
Recoverability of Spliced

Networks

Brian Lehmann

August 2002

Abstract

This paper is concerned primarily with the splicing of sets of resistor

networks. In particular, given a set of recoverable networks {Γ1,Γ2, . . . ,Γn},
under what conditions can we combine these graphs in such a way that

the amalgamation Γ∗ is recoverable as well?

1 Introduction

This chapter introduces resistor networks and much of the background work
that has been done in [1], [2], [3]. Here, we will give a precise definition of the
splicing operation and clarify exactly what properties of this operation we are
interested in.
We’ll use the usual definition of a graph as a set of vertices and edges:

G′ = (V,E). If an edge e connects vertices p, q ∈ V , we’ll write e = pq. Define
a graph with boundary to be a pair G = (G′, VB), where G

′ is a graph and VB is
a set of vertices in G′. We call VB the boundary nodes of G. If two vertices p, q
in G have an edge connecting them, that is, E 3 e = pq where p, q ∈ V , then
we say that p is adjacent to q, and write p ∼ q.
We define a resistor network Γ to be a triple Γ = (G,VB , γ), where (G,VB)

is a graph with boundary, and γ is a function γ : E → R+, where R+ is the set
of positive real numbers. For any edge e ∈ E, we call γ(e) the conductance of e
and 1/γ(e) the resistance of e.
We’ll be interested in functions u : V → R, which we’ll call potentials. A

function u : V → R will give us a current on our resistor network, defined as:
I : E → R, I(pq) = γ(pq)(u(p)− u(q)).

The way to think about a resistor network is as follows: we have a set of
nodes V connected by resistors. The function γ gives us the conductance of
each edge. We identify the function u with the voltages at the nodes. Then,
the current function I is just Ohm’s law — it tells us that the current flowing
through an edge is the voltage drop divided by the resistance. So, I tells us the
current flowing through any edge.

1

Figure 1: This is an example of a resistor network Γ.

We associate the boundary nodes with the boundary of the resistor network.
That is, we’ll set the voltage along the boundary, and let the interior of the
graph acquire voltages naturally. This is the Dirichlet problem — if we set
voltages on the boundary, do we create a unique voltage pattern on the entire
graph? Can we determine what this voltage pattern is?
The way to solve the Dirichlet problem is to use Kirchhoff’s law for circuits,

which is a well-known physical result. Kirchhoff’s law states that the net current
through any point in the interior of the graph must be zero. Mathematically,
we’ll express this as follows. If the current I corresponding to u : V → R has

∀p /∈ VB :
∑

q∼p

γ(pq)(u(p)− u(q)) =
∑

q∼p

I(qp) = 0

then we say that the function u is γ-harmonic. It’s easy to see that any γ-
harmonic function will obey Kirchhoff’s law, and vice-versa. That is, any legal
voltage pattern in the graph will correspond to a γ-harmonic function u.
As it turns out, the Dirichlet problem has a unique solution (see [2]). Set

the potentials on the boundary using φ : VB → R. Then, there is a unique
associated γ-harmonic function u : V → R, such that φ and u agree on the
boundary. The function u is called the potential due to φ. So, the potential
u due to φ : VB → R is exactly the voltage pattern created in the graph due
to setting voltages according to φ along the boundary. For a more in-depth
analysis, see [2].

Similarly, we can pose the Neumann problem — if we set currents along the
boundary, do we create a unique voltage pattern on the graph? The Neumann
data consists of a set of currents Ip, where p are points on the boundary. This
problem is also analyzed in [2].

Given the Dirichlet data φ : VB → R, we can construct the Neumann data
Ip, p ∈ VB . That is, setting voltages on the boundary nodes will uniquely define
the current through the boundary nodes. So, we can define a map Λ from the
boundary voltages to the boundary currents. That is, Λ : Rn → Rn, where
n = |VB |. Λ is a linear map, so it can be represented by a matrix (see [1]). We

2

call this matrix the response matrix. The question that we are concerned with
is as follows: given the Dirichlet-to-Neumann map Λ, is it possible to uniquely
determine the conductances γ of the resistors in the network? If so, we say that
the network Γ is recoverable. For the exact posing of recoverability questions,
see [1].

