Convergence of solutions to discrete inverse problems

J.T. Russell

July 14, 2003

1 Definitions (the cool part)

Definition 1.1. A cell-conductivity network Γ (in Ω) is an ordered pair (G, γ), where $G=\left(C, C_{B}, E\right)$ is a graph and $\gamma: C \rightarrow \mathbf{R}$ is a conductivity function.

- $C=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ is a set of cells, which are disjoint open subsets of Ω such that $\bigcup \mathrm{cl} C_{i}=\Omega$.
- C_{B} consists of the boundary cells, which are those cells such that $\partial C_{i} \cap \partial \Omega$ is non-empty.
- E is the edge relation on C, which marks two cells as being adjacent iff $\partial C_{i} \cap \partial C_{j}$ is non-empty.

We will often write G instead of C and ∂G instead of C_{B}, and denote adjacency by \sim.

Each cell has an associated conductivity γ_{i}, and current flow into a cell is determined by

$$
\begin{equation*}
(K v)_{i}=\sum_{j \sim i} \gamma_{j}\left(v_{j}-v_{i}\right) \tag{1}
\end{equation*}
$$

A cell-conductivity network thus defined is identical to a vertex-conductivity network, but with a new geometric association: the 'vertices' now fill space. (In fact, given any vertex-conductivity network on a graph \hat{G} embedded in a region, we can construct a corresponding cell-conductivity network by considering the faces of the dual graph of G.) With this understanding, we can extend a function on G in a natural way to a step-function on Ω, simply by painting the value at each cell across the part of Ω covered by that cell.

For $x \in \operatorname{int} \Omega, \operatorname{cell}(x)$ will denote the cell containing x, and for $x \in \partial \Omega$, $\operatorname{cell}(x)$ will denote the cell whose boundary contains x. We will write $\left|C_{i}\right|_{\Omega}$ for the measure of C_{i} in Ω, and $\left|C_{i}\right|_{\partial \Omega}$ for the $\partial \Omega$-measure of $\partial C_{i} \cap \partial \Omega$.
Definition 1.2. For a function ϕ defined on G or ∂G, define the extension $\tilde{\phi}$ on Ω or $\partial \Omega$ (resp.) such that $\tilde{\phi}(x)=\phi(\operatorname{cell}(x))$.

Next we will define extensions of operators that act on functions defined on graphs to operators acting on functions defined on continuous region.

Definition 1.3. Let (X, \widetilde{X}) and (Y, \widetilde{Y}) each be either (G, Ω) or $(\partial G, \partial \Omega)$. Consider L, a linear operator from $\operatorname{Map}(X, \mathbf{R})$ to $\operatorname{Map}(Y, \mathbf{R})$, which we will extend to $\widetilde{L}: \operatorname{Map}(\widetilde{X}, \mathbf{R}) \rightarrow \operatorname{Map}(\widetilde{Y}, \mathbf{R})$. Let K be the matrix representation of L. We can also think of K as an integration kernel for L, where the integration is with respect to a uniform discrete measure. That is,

$$
\begin{equation*}
L \phi(y)=(L \phi)_{i}=\int_{X} K(y, x) \phi(x) d x=\sum_{j} K_{i j} \phi_{j} \tag{2}
\end{equation*}
$$

So we define the extension \widetilde{K} of the kernel K by

$$
\begin{equation*}
\widetilde{K}(y, x)=K(\operatorname{cell}(y), \operatorname{cell}(x)) \tag{3}
\end{equation*}
$$

and finally we define the extended operator \widetilde{L} by

$$
\begin{equation*}
\widetilde{L} \phi(y)=\int_{\widetilde{X}} \frac{\widetilde{K}(y, x) \phi(x)}{|\operatorname{cell}(x)|_{\tilde{X}}} d x \tag{4}
\end{equation*}
$$

Note that under this definition $\widetilde{L} \widetilde{\phi}=\widetilde{L \phi}$. We will refer to operators acting on functions on G or ∂G as "discrete operators" and to those acting on Ω or $\partial \Omega$ as "continuous operators".

Definition 1.4. For a sequence of functions $\phi_{k}: G_{k} \rightarrow \mathbf{R}$ and a function $\phi: \Omega \rightarrow \mathbf{R}$, we say ϕ_{k} converges to ϕ iff $\tilde{\phi}_{k} \rightarrow \phi$. Likewise, a sequence of discrete operators (i.e. matrices) L_{k} converges to a continuous linear operator L iff $\widetilde{L}_{k} \rightarrow L$.

