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Abstract. Vertex conductivities and Edge conductivities could be defined

differently on one graph. This paper investigates the relationship between

these two kinds of conductivities. The possibility of using this relationship in

recovery is discussed.

1. Introduction

Vertex conductivities is a function defined on vertices and can be used to define
the current flow out of a vertex. For given edge there is a different conductivity
corresponding to the direction of the edge. The Kirchhoff matrix K is defined so
that K · u = I(u), where I is the current flow and u is the potential at each vertex.
This paper defines the Kirhhoff matrix K as the following,

Kij =











0 j 6= i, j 6∈ N (i)

−γj j 6= i, j ∈ N (i)
∑

n6=i Kin j = i

where N (i) represents the neighboring nodes. We find the response matrix Λ
as in the case of edge conductivities, by taking Schur Complement of the Kirhhoff
matrix.
We define the current into the node p to be the current flowing out of the node,

(1) Ip(u) =
∑

q∈N (p)

(up − uq)γ(q)

The inverse problem is that given the response matrix Λ, we are to recover the
vertex conductivities of the network.
In the vertex conductivity networks Kirhhoff law is defined as following,

(2) Ip(u) =
∑

q∈N (p)

(up − uq)γ(q) = 0

for the interior node p. This is not physically equivalent to Kirhoff’s law for the
edge conductivity networks, and we will see that this discrepancy makes trouble in
finding out the relationship between the vertex and edge response matrices.
The first idea that came up was that we could draw a medial graph of a edge con-

ductivity network and assign the vertex conductivities with the edge conductivities
at the ”interior vertices” of the medial graphs. For example, for the circular planar
network given in figure(1) has its medial graph as an associated vertex conductivity
network.
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Figure 1. Assigning vertex conductivities using edge graph

If one could find some kind of relationship between the response matrix of those
two graphs and if there is a equation that gives correct answers to circular planar
but does not work on any other network, than that equation can be used as a test
for circular planarity. However, the task seems to be extremely complicated if not
impossible.

2. Algebraic Relation between Vertex and Edge Conductivities

Another way to approach this is to consider the same network and think of it
as consisting of both edge conductivity and vertex conductivity networks. The
task would be to find the edge conductivities given vertex conductivities or vice
versa. We consider the case in which the vertex conductivities γ(p), γ(q) and the
conductivity γpq of edge connecting those two vertex is the following.

(3) γ(p) + γ(q) = γ(pq)

With the potential difference between two nodes p and q, and the conductivities
at node p and q, we can find the net current that flows from p to q by calculating
the current flowing in one way and the current flowing in the other way. current
flowing into p and q are going to be

i(p) = γ(q)(u(p)− u(q))

i(q) = γ(p)(u(q)− u(p))

So the net current flowing from p to q is going to be

inet = i(p)− i(q) = γ(q)(u(p)− u(q))− γ(p)(u(q)− u(p))

= (γ(p) + γ(q))(u(p)− u(q))

In this equation we can see that this is equivalent to a edge network with con-
ductivity γ(p) + γ(q). It is also equivalent to a network with parralel connection
that has conductivities γ(p) and γ(q). If we consider the network physically, in the
case where u(p)<u(q), there is no way the current is going to flow from p to q.
In the directed graph, the two currents flowing in opposite direction on the same
network always have opposite signs.
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Figure 2. Finding the corresponding edge conductivities from
vertex conductivities

If (2) is true, then sometimes we can set up a system of linear equations and
solve it to get vertex conductivities from edge conductivities. However there are
many cases when the same edge conductivities give infinitely many vertex conduc-
tivities and sometimes there is no vertex conductivities that would give the edge
conductivities at all.
For example, for the following network, given the edge conductivities,
we can set up following equations.

e+ f = a

f + g = b

g + h = c

f + h = d

In this case we can find the exact values for e,f,g,h.
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However, even though the relationship between the edge and vertex conductivites
is one-to-one, it is not recoverable in the edge case, whereas it is recoverable in the
vertex case as shown in [1]. The reason could be that we have more information
in the vertex response matrix than the edge response matrix, since in the edge
response matrix all the information we need is on the upper triangular part of the
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Figure 3. vertex conductivity in Y-network

matrix, whereas in vertex response matrix we need the whole matrix to recover
the network. But we can sense the bleak situation where we glimpse the fact that
even though the conductivies might have one-to-one relationship, even the response
matrix might have one to one relationship, and still it is possible that we are able
to recover in one case, but not the other, or might be able to recover in both cases,
or, of course, not be able to recover in both cases. In other words, it might be
possible that the recoverability relation between those two might just be arbitrary.
There are cases when we don’t have enough equations or even if we do those

equations would not give the explicit answers. Take, for example, a Y network.
Here, we don’t have enough equation to solve for e,h,f,g.

