkBk → I, and

AB = BA = I. Then Bk converges to B.

Proof. First we will show that Bk converges to B whenever ‖Bk‖ is bounded.

‖(B −Bk)− (BAkBk −Bk)‖ = ‖B(I −AkBk‖ ≤ ‖B‖‖I −AkBk‖

Since the norm of B is some fixed number, and AkBk goes to I, the quantity
goes to zero. In particular, ‖B −Bk‖ vanishes iff ‖BAkBk −Bk‖ does. Denote
this quantity by Mk. Then we have

Mk = ‖(BAk − I)Bk‖ ≤ ‖(BAk − I)‖‖Bk‖

Since Ak → A, BAk → BA = I. So if ‖Bk‖ is bounded, say by N , then

Mk ≤ N‖BAk − I‖ → 0

Therefore ‖B −Bk‖ vanishes.
Next we show that ‖Bk‖ is bounded. The set of invertible operators is an

open set; since Ak converges to A, it follows that for large enough k, Ak is
invertible. Furthermore,

‖Bk −A
−1
k ‖ = ‖A

−1
k (AkBk − I)‖ ≤ ‖A

−1
k ‖‖AkBk − I‖

so if ‖A−1k ‖ is bounded then Bk approaches A
−1
k ; in particular, ‖Bk‖ is bounded.

It remains only to show that A−1k is bounded.
Since Ak → A we can write A as a sum of Ak and some matrix Ek, whose

norm approaches zero; so say ‖Ek‖ ≤ ε.

Ak = A− Ek

= A(I −A−1Ek)

= A(I − Fk)

And ‖F‖ ≤ ‖A−1‖‖Ek‖ ≤ ε′ < 1, since the norm of A−1 is some fixed number.
Then we invert Ak:

A−1k = (I − Fk)
−1A−1

= (I + Fk + F 2k + F 3k + ...)A−1

And, since
∑
ε′k = (1− ε′)−1, we conclude that

‖A−1k ‖ ≤ ‖A
−1‖(1− ε′)−1

That is, ‖A−1k ‖ is bounded, and therefore converges to A−1.

Since L̃kL̃
−1
k approaches the identity operator, the lemma implies that L̃−1k

converges to L̃−1.
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Consider any Riemann-integrable function φ : ∂Ω → R. There exists some
sequence of functions φk : ∂Gk → R whose extensions converge to φ. Let
ψk = Λkφk and ψ = Λφ. Since Λk converges to Λ, ψk approaches ψ. L−1k
converges to L−1, thus,

vk = L−1k

[
ψk
0

]
−→ L−1

[
ψ

0

]
= v (6)

Now pick some point p ∈ ∂Ω. Let ck be the constant function φ̃k(p)− ṽk(p).
Clearly ck converges to the constant function c(x) = φ(p) − v(p). Then uk =
vk + ck converges to u = v + c. Since uk and vk differ by a constant,

Kuk = Kvk = Lvk =

[
ψk
0

]
(7)

So uk is a γ-harmonic function that satisfies the Neumann data ψk. Any two
functions with this property differ by a constant; in particular, if two such
functions are equal at one point, they are equal everywhere. Since Λkφk = ψk,
there is a γ-harmonic function equal to φk on ∂G that satisfies the Neumann
condition. uk equals φk on cell(p), so uk must be that function; i.e., uk = φk
on the boundary.

Finally, since uk converges to u and φk converges to φ, u = φ on ∂Ω. u

and v differ by a constant, so Ku = Kv = Lv =

[
ψ

0

]
. That is to say, u is a

γ-harmonic function that satisfies both the Dirichlet data φ and the Neumann
data Λφ. So u is exactly the function we needed to find. Ergo, γ is the solution
of the inverse problem (Ω,Λ).

3 Incidentally,

the norm of L̃−1 is actually connected to the discrete and continuous Dirichlet
norms.

‖L̃−1k ‖ = ‖L−1k ‖ω

=
(
maximum eigenvalue of (L−1k )>(L−1k )

)1/2

=
(
minimum eigenvalue of ((L−1k )>(L−1k ))−1

)−1/2

=
(
minimum eigenvalue of LkL

>
k

)−1/2

Consider the quadratic form 〈v, LkL
>
k v〉ω. Since LkL

>
k is symmetric, it has an

orthonormal eigenbasis. Any vector can be decomposed as v =
∑
ciei where

each ei is a unit λi-eigenvector of LkL
>
k . Then 〈v, LkL

>
k v〉ω =

∑
〈ciei, λiciei〉ω =∑

c2iλi, which is minimal when v lies on an eigenvector of smallest eigenvalue.
Thus the square root of the smallest eigenvalue of LkL

>
k is equal to

min
‖v‖ω=1

(
〈v, LkL

>
k v〉ω

)1/2
(8)
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Since L>k approaches Lk, this will approach

min
‖v‖ω=1

〈v, Lkv〉ω = min
‖v‖ω=1

v∈Vk

〈v,Kkv〉ω

Moreover, we can easily demonstrate that the quadratic form 〈v,Kkv〉ω limits
to the Dirichlet norm 〈v,Kv〉 =Wγ(v) =

∫
Ω
γ(∇v)2. It follows that

min
‖v‖ω=1

v∈Vk

〈v,Kkv〉ω

converges to
inf∫
Ω

v2=1

v∈V

Wγ(v) (9)

So the boundedness of ‖L̃−1k ‖ is equivalent to the fact that (9) is positive.
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