We can think of convergence of conductivity functions on G_{k} to a function on Ω in any of the traditional senses of convergence: uniform, pointwise, L^{p}, etc. We will use the L^{2} norm for functions on int Ω and the L^{2} norm with respect to boundary-measure on $\partial \Omega$. For convergence of operators we use the 'natural' norm $\|A\|=\sup \{\|A v\|:\|v\|=1\}$.

It can also be useful to think of a function on a finite set as a vector. From this perspective, the L^{2} norm $\|\widetilde{v}\|_{2}$ is identical to the weighted Euclidean norm

$$
\begin{equation*}
\|v\|_{\omega}^{2}=\sum_{i} \omega_{i} v_{i}^{2} \tag{5}
\end{equation*}
$$

where ω_{i} is the measure of cell i. Denote the corresponding inner product by \langle,\rangle_{ω}. Note that $\langle u, v\rangle_{\omega}=\int_{\Omega} \widetilde{u} \widetilde{v}$.

There are a few facts to check about extensions and extensional convergence. These are all uninteresting. Pay no attention.

1. $\widetilde{A \phi}=\widetilde{A} \widetilde{\phi}$
2. If A and B are discrete operators, then $\widetilde{A B}=\widetilde{A} \widetilde{B}$
3. $\widetilde{\phi+\psi}=\widetilde{\phi}+\widetilde{\psi}$
4. If A and B are linear operators, then $\|A B\| \leq\|A\|\|B\|$

Suppose that $A_{k} \rightarrow A, B_{k} \rightarrow B, \phi_{k} \rightarrow \phi$, and $\psi_{k} \rightarrow \psi$.

1. $c A_{k} \rightarrow c A$
2. $A_{k} B_{k} \rightarrow A B$
3. $I_{k} \rightarrow I$, where I_{k} and I are the identity operators on their respective domains.
4. $A_{k} A_{k}^{-1} \rightarrow I$
5. $\phi_{k}+\psi_{k} \rightarrow \phi+\psi$
6. $A_{k} \phi_{k} \rightarrow A \phi$

2 Thus saith the mathematician

Theorem 2.1. Suppose that $\Gamma_{k}=\left(G_{k}, \gamma_{k}\right)$ is a sequence of cell-conductivity networks embedded in a region Ω. Let Λ_{k} be the response matrix for Γ_{k}. Furthermore, let the sequence Γ_{k} satisfy certain HYPOTHESES. Then if $\Lambda_{k} \rightarrow \Lambda$ and $\gamma_{k} \rightarrow \gamma$, then Λ is the response matrix for (Ω, γ); in other words, γ is a solution of the inverse problem on Ω determined by Λ.
Proof. For $\phi: \partial \Omega \rightarrow \mathbf{R}$ with the right continuity/differentiability conditions, we need to demonstrate some γ-harmonic function $u: \Omega \rightarrow \mathbf{R}$ such that on the boundary $u=\phi$ and $\mathbf{n} \cdot \nabla u=\psi=\Lambda \phi$.

Kids, don't try this at home. Initiating hand-waving.
Let K_{k} be the Kirchhoff matrix for Γ_{k}. Also, let the operator K be defined piecewise as $\mathbf{n} \cdot \gamma \nabla$ on $\partial \Omega$ and as $\nabla \cdot \gamma \nabla$ on int Ω. We will show that K_{k} converges in operator-space to K.

If G_{k} is a lattice then we can do this in pieces: differencing converges to a partial derivative, multiplication by γ_{i} goes to multiplication by γ, and summation goes to divergence. The limit of a composition is the composition of the limits, so this gives $K_{k} \rightarrow K$.
K_{k} is not an invertible operator, but we can make it injective by restricting the domain, and bijective by restricting the codomain. Let V_{k} be the range of K_{k} and V be the range of K; these are subspaces of one less dimension than the original function spaces, and $V_{k} \subset V$. The Neumann problem has a unique solution up to the addition of a constant, and restricting to a space of codimension one effectively 'grounds' the system, yielding a unique solution. Let $L_{k}=\left.K_{k}\right|_{V_{k}}$, and let $L=\left.K\right|_{V}$. Consider as functions onto their ranges, L_{k} and L are bijective. L_{k} and L are invertible.

Our next goal is to prove that L_{k}^{-1} converges to L^{-1}. We will do this by way of

Lemma 2.2. Let A_{k}, B_{k}, A, and B live in an operator-space with a natural norm $\|\cdot\|$ and identity I. Suppose that A_{k} converges to $A, A_{k} B_{k} \rightarrow I$, and $A B=B A=I$. Then B_{k} converges to B.

