MAKE THEM FULL RANK

SIMON PAI

1. Omega Matrix

Definition 1.1. An Omega Matrix is a response matrix Λ with n boundary nodes added by an all-ones matrix which multiplied by a scalar $\frac{\lambda}{n}$, denoted as $\Omega_{\lambda}(\Lambda)$.
Lemma 1.2. λ is an eigenvalue of $\Omega_{\lambda}(\Lambda)$ with eigenvector $L=\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)$.
Lemma 1.3. Suppose a response matrix Λ is from a connected all-positive-conductivity network, or Λ has nullity 1 , then $\Omega_{\lambda}(\Lambda)$ has full rank if and only if λ is not 0 .

Corollary 1.4. Given the response matrix Λ and a set of currents I on the boundary, suppose Λ has rank $n-1$, then possible corressponding voltages are $V=$ $\Omega_{1}(\Lambda)^{-1} I+k L$, where k is an arbitrary scalar and $L=\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)$.
Proof. Since Λ has nullity 1 (see [1]), the nullspace of Λ, say N, is $\operatorname{span}\{L\}$. Let C be the orthogonal complement of N. It's easy to see that $\Omega_{\lambda}(\Lambda)$ maps C onto C and N onto N. This directly leads to the lemmas above. Notice that C, as a range, is the collection of all possible boundary current vectors. Therefore $\Omega_{\lambda}(\Lambda)$ maps any voltage vector $\in C$ to the correct current vector, and maps other voltage vectors to their corressponding current vectors with a difference of L multiplied by some non-zero scalar. This gives a proof for the corollary.

References

[1] Addington, Nicolas. "Stars, Eigenvalues, and Negative Conductivities"; 2003.

[^0]
[^0]: Date: August 2003.

