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Abstract. The following paper examines a method for extending the defini-

tion of a medial graph to fit non-circular-planar graphs-with-boundary. Specif-

ically, we examine the construction of a medial graph for graphs-with-boundary

embeddable on a surface-with-boundary of genus 1. After establishing a con-

vention for drawing these medial graphs, we show that this convention ‘makes

sense’ in that it results in a two-colorable graph. In the remainder of the

paper we study the effects of certain geodesic transformations on these new
medial graphs, enumerate some of the complications which arise in studying

these structures, and make a conjecture regarding the recoverability of resistor
networks embeddable on surfaces-with-boundary of genus 1.

1. Extending the Medial Graph

In attempting to define a medial graph for non-circular-planar graphs-with-
boundary, we must first define a convention for drawing such graphs. As in the
circular planar case, we choose to draw our graph with the boundary nodes in some
circular ordering on a boundary circle. The edges and interior nodes, however, will
be embedded on a surface-with-boundary of certain genus having as its boundary
this boundary circle (See Figure 1a below).
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Figure 1. (a) A surface-with-boundary of genus 1. (b) An alter-
nate way of viewing the same surface.
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Using this convention, we make the following definition:

Definition 1.1. The genus of a graph-with-boundary will be defined as the minimal
genus surface-with-boundary on which that graph can be embedded without edge
crossings, placing the boundary nodes in circular order on the surface’s boundary.

As shorthand, we will refer to a circular planar graph as a G− 0 graph, a graph-
with-boundary of genus 1 as a G− 1 graph, etc.
In the rest of this paper we will be concerned primarily with G− 1 graphs, and

so we now describe a convention for drawing such graphs on the plane. In Figure
1b, we see a square with a circle drawn in the center. If we identify the right edge
of the square with the left edge of the square and the top edge of the square with
the bottom edge of the square, then this figure becomes a torus. If we now identify
the circle as a circular boundary to this surface, we have the surface depicted in
Figure 1a. Thus a simple method of embedding a G − 1 graph on the surface of
genus 1 with circular boundary is to:

(1) Draw the structure depicted in Figure 1b.
(2) On the circle, draw the boundary nodes in circular order.
(3) Outside the circle, draw the interior nodes.
(4) Draw the edges of the graph. If the edges cross, change the positioning of

the interior nodes. By definition, a G− 1 graph should be embeddable on
this structure without edge crossings.

We will use this drawing convention often as a means for visualizing the medial
graph and layout of G− 1 graphs.
With this understanding of how G−n graphs are embedded on surfaces of genus

n with circular boundary, we are in a position to define the medial graph for these
graphs-with-boundary.

Definition 1.2. Given an embedding of a G−n graph on a surface of genus n (as
described above) the medial graph of the given graph-with-boundary is constructed in
the same way as for the circular planar case, with one additional rule: all geodesic
segments must be drawn so they can be contracted on the embedding surface to the
node they subtend.

In drawing the medial graph of a G − n graph, n > 0, the genus of the surface
on which the graph is embedded adds some ambiguity to the construction of the
medial graph’s geodesics. The above rule removes some of this ambiguity and (as
shown in the next section) guarantees the fact that the medial graph will ‘make
sense’ in that it will be properly two-colored in a way analagous to that of the
circular planar medial graph.

2. Two-Colorability of the Medial Graph

The extension of the medial graph makes little sense unless the two-colorability
of the circular planar case extends analagously to graphs of other genuses, and
so we now demonstrate that two-colorability does in fact apply to our extended
convention for drawing the medial graph.

Theorem 2.1. The medial graph, as defined above, is two-colorable for graphs of
any genus. Moreover, coloring the node-bearing cells black and the empty cells white
is a proper two-coloring of these medial graphs.
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Proof. Given a graph-with-boundary embedded on some surface as described above,
we draw the medial graph using our accepted convention. Next, we color the node-
bearing cells black and the empty cells white. Assume this is not a proper two-
coloring of the medial graph. Then either we have two adjacent white cells or two
adjacent black cells.
Assume we have two adjacent white cells. Then there exists a geodesic segment

(a peice of a geodesic between edges of the graph) with empty cells to either side.
But this implies that this geodesic segment can not be contracted to any nodes,
which is a contradiction by our convention for drawing the medial graph.
Next, assume that we have two adjacent black cells. Then there exists a geodesic

segment with node-bearing cells to either side. The geodesic segment may be either
closed or non-closed, so we first assume that the geodesic segment is closed. Then
this implies that the node on the interior of the closed geodesic segment corresponds
to a spike, while the node on the exterior of the closed geodesic segment must have a
loop which intersects this spike (see Figure 2a). But this is a contradiction, because
we assume that our graph embedding has no edge crossings.