Proof. First we will show that B_{k} converges to B whenever $\left\|B_{k}\right\|$ is bounded.

$$
\left\|\left(B-B_{k}\right)-\left(B A_{k} B_{k}-B_{k}\right)\right\|=\| B\left(I-A_{k} B_{k}\|\leq\| B\| \| I-A_{k} B_{k} \|\right.
$$

Since the norm of B is some fixed number, and $A_{k} B_{k}$ goes to I, the quantity goes to zero. In particular, $\left\|B-B_{k}\right\|$ vanishes iff $\left\|B A_{k} B_{k}-B_{k}\right\|$ does. Denote this quantity by M_{k}. Then we have

$$
M_{k}=\left\|\left(B A_{k}-I\right) B_{k}\right\| \leq\left\|\left(B A_{k}-I\right)\right\|\left\|B_{k}\right\|
$$

Since $A_{k} \rightarrow A, B A_{k} \rightarrow B A=I$. So if $\left\|B_{k}\right\|$ is bounded, say by N, then

$$
M_{k} \leq N\left\|B A_{k}-I\right\| \rightarrow 0
$$

Therefore $\left\|B-B_{k}\right\|$ vanishes.
Next we show that $\left\|B_{k}\right\|$ is bounded. The set of invertible operators is an open set; since A_{k} converges to A, it follows that for large enough k, A_{k} is invertible. Furthermore,

$$
\left\|B_{k}-A_{k}^{-1}\right\|=\left\|A_{k}^{-1}\left(A_{k} B_{k}-I\right)\right\| \leq\left\|A_{k}^{-1}\right\|\left\|A_{k} B_{k}-I\right\|
$$

so if $\left\|A_{k}^{-1}\right\|$ is bounded then B_{k} approaches A_{k}^{-1}; in particular, $\left\|B_{k}\right\|$ is bounded. It remains only to show that A_{k}^{-1} is bounded.

Since $A_{k} \rightarrow A$ we can write A as a sum of A_{k} and some matrix E_{k}, whose norm approaches zero; so say $\left\|E_{k}\right\| \leq \varepsilon$.

$$
\begin{aligned}
A_{k} & =A-E_{k} \\
& =A\left(I-A^{-1} E_{k}\right) \\
& =A\left(I-F_{k}\right)
\end{aligned}
$$

And $\|F\| \leq\left\|A^{-1}\right\|\left\|E_{k}\right\| \leq \varepsilon^{\prime}<1$, since the norm of A^{-1} is some fixed number. Then we invert A_{k} :

$$
\begin{aligned}
A_{k}^{-1} & =\left(I-F_{k}\right)^{-1} A^{-1} \\
& =\left(I+F_{k}+F_{k}^{2}+F_{k}^{3}+\ldots\right) A^{-1}
\end{aligned}
$$

And, since $\sum \varepsilon^{\prime k}=\left(1-\varepsilon^{\prime}\right)^{-1}$, we conclude that

$$
\left\|A_{k}^{-1}\right\| \leq\left\|A^{-1}\right\|\left(1-\varepsilon^{\prime}\right)^{-1}
$$

That is, $\left\|A_{k}^{-1}\right\|$ is bounded, and therefore converges to A^{-1}.
Since $\widetilde{L}_{k} \widetilde{L_{k}^{-1}}$ approaches the identity operator, the lemma implies that $\widetilde{L_{k}^{-1}}$ converges to \widetilde{L}^{-1}.

Consider any Riemann-integrable function $\phi: \partial \Omega \rightarrow \mathbf{R}$. There exists some sequence of functions $\phi_{k}: \partial G_{k} \rightarrow \mathbf{R}$ whose extensions converge to ϕ. Let $\psi_{k}=\Lambda_{k} \phi_{k}$ and $\psi=\Lambda \phi$. Since Λ_{k} converges to Λ, ψ_{k} approaches ψ. L_{k}^{-1} converges to L^{-1}, thus,

$$
v_{k}=L_{k}^{-1}\left[\begin{array}{c}
\psi_{k} \tag{6}\\
0
\end{array}\right] \longrightarrow L^{-1}\left[\begin{array}{l}
\psi \\
0
\end{array}\right]=v
$$