e+ h = a

h+ f = b

h+ g = c

Usually we just need one more piece of information to make it possible to figure out
the vertex conductivities. Suppose we could somehow measure any one of e,h,f,g.
Then we could certainly solve for the rest of the vertex conductivities. Note that
we cannot use Y-∆ transformation to figure out in this case because we have no
information as to how do the vertex conductivities vary in this transformation.
There has been an attempt to find some kind of equivalent network for vertex
conductivity in [3], but it seems that the attempt was unsuccessful.
Conclusion is that even after we establish the relationship between vertex and

edge conductivities it is not easy to move back and forth, mainly because in many
cases those relationship is not one-to-one, and even if it is, we still do not have
concrete relationship between the response matrices. There are cases when we end
up with more equations than we need, and in that case the equation won’t have
answers unless we can toss out enough equations that we don’t need by their linear
dependence.
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Figure 4. vertex and edge conductivity in lattice

Consider the next case where both vertex and edge conductivities are recoverable.
In this case we have enough equations. And yet it is not possible to find the

corresponding vertex conductivites given the edge conductivities.

γ(1) + γ(2) = a

γ(2) + γ(6) = b

γ(3) + γ(4) = c

γ(4) + γ(5) = d

γ(5) + γ(6) = e

γ(5) + γ(9) = g

γ(4) + γ(8) = f

γ(7) + γ(8) = h

γ(8) + γ(9) = i

γ(9) + γ(10) = j

γ(8) + γ(11) = k

γ(9) + γ(12) = l

It turns out when written in the matrix form Aγ=e, one of the rows in A becomes
0 after carrying out the Gaussian Elimination, and thus det(A)=0.
In this case, however, if one can provide more information, then one might be able

to make the transition between edge conductivity and vertex conductivity case. Say
if we know one of the vertex conductivities. Then we can find the rest if we know
the edge conductivities. Consider a case where γ(7) is given along with all the edge
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Figure 5. vertex conductivity in hat-network

conductivities. Then γ(8)=h-γ(7), γ(4)=f-h+γ(7), γ(9)=i-h+γ(7), and γ(5)=d-
f+h-γ(7). Notice that g=γ(9)+γ(5)=d-f+i has to be satisfied for this network to
have a solution.
There is another similar case. Consider the following top hat graph.

γ(1) + γ(2) = a

γ(1) + γ(4) = b

γ(3) + γ(4) = d

γ(4) + γ(5) = e

γ(5) + γ(6) = f

γ(5) + γ(2) = c

The null space for the matrix of this system is generated by [1 1 -1 -1 -1]T . The
dimension of this null space is 1.
Given γ(3) along with all the edge conductivities, γ(4)=f-γ(3), γ(5)=e-f+γ(3),

γ(1)=d-f+γ(3),and γ(2)=c-d+f-γ(3). Again we need the condition that γ(2)+γ(5)=e+c-
d=b in order for this network to have infinitely many solutions. Note that if we
do have this condition, we would have one to one relation of vertex and edge con-
ductivities if we have one more piece of information, such as one of the vertex
conductivities, or one more edge conductivity as in figure (6). Thus we might be
able to construct networks that have bijective relation between vertex and edge
conductivities from the networks that has no such relation. In the revised top hat
case the relation is going to be like this.
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Note that we did not need the edge conductivity b to solve this one to one
relation. In other words, as long as we have the relationship e+c-d=b, the edge
b is not needed to solve this system, and the vertex conductivities of revised top
hat is going to equal the network without the edge conductivity b as in figure (7).
We could construct a similar equivalent network in the lattice case as well. We
could do this in any network with where there is no bijective correspondense. The
number of the edges we need to add is going to vary according to the dimension
of the null space. In fact, it is going to correspond to the dimension of the null
space. 1 Also, we can see that all vertex conductivities of figure(6) depend on the
value of g, which is the edge conductivity that was newly added. In other words,
if we change the value of g, then the vertex conductivities will change just as
well. This seems to show that vertex conductivities are not intrinsic, but induced
by the corresponding edge conductivities. In adding another edge conductivity,
we made a recoverable edge graph(the top hat graph is recoverable in the edge
case) into a non-recoverable graph. But if we assume that we know the value of
the newly added edge conductivity(namely g in this case) it might be possible to
have enough information to recover the graph. Figure(2) and Y-graph has similar
relationship. If we add one more edge conductivity to the Y-graph, then we have
a one-to-one relation between vertex and edge conductivities. However, figure(2)
graph is not recoverable, but Y-graph is recoverable in the edge case. So provided
we know the edge conductivity that we add to the Y-graph, it would be possible
to find the corresponding vertex conductivities. Vertex conductivities change when
corresponding edge conductivities are changed, so if we are to modify networks, we
have to keep track of added edge conductivities. Adding another edge conductivity
may not be useful because the additional information is not given.
In this way we might be able to find some networks that would have the same

