THE EQUIVALENCE OF PLANARITY AND CIRCULAR PLANARITY

SIMON PAI

1. Transformations

Definition 1.1. For graph with boundary, circular planar graph, see [1] p11.
Definition 1.2. A fix-ordered circular planar graph is a graph G with boundary nodes $V_{1}, V_{2}, \ldots, V_{n}$, such that there exists a circular planar embedding with these boundary nodes lying on a circle in the circular order $V_{1}, V_{2}, \ldots, V_{n}$.
Remark 1.3. For convienence, let $E(A, B)$ denotes an edge connecting two verteice A and B.

Lemma 1.4. Suppose $G\left(V, V_{B}, E\right)$ is a graph with boundary, and $V_{B}=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$, let $H\left(V^{\prime}, E^{\prime}\right)$ be a graph (not a graph with boudary) such that $V^{\prime}=V \cap\{P\}, E^{\prime}=$ $E \cap\left\{E\left(P, V_{1}\right), E\left(P, V_{2}\right), \ldots, E\left(P, V_{n}\right)\right\} . G$ is circular planar if and only if H is planar.

Proof. 1. If G is circular planar, by definition we can embed G in a disc D so that the boundary nodes lie on the bound of D. Embed P outside of D, then we have a planar embedding of H.
2. If H is planar, we can embed it on a plane. Adjust the positions of the adjacent vertices of P (i.e. $V_{1}, V_{2}, \ldots, V_{n}$) topologically so that they lie on a circle C, remove P and its adjacent edges, and invert the graph about the circle C, then we have a circular planar embedding of G.

Lemma 1.5. Suppose $G\left(V, V_{B}, E\right)$ is a graph with boundary, and $V_{B}=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$, let $H\left(V^{\prime}, E^{\prime}\right)$ be a graph (not a graph with boudary) such that $V^{\prime}=V \cap\{P\}, E^{\prime}=$ $E \cap\left\{E\left(P, V_{1}\right), E\left(P, V_{2}\right), \ldots, E\left(P, V_{n}\right)\right\} \cap\left\{E\left(V_{1}, V_{2}\right), E\left(V_{2}, V_{3}\right), \ldots, E\left(V_{n}, V_{1}\right)\right\} . G$ is fixed-ordered circular planar if and only if H is planar.

Proof. The proof is similar to lemma 1.1.
Remark 1.6. The two lemmas are nameless so far. However, compared to those terminologies we made this year, we might have called them Star-None Transformation and Wheel-None Transformation respectively.

References

[1] Curtis, Edward B. and James A. Morrow. "Inverse Problems for Electrical Networks." Series on Applied Mathematics, Vol 13; 2000.

[^0]
[^0]: Date: August 2003.