Now pick some point $p \in \partial \Omega$. Let c_{k} be the constant function $\tilde{\phi}_{k}(p)-\widetilde{v_{k}}(p)$. Clearly c_{k} converges to the constant function $c(x)=\phi(p)-v(p)$. Then $u_{k}=$ $v_{k}+c_{k}$ converges to $u=v+c$. Since u_{k} and v_{k} differ by a constant,

$$
K u_{k}=K v_{k}=L v_{k}=\left[\begin{array}{c}
\psi_{k} \tag{7}\\
0
\end{array}\right]
$$

So u_{k} is a γ-harmonic function that satisfies the Neumann data ψ_{k}. Any two functions with this property differ by a constant; in particular, if two such functions are equal at one point, they are equal everywhere. Since $\Lambda_{k} \phi_{k}=\psi_{k}$, there is a γ-harmonic function equal to ϕ_{k} on ∂G that satisfies the Neumann condition. u_{k} equals ϕ_{k} on $\operatorname{cell}(p)$, so u_{k} must be that function; i.e., $u_{k}=\phi_{k}$ on the boundary.

Finally, since u_{k} converges to u and ϕ_{k} converges to $\phi, u=\phi$ on $\partial \Omega . u$ and v differ by a constant, so $K u=K v=L v=\left[\begin{array}{l}\psi \\ 0\end{array}\right]$. That is to say, u is a γ-harmonic function that satisfies both the Dirichlet data ϕ and the Neumann data $\Lambda \phi$. So u is exactly the function we needed to find. Ergo, γ is the solution of the inverse problem (Ω, Λ).

3 Incidentally,

the norm of $\widetilde{L^{-1}}$ is actually connected to the discrete and continuous Dirichlet norms.

$$
\begin{aligned}
\left\|\widetilde{L_{k}^{-1}}\right\| & =\left\|L_{k}^{-1}\right\|_{\omega} \\
& =\left(\text { maximum eigenvalue of }\left(L_{k}^{-1}\right)^{\top}\left(L_{k}^{-1}\right)\right)^{1 / 2} \\
& =\left(\text { minimum eigenvalue of }\left(\left(L_{k}^{-1}\right)^{\top}\left(L_{k}^{-1}\right)\right)^{-1}\right)^{-1 / 2} \\
& =\left(\text { minimum eigenvalue of } L_{k} L_{k}^{\top}\right)^{-1 / 2}
\end{aligned}
$$

Consider the quadratic form $\left\langle v, L_{k} L_{k}^{\top} v\right\rangle_{\omega}$. Since $L_{k} L_{k}^{\top}$ is symmetric, it has an orthonormal eigenbasis. Any vector can be decomposed as $v=\sum c_{i} e_{i}$ where each e_{i} is a unit λ_{i}-eigenvector of $L_{k} L_{k}^{\top}$. Then $\left\langle v, L_{k} L_{k}^{\top} v\right\rangle_{\omega}=\sum\left\langle c_{i} e_{i}, \lambda_{i} c_{i} e_{i}\right\rangle_{\omega}=$ $\sum c_{i}^{2} \lambda_{i}$, which is minimal when v lies on an eigenvector of smallest eigenvalue. Thus the square root of the smallest eigenvalue of $L_{k} L_{k}^{\top}$ is equal to

$$
\begin{equation*}
\min _{\|v\|_{\omega}=1}\left(\left\langle v, L_{k} L_{k}^{\top} v\right\rangle_{\omega}\right)^{1 / 2} \tag{8}
\end{equation*}
$$

Since L_{k}^{\top} approaches L_{k}, this will approach

$$
\min _{\|v\|_{\omega}=1}\left\langle v, L_{k} v\right\rangle_{\omega}=\min _{\substack{\|v\|_{\omega}=1 \\ v \in V_{k}}}\left\langle v, K_{k} v\right\rangle_{\omega}
$$

Moreover, we can easily demonstrate that the quadratic form $\left\langle v, K_{k} v\right\rangle_{\omega}$ limits to the Dirichlet norm $\langle v, K v\rangle=W_{\gamma}(v)=\int_{\Omega} \gamma(\nabla v)^{2}$. It follows that

$$
\min _{\substack{\|v\|_{\omega}=1 \\ v \in V_{k}}}\left\langle v, K_{k} v\right\rangle_{\omega}
$$

converges to

$$
\begin{equation*}
\inf _{\substack{\int_{\Omega}=1 \\ v \in V}} W_{\gamma}(v) \tag{9}
\end{equation*}
$$

So the boundedness of $\left\|\widetilde{L_{k}^{-1}}\right\|$ is equivalent to the fact that (9) is positive.

