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Abstract

In this paper, we consider critical circular planar graphs and electrical
networks that are associated with those graphs. The motivation of the
work comes from [1] and [2]. A special type of amalgamation of graphs
by a process called “zipping” is studied where all the interior nodes and
boundary nodes stay as they are after combining two graphs.

1 Introduction

In [2], a genaralization of amalgamating two networks through a number of
boundary nodes is given as well as formulas for computing the new response
matrix based on two original response matrices of the subnetworks. However,
connecting two networks through interior nodes has not been well-studied thus
far. Here, we will restrict ourselves to the case of circular planar graphs and give
an attempt on solving this problem with the tool of medial graphs. The goal is
to show that any two critical circular planar networks can be amalgamated in
a certain way to preserve the criticality in the new network. We will make use
of the following theorem from [1].

Theorem 1.1 If Γ is a circular planar network, then the following propositions
are equivalent:

(1) Γ is critical.
(2) Γ is recoverable.
(3) No geodesic in the medial graph for Γ crosses any other twice, i.e. the

medial graph is lensless.

1



Separating a critical circular planar network will also be studied. An algo-
rithm for computing the new response matrix from the old ones will be given in
section 4.

2 The “Zipping” of Two Networks

2.1 Zip path

In this section, we will discuss a special amalgamation of two networks. All
networks that are discussed in this section are circular planar.

Definition 2.1 A zip path is a path pr1r2. . . rnq where p and q are boundary
nodes and all of ri’s are interior nodes which lie consecutively on the geometric
boundary of a network Γ.

We could also define zip path in a different way based on properties of medial
graphs and their duals. Given a medial graph of a circular planar network, we
could get its dual by applying the 2-coloring theorem.

10cm6cmfig0.bmp

Figure 1: medial graph of a network and its dual

In Figure 1, the dual graph obtained by connecting the black cells is Y −∆
equivalent [1] to the original graph. Note that every white cell on the boundary
of the medial graph is surrounded by several black cells. Each of these black
cells corresponds to an interior node in the original network, and thus every
zip path is equivalent to a boundary white cell in the medial graph of a given
network. The path pp1p2q in Figure 1 is a zip path. It is easy to observe
that the black cells that correspond to interior nodes all lie on the geometric
boundary. Thus in an ordinary zipping of two networks discussed later in this
section, two boundary white cells with the same number of surrounding black
cells are identified with each other and the two medial graphs are combined by
identifying these white cells. It is easy to observe that none of the interior nodes
on a zip path is connected to a boundary spike.

2.2 The zipping theorem

Theorem 2.1 Given two critical circular planar networks Γ1 and Γ2, the amal-
gamated network Γ = Γ1 ∨ Γ2 by attaching the same number of interior nodes
and two boundary nodes from Γ1 and Γ2 along a zip path is a critical circular
planar network.

Proof: We will proceed by an induction on the number of interior nodes
that is attached at each step. First, note that the new network Γ is circular
planar because no interior nodes are converted to any boundary node and vice

2



versa. Thus, it allows us to prove the theorem by looking at the geodesics
in the medial graph of the combined network M(Γ). Since all geodesics from
M(Γ1) and M(Γ2) form no loops or self-intersections, there will be no loops or
self-intersections for the geodesics in M(Γ). That leaves us to check only for
possible lenses formed by any two geodesics in M(Γ).

Suppose that two circular planar networks are zipped together along a zip
path, then the geodesics in one medial graph of the networks which join the
geodesics in the other medial graph are called affected geodesics. We call the
geodesics that are not joined unaffected geodesics.

Before we construct the inductive proof, an important observation must
be made. Any possible zip path from a critical circular planar graph has the
following structure for the medial graph.

10cm6cmfig1.bmp

Figure 2: general structure of a medial graph near a zip path

In Figure 2, the solid dots indicate boundary nodes where as the empty dots
indicate interior nodes. Note that the degrees for both interior and boundary
nodes can vary. However, as it will be shown in the proof that the geodesics
which do not cross the zip path but only the extra edges attached to the bound-
ary nodes will never form a lens with any other geodesic in M(Γ). In fact, those
geodesics are not affected by the amalgamation. Therefore, we only need to
consider those geodesics that cross the zip path.

step - (a): Attach one boundary node p.
We first attach a single boundary node on the designated zip path. Figure

2 gives a brief image for this procedure.