It is important to understand exactly what the response matrix represents.
If there are n boundary nodes in Γ, the response matrix ΛΓ will be an n × n
matrix, where each row and column is identified with a particular boundary
node. The entry λij represents the current that will flow out of node i if we
instill a voltage of 1 at node j (and put a voltage of 0 everywhere else).
It is possible to characterize certain properties that all response matrices

must have (see [3]). In particular, response matrices will always be symmetric,
and the sums of the entries in any row (and hence any column) must be zero.

1.1 Connections

One of the most important properties of a resistor network is the set of connec-
tions between nodes in the graph. These connections contain information about
the internal topology of the graph, and so are crucial to our understanding of
the problem. In addition, the connective properties of a network are closely
related to the entries in its response matrix — knowing this relationship is an
important first step in examining the recoverability of the network as a whole.
This relationship is covered extensively in [1].
The term connection has a very specific meaning when applied to resistor

networks. In this context, we are interested only in sets of connections between
the boundary nodes of a graph. We say that two boundary nodes p, q are
connected if there is a path in Γ joining them which doesn’t pass through any
other boundary nodes. Similarly, if we have two sets of boundary nodes P =
{p1, . . . , pk}, Q = {q1, . . . , qk}, we say that P,Q are connected if there is a
permutation of Q = {q1, . . . , qk} such that there are k disjoint paths α1, . . . , αk

in Γ that obey the following conditions:

1. αi connects pi to qi

2. For i 6= j, αi and αj don’t intersect anywhere

3. αi passes through no boundary nodes besides pi and qi.

Consider, for example, the network in figure 2. Here, there is a connection
between the sets of boundary nodes {p1, p2} and {p5, p7}, as shown by the
highlighted lines. However, there is no connection between {p1, p2} and {p5, p6},
since any pair of paths leading from p1 and p2 to p5 and p6 must cross at an
interior node.

There is a fundamental relationship between connections and determinants
in the response matrix, described in [1]. Although the exact relationship is too

3

Figure 2: A connection from {p1, p2} to {p5, p7}.

complicated to express here, we will use the following simplified version many
times.

Theorem 1.1 Let Γ be a connected resistor network, and let P,Q be disjoint
sets of k boundary nodes each. Let M represent the submatrix of ΛΓ with rows
corresponding to boundary nodes in P and columns corresponding to boundary
nodes in Q. Consider τ , the set of all permutations of Q that correspond to
connections from P to Q. If τ is empty (P and Q are disconnected), then
det(M) = 0. If τ has exactly one element, then det(M) 6= 0.

Note that, in figure 2, there is only one connection between nodes {p1, p2}
and {p5, p7}. So, the submatrix of the response matrix corresponding to rows
p1 and p2, and columns p5 and p7, is invertible.

1.2 Setting Voltage-Current Patterns

One technique that we will often use is setting voltages and currents around the
boundary. When we do so, we represent voltages by numbers next to boundary
nodes, and currents by numbers in parentheses. So, in figure 3, we set a voltage
of 1 at node A, and a voltage and current of 0 at node B.

Figure 3: Setting voltages and currents.

4

There’s one thing that we want to check: usually, when we set a voltage-
current pattern, we want the resulting voltages and currents in the network
to be uniquely determined. In general, it is difficult to say whether a given
voltage-current pattern uniquely determines the electrical properties of a net-
work. However, we do know that setting a voltage at each boundary node
yields a unique voltage throughout the network (since the Dirichlet problem
has a unique solution, [2]).
So, our general strategy is as follows. If we want to set the currents through

certain boundary nodes, we’ll do so by determining what voltage we should
set on other boundary nodes. That is, by using the response matrix, we can
develop a system of equations based on the desired currents that determine
how we should put voltages around the boundary. In solving these equations,
we’ll make extensive use of theorem 1.1, which will show that these systems are
solvable.
Consider again the network shown in figure 4. Say that we want to set the

voltage current pattern as shown, where nodes p1 and p2 have currents of 0.
Note that we left the voltages at nodes p5 and p7 undetermined as α and β. We
can determine what α and β should be using the fact that there is no current
flowing through p1 and p2. We can express the current flowing out through each
node as

Ij =
∑

p∈VB

λjpu(p)

So, we have two equations (one for each current), and two unknowns (α and β).
This system will be solvable when the coefficient matrix for the unknowns is
invertible. However, this is guaranteed to be true by theorem 1.1. Since there is
only one connection between {p1, p2} and {p5, p7}, the coefficient matrix must
be invertible, so we can set the currents as desired, and the system is uniquely
determined.

