Convergence of solutions to discrete inverse problems

J.T. Russell

July 14, 2003

1 Definitions (the cool part)

Definition 1.1. A cell-conductivity network Γ (in Ω) is an ordered pair (G, γ) , where $G = (C, C_B, E)$ is a graph and $\gamma : C \to \mathbf{R}$ is a conductivity function.

- $C = \{C_1, C_2, \dots, C_n\}$ is a set of cells, which are disjoint open subsets of Ω such that $\bigcup \operatorname{cl} C_i = \Omega$.
- C_B consists of the boundary cells, which are those cells such that $\partial C_i \cap \partial \Omega$ is non-empty.
- E is the edge relation on C, which marks two cells as being adjacent iff $\partial C_i \cap \partial C_j$ is non-empty.

We will often write G instead of C and ∂G instead of C_B , and denote adjacency by \sim .

Each cell has an associated conductivity γ_i , and current flow into a cell is determined by

$$(Kv)_i = \sum_{j \sim i} \gamma_j (v_j - v_i) \tag{1}$$

A cell-conductivity network thus defined is identical to a vertex-conductivity network, but with a new geometric association: the 'vertices' now fill space. (In fact, given any vertex-conductivity network on a graph \hat{G} embedded in a region, we can construct a corresponding cell-conductivity network by considering the faces of the dual graph of \hat{G} .) With this understanding, we can extend a function on G in a natural way to a step-function on Ω , simply by painting the value at each cell across the part of Ω covered by that cell.

For $x \in \operatorname{int} \Omega$, $\operatorname{cell}(x)$ will denote the cell containing x, and for $x \in \partial\Omega$, $\operatorname{cell}(x)$ will denote the cell whose boundary contains x. We will write $|C_i|_{\Omega}$ for the measure of C_i in Ω , and $|C_i|_{\partial\Omega}$ for the $\partial\Omega$ -measure of $\partial C_i \cap \partial\Omega$.

Definition 1.2. For a function ϕ defined on G or ∂G , define the extension ϕ on Ω or $\partial \Omega$ (resp.) such that $\tilde{\phi}(x) = \phi(cell(x))$.

Next we will define extensions of operators that act on functions defined on graphs to operators acting on functions defined on continuous region.

Definition 1.3. Let (X, \widetilde{X}) and (Y, \widetilde{Y}) each be either (G, Ω) or $(\partial G, \partial \Omega)$. Consider L, a linear operator from $Map(X, \mathbf{R})$ to $Map(Y, \mathbf{R})$, which we will extend to $\widetilde{L} : Map(\widetilde{X}, \mathbf{R}) \to Map(\widetilde{Y}, \mathbf{R})$. Let K be the matrix representation of L. We can also think of K as an integration kernel for L, where the integration is with respect to a uniform discrete measure. That is,

$$L\phi(y) = (L\phi)_i = \int_X K(y, x)\phi(x) \, dx = \sum_j K_{ij}\phi_j \tag{2}$$

So we define the extension \widetilde{K} of the kernel K by

$$K(y,x) = K(cell(y), cell(x))$$
(3)

and finally we define the extended operator \widetilde{L} by

$$\widetilde{L}\phi(y) = \int_{\widetilde{X}} \frac{\widetilde{K}(y,x)\phi(x)}{|cell(x)|_{\widetilde{X}}} dx$$
(4)

Note that under this definition $\widetilde{L}\phi = \widetilde{L}\phi$. We will refer to operators acting on functions on G or ∂G as "discrete operators" and to those acting on Ω or $\partial\Omega$ as "continuous operators".

Definition 1.4. For a sequence of functions $\phi_k : G_k \to \mathbf{R}$ and a function $\phi : \Omega \to \mathbf{R}$, we say ϕ_k converges to ϕ iff $\tilde{\phi}_k \to \phi$. Likewise, a sequence of discrete operators (i.e. matrices) L_k converges to a continuous linear operator L iff $\tilde{L}_k \to L$.

We can think of convergence of conductivity functions on G_k to a function on Ω in any of the traditional senses of convergence: uniform, pointwise, L^p , etc. We will use the L^2 norm for functions on int Ω and the L^2 norm with respect to boundary-measure on $\partial\Omega$. For convergence of operators we use the 'natural' norm $||A|| = \sup\{||Av|| : ||v|| = 1\}$.

It can also be useful to think of a function on a finite set as a vector. From this perspective, the L^2 norm $\|\tilde{v}\|_2$ is identical to the weighted Euclidean norm

$$\|v\|_{\omega}^2 = \sum_i \omega_i v_i^2 \tag{5}$$

where ω_i is the measure of cell *i*. Denote the corresponding inner product by $\langle , \rangle_{\omega}$. Note that $\langle u, v \rangle_{\omega} = \int_{\Omega} \widetilde{u} \widetilde{v}$.

There are a few facts to check about extensions and extensional convergence. These are all uninteresting. Pay no attention.