10cm6cmfig2.bmp

Figure 3: attach one boundary node

Assume that there are m and n boundary nodes in Γ1 and Γ2, respectively.
Then the combined graph at this stage, Γa, contains m+n−1 boundary nodes.
Therefore, M(Γa) has m + n − 1 geodesics. Only 2 geodesics that originally
cross the zip path are affected. We can assign each geodesic in a medial graph a
proper notation so that we have G = G1∪G3∪G2. Let S1(G) and S2(G) denote
the sets of geodesics in M(Γ1) and M(Γ2), respectively. Now, G1 ∩ S2(G) = ∅,
since they belong to different graphs before the boundary nodes are attached.
Similarly, G2 ∩ S1(G) = ∅. Thus, G does not form a lens with any geodesic
in M(Γ) = M(Γ1 ∨ Γ2) and therefore, M(Γa) is lensless. Note, if the second
node on the zip path is a boundary node, then we could skip the next step of
attaching interior nodes. The graph is not shown, but is similar to Figure 3.

step - (b-i): Attach the first interior node r1, assuming there are more nodes
that need to be attached.
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This is the base step for the induction. Note that since two boundary-to-
interior edges are zipped and become a single edge in the new graph, identifying
the two interior nodes is equivalent to identifying the corresponding two inter-
sections of the geodescis in the original medial graph. Figure 4 shows how this
is done.

10cm6cmfig3.bmp

Figure 4: attach one interior node

WLOG, we give labels to GL1
, GL2

, GR1
, and GR2

such that GL1
∩GL2

= ∅
and GR1

∩ GR2
= ∅. These segments of geodesics are broken and joined with

other segments of geodesics from the other medial graph. In Figure 4, we have
G′L = GL1

∪ G2, G′R = GR1
∪ G1, and G′ = GL2

∪ GR2
. The portion that

connects G1 and G2, i.e.G3, is gone in the new medial graph. We will look at
all possible cases to show that there are no lenses in M(Γ).

1. G′L and G′R
It is clear that GL1

∩G2 = GR2
∩G1 = ∅. GL1

intersects G1 only at a single
point a and GR1

only intersects G2 at point b. Thus, G′L only crosses G′R once,
at c.

2. G′L and G′
GL1

∩ GR2
= ∅ since they belong to two different medial graphs in Figure

3a, and since GL1
∩GL2

= ∅ by our assumption, thus G′ does not intersect G′L
to the left of the zip path. G2 ∩ GL2

= ∅ in Figure 3a where they are in two
separate portions of the medial graph. G2∩GR2

= ∅ bacause G2∩(GR1
∪GR2

) =
{b} = G2 ∩ GR1

and GR1
∩ GR2

= ∅. Therefore G′ does not intersect G′L to
the right of the zip path, and thus G′L ∩G′ = ∅.

3. G′R and G′
The argument is almost the same as in 2. We could switch the subscripts L

and R. Thus we have G′R ∩G′ = ∅.
4. G′L and S(G) \ {G′R, G′}
Note that G′L only intersect G′R on the zip path, and therefore for G′L

to form a lens with another geodesic, not G′R or G′, it has to intersect some
geodesic twice in either the portion to the left or the one to the right of zip
path. Neither of these can happen since GL1

does not cross any geodesic in
S1(G) twice and since G2 never crosses any geodesic in S2(G) twice. Thus, G′L
does not from a lens with any geodesic in M(Γ).

5. G′R and S(G) \ {G′L, G′}
Again, the agrument here is similar to the one above.
6. G′ and S(G) \ {G′L, G′R}
All geodesics that G′ intersects except G′L and G′R are unaffected. G′ can

not cross any geodesic in S1(G) twice since GL2
never does and G′ can not cross

any geodesic in S2(G) twice since GR2
never does. Therefore, G′ does not form

a lens with any geodesic in M(Γ).
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Thus far, we have shown that the M(Γ) after an interior node is attached is
still lensless.

step - (b-ii): Suppose that k interior nodes have been attached, we need to
attach the (k+1)st interior node, assuming there is at least one more node that
will be attached.