Figure 4: Setting voltages and currents.

5

Figure 5: Splicing together a set of networks to form Γ∗.

2 Splicing Networks

In this paper, we examine the properties of networks by using the splicing
operation. The definition of a splice of a set of networks S = {Γ1, . . . ,Γn} is as
follows: for each network Γi ∈ S, choose a set of boundary nodes Pi. Construct
a new network S, called the splice, such that S has at least max16i6n(|Pi|)
boundary nodes. For each set of boundary nodes Pi, choose an injective mapping
Φi of Pi onto the boundary nodes of S. (Notationally, we will express the image
of p ∈ Pi under Φi by p

′.) To splice the graphs, we first identify each p with its
associated boundary node Φi(p) ∈ S, thus constructing a new network. Finally,
choose a set of boundary nodes C = {c1, c2, . . .}, where every element cj ∈ C
is in some Pi. Convert each boundary node in C into an interior node, thus
effectively “internalizing” the nodes in C.
This operation yields a resistor network Γ∗. We say that Γ∗ is the splice of

S through S. Note that the structure of Γ∗ depends on four things:

1. The choice of the splice network S.

2. The choice of boundary nodes Pi.

3. The identification maps Φi.

4. The internalization selection C.

Since Φi depends heavily on our choice of S and Pi, we will usually act as if
our choice of S and Pi results in a natural choice of Φi.
We’ll now introduce some notation. A boundary node p ∈ Pi for some i will

be called an identified node, and if ∀i, p /∈ Pi then we call p an unidentified
node. If we want to say that p is an unidentified boundary node in Γi, we’ll

6

Figure 6: The different parts of a splice operation.

write p ∈ P̂i. We call {Γ1, . . . ,Γn} the component networks of the network
Γ∗. Note that it is perfectly valid to have only one component network, which
would mean that we are simply attaching two graphs. This case is examined
thoroughly in [4].

One important property of Γ∗ that we must consider is the set of new connec-
tions between networks. Take a point p in Pi, so that p is identified with some
point p′ in S. Consider another point q in some Pj , so q is identified with q

′ in
S. If p′ is connected to q′ through S, then there will be a connection from p to
q in Γ∗ that doesn’t run through either Γi or Γj . We will express this quality by
saying that p is S-connected to q. Similarly, we say that points (p1, p2, . . . , pn)
are S-connected to (q1, q2, . . . , qn) if their associated points (p

′
1, p

′
2, . . . , p

′
n) are

connected to (q′1, q
′
2, . . . , q

′
n) in S.

We will call a spliced network fully S-connected if it meets the following
criteria: let kij = min(|Pi|, |Pj |). Then, if any set of kij nodes in Pi is S-
connected to any set of kij nodes in Pj for all i, j, we say that the network is
fully S-connected. Conceptually, “fully S-connected” corresponds roughly to
trying to make the component networks “as connected as possible.”

An important category of splice operation is that of disjoint splices. We call
a splice operation disjoint if ∀i, j, Im(Φi)∩Im(Φj) = ∅, that is, if no two nodes
are identified to the same boundary node in S.
Another important distinction is that of normal splices. We say that a splice

operation is normal if C = ∪iPi, that is, if every identified node is internalized.
In general, we’ll only consider normal splices, although it is perfectly valid to
consider other types as well.

2.1 Response Matrix of Spliced Graphs

Suppose that we know the response matrices ΛΓ1
, . . . ,ΛΓn

for the component
networks Γ1, . . . ,Γn. Then, we can calculate the response matrix for the spliced
graph Γ∗, using a procedure given in [4].

We can arrange the response matrix ΛΓi
as follows: we’ll order the boundary

nodes so that the boundary nodes in Pi are listed at the end. Thus, the response
matrices will have the form

7

ΛΓ1
=

[
A1 B1

BT
1 D1

]
, · · · , ΛΓn

=

[
An Bn

BT
n Dn

]

where Di is the submatrix of the rows and columns corresponding to Pi, Ai is
the submatrix of the rows and columns corresponding to P̂i, and Bi represents
the interaction between the two.

As an intermediate step, we’ll first calculate the response matrix for a related
network Γ′. Construct Γ′ by identifying the nodes in Pi with their associated
boundary nodes in S (but without converting the nodes in C to interior nodes).
We show Γ′ in figure 7. The response matrix for Γ′ can be calculated from
the response matrices of the component graphs. The only nodes which form
new connections are those which are identified; the nodes p ∈ P̂i are still only
connected to other nodes in Γi. So, the response matrix for Γ

′ is very similar
to the response matrices for the component networks.