vertex conductivities provided that the edge conductivities satisfy a certain kind of
condition.
It seems that given the vertex conductivities, it might be easy to find the cor-

responding edge conductivities. We can just add the two vertex conductivities to
get the edge conductivity in between. However, when it comes to the problem of
recoverability, we need the relationship between the response matrix of the vertex
case and the edge case, and even if we have the relationship between the response
matrices, that might not help in figuring out the recoverabilty relationship.

1We need not restrict ourselves into removing b, we could’ve removed e, c, or d instead.
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Figure 6. Revised Top Hat graph
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Figure 7. Two networks with equal vertex conductivity

3. Relationship between the Kirchhoff Matrices

So far I made a conjecture on the relationship between Kirchhoff matrix of the
edge and vertex case, which is

(5) Kedge = Kvertex + (Kvertex)
T +D

where D is a diagonal matrix.2 It would be neat if D wasn’t included in the
equation, and I made a mistake of leaving it out at first. But since Kvertex only has
its row sums to 0, D has to be included to fix the diagonal entries. If the second
Kvertex’s column sums were add up to be 0, then we can do away with D.
D turns out to be

(6) Dii =
∑

n6=i

Kni −
∑

n6=i

Kin

This equation seems to work because

(Kedge)ij =











0 j 6= i, j 6∈ N (i)

−γij = −γ(i)− γ(j) j 6= i, j ∈ N (i)
∑

n6=i Kin j = i

whereas the Kirchhoff matrix in the vertex case is

(Kvertex)ij =











0 j 6= i, j 6∈ N (i)

−γ(i) j 6= i, j ∈ N (i)
∑

n6=i Kin j = i

2Jaime Lust’s paper on directed graphs uses Kvert and its transpose in a similar way in order

to define Dirichlet norm for directed networks. Lust put uT Ku+ uT Du as Dirichlet norm where

D is a diagonal matrix.
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and its transpose would be

(Kvertex)
T
ij =











0 i 6= j, i 6∈ N (j)

−γ(j) i 6= j, i ∈ N (j)
∑

n6=j Kin i = j

4. Reponse Matrices

The relationship between the response matrix of the two conductivities is not
easy to show because taking Schur Complement is a complicated task. The response
matrix Λvertex for vertex conductivities provides information about the currents
flowing through the directed edges that point outward from the boundary nodes,
whereas the response matrix Λedge gives information about the net current flowing
out of the boundary nodes. So if there were information about currents flowing
through the edge directed into the boundary nodes (say Λ′

vertex) then the following
relationship comes about.

Λedgef = Λvertexf − Λ′
vertexf(7)

whereas f is the voltage at the boundary nodes.

(8) Λvertex − Λ′
vertex = Λedge

In a vertex case λij gives the current flowing out of the boundary node i when
the potential at node j is 1 and 0 elsewhere on the boundary. λ′

ij would give the
current flowing into the boundary node i when the potential at node j is 1 and 0
elsewhere. The conjecture is that

Λvertex = Kvertex(I, I)

Λ′
vertex = K ′

vertex(I, I)
(9)

where Kvertex(I, I) represents taking the Schur Complement of Kvertex. How-
ever, this seems unlikely to be true.