Improper

(a) (b) (c)

valence
EdgeEdge
crossingcrossing

Extra
segment

Figure 2. The many failures that result when one assumes that
two-colorability does not hold. In each figure, the geodesic segment
is marked by a dashed line.

Now we assume that the geodesic segment is non-closed. Then we are left with
two potential cases. Either the geodesic segment we are examining is part of a
parallel connection between the two nodes under examination, or it is not. If it is
part of such a parallel connection, then the medial graph will have improper valence
unless there is another geodesic segment connected between the same endpoints (see
Figure 2b). This extra segment solves the coloring problem and is a contradiction
of our assumption that the two black cells were adjacent. So we assume that
our geodesic segment is not part of a parallel connection. A non-closed geodesic
segment must connect two edges of the graph sharing as a vertex the node to
which the segment is contractable. As this geodesic segment forms a portion of
two cells surrounding different nodes and is thus contractable to each node, it must
connect two of the graph’s edges for each node. But the two edges connected by
the geodesic segment corresponding to one node can not be the same edges as those
corresponding to the other node, as this would imply that the geodesic segment were
part of a parallel connection between the two nodes. Thus, the geodesic segment
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connects at least 3 edges of the graph, which implies an edge crossing and thus
another contradiction (see Figure 2c).
Therefore, we must conclude that our original coloring of the graph was a proper

two-coloring. ¤

3. Geodesic Transformations

On G− n graphs, n > 0, there is an interesting geodesic transformation we can
make on the medial graph: moving a geodesic across a hole in the surface. After
studying this, however, it becomes clear that many such transformations lead either
to medial graphs that are not two-colorable or medial graphs that are but do not
correspond to well-defined graphs. An example of one such loss of two-colorability
is shown in figure 3 below.

Not Two−Colorable

Figure 3. On the left is a depiction of the medial graph for the
graph consisting of a single boundary node. On the right is a
depection of the same graph with the geodesic drawn around the
center hole of the embedding surface. Note that the medial graph
on the right is not two-colorable.

4. Complications and a Conjecture

There are many problems which arise in studying this extended definition of the
medial graph, but before enumerating several examples it is necessary to introduce
some terminology.

Definition 4.1. A lens is a structure formed by two geodesics intersecting at two
separate points. If the double intersection of these geodesics forms the boundary of
a simple region on the surface on which the medial graph is embedded, then this lens
will be called a region bounding lens or RB lens for short. If the double intersection
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of these geodesics does not bound a simple region on this surface, then this lens will
be called a non-region bounding lens or NRB lens for short.

Now, we explore some of the difficulties in evaluating these extended medial
graphs as a tool for checking the recoverability of non-circular-planar resistor net-
works:

(1) Lenses are not necessarily RB lenses. They can be embedded through a
hole so that they do not bound a simple region.

(2) Lenses are not all bad. NRB lenses exist in many recoverable networks,
including the n-circle 2n-ray annular network.

(3) Bubbles (geodesics that never connect to the boundary circle) are every-
where.

(4) Parallel (and probably series) connections can exist without the existence
of RB lenses, and even without the existence of NRB lenses (see Figure 4a
for an example of a parallel connection showing up in a bubble).

That being said, we can make the following conjecture:

Conjecture 4.1. G− 1 graphs representing resistor networks whose medial graphs
contain bubbles (Figure 4a), RB lenses (Figure 4b), or linked NRB lenses (3 geodesics
forming 2 NRB lenses which intersect to bound a simple region; Figure 4c) are non-
recoverable.

It must be noted that this conjecture is based simply on a current absence of
counter-examples. Clearly the existence of an RB lens is a sign of the same problems
it signals in the circular planar case, but whether or not bubbles and linked NRB
lenses signify non-recoverability has yet to be established. An interesting case to
study would be the 3-circle 5-ray annular network. The medial graph for this
network (under one convention for ordering the boundary nodes) contains many
linked NRB lenses and thus a proof of the recoverability of this network would
bring immediate alteration to the above conjecture.
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Figure 4. A set of graphs (right) whose corresponding medial
graphs (left) demonstrate interesting structures. (a) A geodesic
bubble, marked in bold. (b) An RB lens, where the sections of the
geodesics coresponding to the lens are in bold. (c) Linked NRB
lenses, where the geodesics of the linked NRB lens are in bold and
the bounded region is darkly shaded.