This is the inductive step. Figure 5 shows the changes that are made when
we identify one more interior node, or in other words, zip together one more
interior edge.

10cm6cmfig4.bmp

Figure 5: attach more interior nodes

Basically, the proof here will be similar to the one in the base step of the in-
duction. It may be useful to point out several important observations. Through-
out step (b), the number of boundary nodes in Γ stays the same, and so does
the number of geodesics in M(Γ). Also, none of the geodesics that were affected
in a previous stage is ever affected again, so we are constantly moving the same
struture of geodesics down by an edge as we zip one more interior edge. By
looking at all 6 cases, it can be easily shown that at each stage, the new medial
graph does not contain any lens.

step - (c): Attach the second boundary node, finishing the zipping process.
For this step, we only need to check for three cases.

10cm6cmfig5.bmp

Figure 6: attach the second boundary node

Refer to Figure 6, we have G′L = GL ∪G2 and G′R = GR ∪G1. In the new
medial graph, there are only two geodesics bacause the number of boundary
nodes is decreased by 1. We first check G′L and G′R. They will only cross at a
single point. The argument is similar to case 1 in step - (b-i). Next, we check
G′L and S(G) \ {G′R}. Again, this is similar to case 4 in the base step of the
induction. With G′ gone, this case will only be easier to check. And similarly,
G′R does not form a lens with any geodesic in the set S(G) \ {G′L}.

Therefore, M(Γ) is lensless after the zipping. And equivalently, Γ is critical.
2

A useful application of the above theorem is the doubling of a circular
planar network.

Definition 2.2 Suppose we have a circular planar network Γ which contains a
potential zip path, then to double Γ is to zip with Γ its mirror image along that
zip path. We call this process doubling of a network.

Corollary 2.1 Any network obtained by doubling a critical circular planar
network is still a critical circular planar network, and thus recoverable.
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An example is shown in Figure 7.

10cm6cmfig6.bmp

Figure 7: doubling a graph

It is also worthwhile to mention that in each stage of the proof for the
previous theorem, the combined medial graph contains no lenses. Thus, we can
generalize our theorem and introduce the notation of partial zipping.

Definition 2.3 Suppose we have two circular planar networks which contain
potential zip paths, a partial zipping is a zipping of those networks such that
starting with attaching one boundary node from both networks on a zip path, we
could zip any number of consecutive interior nodes along that path and without
ever attaching the second boundary nodes.

Here is an example of partial zipping. (see Figure 8)

10cm6cmfig7.bmp

Figure 8: partial zipping

Theorem 2.2 Any network obtained by a partial zipping of two critical planar
networks is still a critical planar network, and thus recoverable.

Proof: We only need step (a) and step (b) in the proof of Theorem 4.1. 2

2.3 A special zipping

A special type of zipping is also studied where we do not necessarily zip the
adjacent interior nodes on a zip path. This allows us to skip several interior
nodes on a zip path of a network and continue the zipping or partial zipping
process on the next desirable node. It is clear that given two circular planar
networks that may have different numbers of interior nodes on their paths, a
zipping or partial zipping yields a new circular planar network. An example is
shown in Figure 9.

10cm6cmfig8.bmp

Figure 9: special zipping

Conjecture 2.1 A special zipping of two critical circular planar networks based
on the above method produces a new critical circular planar network.
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When a single edge is merged with multiple edges that contain interior nodes
on them, it seems that the single edge does not affect anything in the combined
network and the geodesics that go through that same edge make no contribution
in the medial graph of the new network.

It is hard to tell what could happen to the conductances on those edges that
are attached when a special zipping is done, although the new network may
be recoverable. However, many problems involving circular planar networks
could become easier to solve when the conductances of this kind of zipping are
well-defined.