1.
$$A\phi = A\phi$$

- 2. If A and B are discrete operators, then $\widetilde{AB} = \widetilde{AB}$
- 3. $\widetilde{\phi + \psi} = \widetilde{\phi} + \widetilde{\psi}$
- 4. If A and B are linear operators, then $||AB|| \leq ||A|| ||B||$

Suppose that $A_k \to A$, $B_k \to B$, $\phi_k \to \phi$, and $\psi_k \to \psi$.

- 1. $cA_k \rightarrow cA$
- 2. $A_k B_k \rightarrow AB$
- 3. $I_k \to I$, where I_k and I are the identity operators on their respective domains.
- 4. $A_k A_k^{-1} \to I$
- 5. $\phi_k + \psi_k \rightarrow \phi + \psi$
- 6. $A_k \phi_k \rightarrow A \phi$

2 Thus saith the mathematician

Theorem 2.1. Suppose that $\Gamma_k = (G_k, \gamma_k)$ is a sequence of cell-conductivity networks embedded in a region Ω . Let Λ_k be the response matrix for Γ_k . Furthermore, let the sequence Γ_k satisfy certain HYPOTHESES. Then if $\Lambda_k \to \Lambda$ and $\gamma_k \to \gamma$, then Λ is the response matrix for (Ω, γ) ; in other words, γ is a solution of the inverse problem on Ω determined by Λ .

Proof. For $\phi : \partial \Omega \to \mathbf{R}$ with the right continuity/differentiability conditions, we need to demonstrate some γ -harmonic function $u : \Omega \to \mathbf{R}$ such that on the boundary $u = \phi$ and $\mathbf{n} \cdot \nabla u = \psi = \Lambda \phi$.

Kids, don't try this at home. Initiating hand-waving.

Let K_k be the Kirchhoff matrix for Γ_k . Also, let the operator K be defined piecewise as $\mathbf{n} \cdot \gamma \nabla$ on $\partial \Omega$ and as $\nabla \cdot \gamma \nabla$ on int Ω . We will show that K_k converges in operator-space to K.

If G_k is a lattice then we can do this in pieces: differencing converges to a partial derivative, multiplication by γ_i goes to multiplication by γ , and summation goes to divergence. The limit of a composition is the composition of the limits, so this gives $K_k \to K$.

 K_k is not an invertible operator, but we can make it injective by restricting the domain, and bijective by restricting the codomain. Let V_k be the range of K_k and V be the range of K; these are subspaces of one less dimension than the original function spaces, and $V_k \subset V$. The Neumann problem has a unique solution up to the addition of a constant, and restricting to a space of codimension one effectively 'grounds' the system, yielding a unique solution. Let $L_k = K_k|_{V_k}$, and let $L = K|_V$. Consider as functions onto their ranges, L_k and L are bijective. L_k and L are invertible.

Our next goal is to prove that L_k^{-1} converges to L^{-1} . We will do this by way of

Lemma 2.2. Let A_k , B_k , A, and B live in an operator-space with a natural norm $\|\cdot\|$ and identity I. Suppose that A_k converges to $A, A_k B_k \to I$, and AB = BA = I. Then B_k converges to B.

Proof. First we will show that B_k converges to B whenever $||B_k||$ is bounded.

$$||(B - B_k) - (BA_kB_k - B_k)|| = ||B(I - A_kB_k)|| \le ||B|| ||I - A_kB_k||$$

Since the norm of B is some fixed number, and $A_k B_k$ goes to I, the quantity goes to zero. In particular, $||B - B_k||$ vanishes iff $||BA_kB_k - B_k||$ does. Denote this quantity by M_k . Then we have

$$M_k = \|(BA_k - I)B_k\| \le \|(BA_k - I)\|\|B_k\|$$

Since $A_k \to A$, $BA_k \to BA = I$. So if $||B_k||$ is bounded, say by N, then

$$M_k \le N \|BA_k - I\| \to 0$$

Therefore $||B - B_k||$ vanishes.

Next we show that $||B_k||$ is bounded. The set of invertible operators is an open set; since A_k converges to A, it follows that for large enough k, A_k is invertible. Furthermore,

$$||B_k - A_k^{-1}|| = ||A_k^{-1}(A_k B_k - I)|| \le ||A_k^{-1}|| ||A_k B_k - I||$$

so if $||A_k^{-1}||$ is bounded then B_k approaches A_k^{-1} ; in particular, $||B_k||$ is bounded. It remains only to show that A_k^{-1} is bounded. Since $A_k \to A$ we can write A as a sum of A_k and some matrix E_k , whose

norm approaches zero; so say $||E_k|| \leq \varepsilon$.

$$A_k = A - E_k$$

= $A(I - A^{-1}E_k)$
= $A(I - F_k)$

And $||F|| \le ||A^{-1}|| ||E_k|| \le \varepsilon' < 1$, since the norm of A^{-1} is some fixed number. Then we invert A_k :

$$A_k^{-1} = (I - F_k)^{-1} A^{-1}$$

= $(I + F_k + F_k^2 + F_k^3 + ...) A^{-1}$

And, since $\sum \varepsilon'^k = (1 - \varepsilon')^{-1}$, we conclude that

7

$$||A_k^{-1}|| \le ||A^{-1}||(1-\varepsilon')^{-1}$$

That is, $||A_k^{-1}||$ is bounded, and therefore converges to A^{-1} .