K ′
vertex is K

T
vertex with its diagonal entries fixed. This would mean that a vertex

conductivity network consists of two different edge conductivity networks that is
directed in the same way. 3

Given Λedge, there might be some way to construct two different corresponding
Λvertex, and if those two vertex conductivites are recoverable, and yet give different
corresponding edge conductivities, then the edge conductivity network would not be

3I’ve tried to confirm the relation between the response matrices out in matlab, but it did not

seem to work. I tried the first example in figure(2). It turns out that

(10) Λedge =









e + f −
(e+f)2

e+3f+g+h
−

(e+f)(g+f)
e+3f+g+h

−

(e+f)(h+f)
e+3f+g+h

−

(e+f)(g+f)
e+3f+g+h

2g + f + h−
(g+f)2

e+3f+g+h
−h− g −

(g+f)(h+f)
e+3f+g+h

−

(e+f)(h+f)
e+3f+g+h

−h− g −
(g+f)(h+f)
e+3f+g+h

2h + g + f −
(h+f)2

e+3f+g+h









and

(11) Λvertex =







f −
fe

e+g+h
−

fg

e+g+h
−

fh

e+g+h

−

fe

e+g+h
f + h−

fg

e+g+h
−h−

fh

e+g+h

−

fe

e+g+h
−g −

fg

e+g+h
f + g −

fh

e+g+h






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recoverable. However, it is still difficult to construct Λvertex from Λedge, and even
if we could construct two different Λvertex, it might be the case that a lot of those
would give the same edge conductivities, thereby rendering the method useless. The
reason for this is that if you consider the top hat graph, there are infinitely many
vertex conductivities that would give the same edge conductivities, and it seems
reasonable to assume that infinitely many vertex response matrices would give the
same edge response matrix. Another difficulty is that vertex conductivity network
is much harder to recover than the edge case and of course, the conductivities would
have to have one to one relationship.
There might be a case when there is one-to-one relationship for the conductivi-

ties, and yet the response matrices might not have such relationship. It would be
interesting to see if this case exists.
We could try to go the other way. Given Λvertex, we might be able to find a

way to construct corresponding Λedge, and then recover that and work your way
back to the vertex conductivites. Again the difficulty is that we do not know if the
conductivity relation is 1 to 1, and even if it is, it does not tell us much about the
recoverability of the vertex network.

5. Further Problem

If this problem is going to be further pursued, then it would be interesting to see
in what cases the vertex and edge conductivities relation is going to be bijective,
and if it is bijective, we could look for conditions that would answer the questions
of recoverability of the edge or vertex conductivities. Also, we would have to fully
construct the relationship between the two response matrices. Because of physically
different way of defining Kirhoff’s law, it seems that one would have to construct a
completely different definition of Kirhoff matrix, or the current.
There might be certain kind of operations that would lead to a neat relationship

between vertex and edge case. Even though this will not be a complete inverse
problem, we would need to provide ourselves with some of the information we need
to make the transition and that transition might lead us somewhere, as in the case
of Y-graph with one edge conductivity added.
Another problem that may concern us is that even though we cannot find the

exact relationship between Λvertex and Λedge, we might be able to find some kind
of relationship between the edge conductivity network and the vertex conductivity
network as the network grows larger and larger. So far the only relationship we
have is that

(13) |Kedge − Kvertex| = KT
vertex +D

It’s hard to see that Λedge=Λvertex-Λ′vertex holds because of the different factors in the denomi-

nators. Λvertex’, turns out to be,

(12) Λ′vertex =







ef

e+g+h
− f

hf

e+g+h

gf

e+g+h
ef

e+g+h

hf

e+g+h
− f

gf

e+g+h
ef

e+g+h
h + hf

e+g+h

gf

e+g+h−f−h







Note that Λ′vertex is -Λvertex with h and g switched. We can make a conjecture that Λ′vertex is

going to be negative of Λvertex with the connected boundary vertices switched. Problem arises,

of course, when more than 2 vertices are connected. The main problem, however, is that Λedge

does not equal Λvertex-Λ′vertex. This problem comes from the fact that we have defined Kirhoff’s

law differently for the edge and vertex conductivity network.
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whereas D is a diagonal matrix. But if we could find some kind of limiting relation
that would make the vertex conductivity to approach edge conductivities, then we
might be able to find something useful when we’re studying a sequences of networks
that are converging to continuous case.
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