3 Some Notes on the Inverse Procedure

3.1 Symmetric unzipping

It seems natural to ask questions about the possibility of unzipping a critical
circular planar network after what has been done in the previous section. The
goal is to get two critical circular planar subnetwork when we unzip along a
boundary-to-boundary path in a critical circular planar network. It is easy to
show that the first step of such unzipping satisfies all the conditions.

Theorem 3.1 Given any critical circular planar network, unzipping any boundary-
to-interior edge so that an extra edge is inserted to connect that interior node
and a new boundary node yields a new critical circular planar network.

Proof: Starting with a critical circular planar network Γ, we will proceed as
is shown in Figure 10. It is clear that the new network with one more boundary
node is still a circular planar network. Since all geodesics except the ones that
cross pq are unaffected, we need only investigate the changes made on pq, instead
of all edges that are connected these nodes.

10cm6cmfig10.bmp

Figure 10: unzip a single edge

Since the edge in Figure 10a will be broken, we could define segments of
geodesics GL1

, GL2
, GR1

, GR2
so that GL1

∩ GL2
= ∅ and GR1

∩ GR2
= ∅. We

also define temporarily the left and right hand side of the network and denote
them ΓL and ΓR, where the the boundary-to-interior edge pq belongs to both
subnetworks. And as usual, let SL(G),SR(G) and S(G) denote the set of all
geodesics in M(ΓL),M(ΓR), and M(Γ), respectively. Thus, in Figure 10b, we
have G′ = GL1

∨G ∗ ∨GR1
, where G∗ is the new segment in the middle of G′.

Also, GR2
and GL2

extend to G′L and G′R, respectively. The increase in the
number of geodesics is consistent to the increase in the number of boundary
nodes. Since the medial graph of original network does not contain any loop
or self-intersection of geodesics, the new medial graph does not have any of
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those, either. However, we need to check for several cases where geodesics may
possibly form a lens.

1. G′L and G′
GR2

does not cross GL1
twice in M(Γ), so G′L and G′ do not cross twice

in M(ΓL). They do not cross in M(ΓR) since otherwise GR2
is connected to

another geodesic inM(Γ) that crosses the zip path. This cannot happen because
a lens is form that way and it contradicts that M(Γ) is lensless. Therefore, no
lens is fomred by G′L and G′.

2. G′R and G′
The argument is similar to the one above.
3. G′L and S(G) \G′
G′L does not cross any geodesic twice in M(ΓL) since GR2

does not intersect
any geodesic in SL(G) for more than once. G′L does not cross any geodesic in
M(ΓR) since GR2

is not connected to any other geodesic in S(G) that crosses
pq.

4. G′ and S(G) \ {G′L, G′R}
There are no lenses in the left half of the network simply because GL1

does
not cross any geodesic twice other than the geodesic which contains segments
GR1

and GR2
in S(G). And similarly, there are no lenses in the right half of

the network, either.
5. G′R and S(G) \G′
The argument is obtained by replacing GR2

with GL2
in case 3.

Hence, the partially unzipped network is still lensless. Since it is still circular
planar, the network is critical. 2

Note that there is an alternative proof for this theorem in the case of unzip-
ping a boundary spike.

The theorem 3.1 seems to give us a start on the process of unzipping a critical
circular planar network, but unfortunately, not all networks of this type can be
unzipped completely into two smaller circular planar networks and preserve the
criticality. An example is shown in Figure 11, where we have a critical network
to begin with and we will obtain two noncritical networks.

10cm6cmfig12.bmp

Figure 11: unzip a critical network to obtain two noncritical networks

Note that the network in Figure 11 is symmetric. Thus it appears that we
need more restrictions in order to be able to unzip a circular planar network
and obtain in the desirable way. We introduce the notation of symmetric

unzipping of a network.

Definition 3.1 A symmetric unzipping is to unzip a symmetric circular
planar network along its axis of symmetry so that at each step, the network
remains symmetric.
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It appears that the problem with the network in Figure 11 is that it is sym-
metric in the beginning, but not symmetric during the process of unzipping. It
is easy to observe that a symmetric unzipping of two circular planar network
yields two identical circular planar networks. And at each step, the partially
unzipped network is symmetric. The symmetric unzipping is the inverse proce-
dure of doubling a network. However, even with the help from this assumption,
there are still counterexamples where the subnetworks after unzipping are not
critical. We give one of them here.