Since $\widetilde{L}_k \widetilde{L}_k^{-1}$ approaches the identity operator, the lemma implies that \widetilde{L}_k^{-1} converges to \widetilde{L}^{-1} .

Consider any Riemann-integrable function $\phi : \partial \Omega \to \mathbf{R}$. There exists some sequence of functions $\phi_k : \partial G_k \to \mathbf{R}$ whose extensions converge to ϕ . Let $\psi_k = \Lambda_k \phi_k$ and $\psi = \Lambda \phi$. Since Λ_k converges to Λ , ψ_k approaches ψ . L_k^{-1} converges to L^{-1} , thus,

$$v_k = L_k^{-1} \begin{bmatrix} \psi_k \\ 0 \end{bmatrix} \longrightarrow L^{-1} \begin{bmatrix} \psi \\ 0 \end{bmatrix} = v \tag{6}$$

Now pick some point $p \in \partial \Omega$. Let c_k be the constant function $\phi_k(p) - \tilde{v}_k(p)$. Clearly c_k converges to the constant function $c(x) = \phi(p) - v(p)$. Then $u_k = v_k + c_k$ converges to u = v + c. Since u_k and v_k differ by a constant,

$$Ku_k = Kv_k = Lv_k = \begin{bmatrix} \psi_k \\ 0 \end{bmatrix}$$
(7)

So u_k is a γ -harmonic function that satisfies the Neumann data ψ_k . Any two functions with this property differ by a constant; in particular, if two such functions are equal at one point, they are equal everywhere. Since $\Lambda_k \phi_k = \psi_k$, there is a γ -harmonic function equal to ϕ_k on ∂G that satisfies the Neumann condition. u_k equals ϕ_k on cell(p), so u_k must be that function; i.e., $u_k = \phi_k$ on the boundary.

Finally, since u_k converges to u and ϕ_k converges to ϕ , $u = \phi$ on $\partial\Omega$. uand v differ by a constant, so $Ku = Kv = Lv = \begin{bmatrix} \psi \\ 0 \end{bmatrix}$. That is to say, u is a γ -harmonic function that satisfies both the Dirichlet data ϕ and the Neumann data $\Lambda\phi$. So u is exactly the function we needed to find. Ergo, γ is the solution of the inverse problem (Ω, Λ) .

3 Incidentally,

the norm of $\widetilde{L^{-1}}$ is actually connected to the discrete and continuous Dirichlet norms.

$$\begin{split} \widetilde{\|L_k^{-1}\|} &= \|L_k^{-1}\|_{\omega} \\ &= \left(\text{maximum eigenvalue of } (L_k^{-1})^\top (L_k^{-1}) \right)^{1/2} \\ &= \left(\text{minimum eigenvalue of } ((L_k^{-1})^\top (L_k^{-1}))^{-1/2} \right)^{-1/2} \\ &= \left(\text{minimum eigenvalue of } L_k L_k^\top \right)^{-1/2} \end{split}$$

Consider the quadratic form $\langle v, L_k L_k^{\top} v \rangle_{\omega}$. Since $L_k L_k^{\top}$ is symmetric, it has an orthonormal eigenbasis. Any vector can be decomposed as $v = \sum c_i e_i$ where each e_i is a unit λ_i -eigenvector of $L_k L_k^{\top}$. Then $\langle v, L_k L_k^{\top} v \rangle_{\omega} = \sum \langle c_i e_i, \lambda_i c_i e_i \rangle_{\omega} = \sum c_i^2 \lambda_i$, which is minimal when v lies on an eigenvector of smallest eigenvalue. Thus the square root of the smallest eigenvalue of $L_k L_k^{\top}$ is equal to

$$\min_{\|v\|_{\omega}=1} \left(\langle v, L_k L_k^{\top} v \rangle_{\omega} \right)^{1/2} \tag{8}$$

Since L_k^{\top} approaches L_k , this will approach

$$\min_{\|v\|_{\omega}=1} \langle v, L_k v \rangle_{\omega} = \min_{\|v\|_{\omega}=1 \atop v \in V_k} \langle v, K_k v \rangle_{\omega}$$

Moreover, we can easily demonstrate that the quadratic form $\langle v, K_k v \rangle_{\omega}$ limits to the Dirichlet norm $\langle v, Kv \rangle = W_{\gamma}(v) = \int_{\Omega} \gamma(\nabla v)^2$. It follows that

$$\min_{\substack{\|v\|_{\omega}=1\\v\in V_k}} \langle v, K_k v \rangle_{\omega}$$

converges to

$$\inf_{\substack{\int_{\Omega} v^2 = 1\\ v \in V}} W_{\gamma}(v) \tag{9}$$

So the boundedness of $\|\widetilde{L_k^{-1}}\|$ is equivalent to the fact that (9) is positive.