10cm10cmfig13.bmp

Figure 12: symmetric unzipping, a counterexample for a network and its medial
graph

In Figure 12, neither one of the two subnetworks is critical. In fact, the
network fails to remain critical when the first boundary-to-interior edge is sep-
arated because of the re-entrant geodesics in its medial graph. Thus, unzipping
a critical network is in general a harder problem than zipping. The fact that
we lack the knowledge of interior nodes prevents us from obtaining more useful
results.

3.2 Unzip well-connected networks

A circular planar network is called well-connected if for every circular pair
(P,Q) = (p1, ..., pk; q1, ..., qk) of sequences of boundary nodes, there is a k -
connection from P to Q in G. Any network that is well-connected with n

boundary nodes contains

(

n
2

)

edges. This is also the maximum number of

edges for a planar network to be critical. For a given well-connected network,
we have found that it cannot be unzipped in a certain way to yield two critical
subnetworks.

Theorem 3.2 Given a well-connected network that contains an even number of
boundary nodes with more than one edge and suppose it is unzipped in a fashion
so that both subnetworks have the same number of boundary nodes, then neither
of the subnetworks is critical.

Note first that two networks generated by unzipping a well-connected net-
work are not well-connected except for a trivial unzipping, where only a boundary-
to-boundary edge is separated.

Proof: Suppose a well-connected network Γ contains n boundary nodes and
more than one edge. Let n = 2k, where k ∈ Z+. Indeed, k > 1. Suppose we
could unzip Γ along a path pq that contains x edges, resulting in two subnetworks
Γ1 and Γ2, that both have pq as part of their geometric boundaries. WLOG,
suppose Γ1 and Γ2 contain a and b edges, respectively, besides the x edges on
pq. Thus, in Γ, we have a+ b+ x edges.

9



10cm6cmfig11.bmp

Figure 13: unzip a well-connected network

In Figure 13, after the unzipping, both Γ1 and Γ2 contain k + 1 boundary
nodes. Since the maximum number of edges for either subnetwork to be critical

is

(

k + 1
2

)

, we have the following inequalities:

a+ x ≤ k(k + 1)/2 (1)

b+ x ≤ k(k + 1)/2 (2)

And we also have:

a+ b+ x =

(

2k
2

)

= k(2k − 1) (3)

The above relations simplify to:

x ≤ −(k − 1)2 + 1 (4)

Since both x and k are positive integers, i.e. x > 0, the only solution to
(4) is x = k = 1. Note that this is the case where a single edge connecting
two boundary nodes is separated into two identical pieces. Since k > 1 by our
assumption, (4) has no solution. Hence, this completes the proof. 2

The above result could be generalized.

4 The Inverse Problem

4.1 For ordinary zipping

Given a response map Λ, the inverse problem is to find the conductances of each
edge in G. If the response matrices for two critical circular planar networks are
given, we would like to recover the conductances for the zipped network using
the given matrices. For ordinary zipping, an algorithm is devised to compute
the new response matrix.

4.1.1 attach a boundary-to-interior edge

Suppose Λ1 and Λ2 are two response matrices associated with two critical cir-
cular planar networks Γ1 and Γ2, respectively. We need first compute the new
response matrix when two boundary-to-interior edges are attached. In the case
of attaching two boundary spikes, the following algorithm gives us the new
response matrix:

1. Compute the conductances for two boundary spikes.
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10cm6cmfig14.bmp

Figure 14: attach two boundary spikes

In [1], a boundary spike formula is given to compute the conductance of a
boundary spike from a given response matrix. Thus, we could use it to compute
the conductances for ξ1 and ξ2. (see Figure 14a)

2. Compute the response matrices
∼

Λ1 and
∼

Λ2.
When we compute the conductances for ξ1 and ξ2, we contract the corre-

sponding two boundary spikes so that the new networks have one fewer edge and
interior node. This gives two new networks Γ′1 and Γ′2. We could use another

formula in [1] to get two new response matrices at this step, namely,
∼

Λ1 and
∼

Λ2. It is also possible to obtain
∼

Λ1 by amalgamating a boundary-to-boundary
edge with conductances −ξ1 to Γ1 and use the formula in step 3 to calculate the
response matrix for the new network. Applying the same method to Γ2 gives
∼

Λ2.
3. Amalgamate Γ′1 and Γ′2, and compute the response matrix for the new

network.
We will use the formula in [2] for network amlgamation. In this step, Γ′1 and

Γ′2 are attached at a single boundary node p without it being internalized. (see
Figure 14b)

Suppose we have:

∼

Λ1=

(

A1 B1
BT
1 C1

)

and
∼

Λ2=

(

A2 B2
BT
2 C2

)

.

Then the response matrix for the amalgamated network Γ∗ is given by:

Λ∗ = Λ∗/(C1 + C2)

=

(

A1 0
0 A2

)

−

(

B1
B2

)

(C1 + C2)
−1 ( BT

1 BT
2

)

4. Adjoin a boundary spike.
This is the last step for this algorithm. We need to insert the boundary spike

back into the network. It seems natural to sum the conductances ξ1 and ξ2 and
make it the conductance for the combined boundary spike in the new network.
Using the formula for adjoining a boundary spike with a given conductance in
[1], we could eventually get the response matrix for the network after attaching
two boundary spikes. (see Figure 14c)

The above algorithm also works when the boundary nodes that we are at-
taching have degrees higher than one. We need only to compute the conduc-
tances for all the edges that are connected to that boundary node as well as the
new response matrices after contracting or deleting those edges. The formulas
for deleting and adjoining a boundary-to-boundary edge which are given in [1]
may be needed in step 1, 2 and 4. The formula for the amalgamation remains
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the same and we will obtain the new response matrix after we add back all the
edges that are previously computed and deleted.

4.1.2 attach interior edges

It appears that when two interior-to-interior edges are combined, the compu-
tation gets more complicated. We will present a formula to compute the new
response matrix in this case. However, we would have to go back to the Kirch-
hoff matrices of the old network to retrieve more information before carrying
out this procedure.

10cm6cmfig15.bmp

Figure 15: attach two interior edges

Suppose we have the same labelling as in Figure 15, we could partition the
blocks in the Kirchhoff matrix to be:

K =









A B C1 C2
BT D E1 E2
CT
1 ET

1 f 0
CT
2 ET

2 0 g









(5)

The response matrix of network in Figure 15 is the Schur complement of K,
which could be computed using the previous algorithm. It is given by:

Λ = A−
(

B C1 C2
)





D E1 E2
ET
1 f 0

ET
2 0 g





−1



BT

CT
1

CT
2





When two edges pq1 and pq2 are attached, we simply sum the columns and
rows in K and thus obtain the new Kirchhoff matrix.

K? =





A B C1 + C2
BT D E1 + E2

CT
1 + CT

2 ET
1 + ET

2 f + g



 (6)

Again, by taking the Schur complement of the new Kirchhoff matrix, we will
get the new response matrix:

Λ? = A−
(

B C1 + C2
)

(

D E1 + E2
ET
1 + ET

2 f + g

)

−1(
BT

CT
1 + CT

2

)

Both Λ and Λ? are symmetric, and so is the difference between them.
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The difference dΛ remains the same based on a given Λ at each step when one
more interior edge is zipped with another. Thus, we could obtain the response
matrix for zipping all except the last boundary-to-interior edge by continuously
applying this formula. However, we have to take steps almost back to the
original Kirchhoff matrix to compute the new response matrix. In cases of large
networks, retrieving information from Kirchhoff matrix in this way could be
time-consuming.

4.1.3 attach the last edge

The above calculation leaves us only one more step – to close up the zip.
This is the most trivial step, where we are only required to adjoin two

boundary-to-interior edges in a network. The new response matrix can be simply
obtained by taking the row and column sums of the corresponding entries.

Therefore, this completes the algorithm for computing the new response
matrix for a zipped network with given response matrices for the subnetworks.
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