Figure 7: The intermediate network Γ′.

Although it’s not difficult to conceptualize how we should write the inter-
mediate response matrix ΛΓ′ , it is difficult to express. Perhaps the easiest way
is to look at the new matrix column by column. We’ll order the nodes so that
all the unidentified nodes occur first, followed by all of the identified nodes. So,
ΛΓ′ has the following form:

ΛΓ′ =

[
A′ B′

B
′T D′

]

Now, the first set of columns

[
A′

B
′T

]
corresponds to setting a voltage of

1 at an unidentified node q. Again, looking at figure 8, it is clear that q has

8

Figure 8: Unidentified nodes have no new connections in Γ′.

no new connections — it is cut off from the rest of the graph. So, the currents
imposed by setting a voltage at q will be the same as they were before. The
column in ΛΓ′ corresponding to q is simply the appropriate column in ΛΓi

, with
a bit of reordering:

Λq =




0
(Ai)q
0
(BT

i)q
0




where Λq is the qth column of Λ, and similarly for Ai and B
T
i . The 0s represent

columns of all 0, of the appropriate height.

The last set of columns

[
B′

D′

]
corresponds to setting a voltage of 1 at an

identified node p. Since many points can be identified with the same boundary
node in S, p may be in more than one Γi. First, note that the connections
from p to unidentified nodes remains the same, that is, the entries in the re-
sponse matrix corresponding to those connections won’t change. However, the
connections between identified nodes have changed. There may be many more
connections formed by traversing through different graphs (see figure 9). Even
so, it will still be easy to express the new entry in ΛΓ′ .
Consider the entry in the response matrix corresponding to the relationship

between two identified nodes p, q ∈ S. Since p and q are identified nodes,
they will be in the image of some identification maps {Φk1

,Φk2
, . . .}. Let

{Φk1
, . . . ,Φkb

} be the set of identification maps that have both p and q in their
image (note that there may be no such maps). Set G = {Γk1

,Γk2
, . . . ,Γkb

}, so
that G is the (possibly empty) set of networks corresponding to these Φs. That
is, G is the set of networks that contain both a node mapping onto p and a node
mapping onto q.

9

Figure 9: Identified nodes may have new connections in Γ′.

Then, in Γ′, p will be connected to q through S and through all the Γis in G.
So, there will be current flowing from p to q through each graph S and Γi ∈ G.
To find out the total current flowing from p to q, we just add the current flowing
through each graph (which we know from its response matrix).
So, the entries corresponding to identified-unidentified connections remain

the same, and the entries corresponding to identified-identified connections are
just sums over the networks containing both nodes.

Λp =




0
(Bi)p
0
(Bj)p
...
(DS)pq +

∑
i|Γi∈G

(Di)pq




Now, we have our intermediate response matrix, ΛΓ′ . We must “internalize”
the identified boundary nodes. That is, we want the net current through each
identified node c ∈ C to be 0 (thus effectively converting it to an interior node).
Arrange ΛΓ′ so that the internalized nodes occur at the end. Then, we want
solutions to the following equation.

[
A′ B′

B
′T D′

][
X

Y

]
=

[
Z

0

]

We need to find a way to change the top-left entry A so that this equation is
always satisfied. This is done by taking the Schur complement, which is similar
to row reduction (see [1]). The resulting matrix is

ΛΓ∗ = A′ −B′(D
′−1)B

′T

so we can always calculate the response matrix for a spliced graph. This fact is
worth emphasizing.

10

Figure 10: An example of a spliced network Γ∗.

Theorem 2.1 Given the response matrices for the component graphs Γ1, . . . ,Γn,
we can calculate the response matrix for the spliced graph Γ∗.

To make this a bit clearer, let’s take the example of a normal splice over two
networks, shown in figure 10. The splice network S is trivial, consisting of a set
of points, so it has no response matrix. So, we have

ΛΓ1
=

[
A1 B1

BT
1 D1

]
ΛΓ2

=

[
A2 B2

BT
2 D2

]

By performing the initial amalgamation, we get the intermediate step Γ′, shown
in figure 11. Since each identified node is in both P1 and P2, our sum will consist
of both D1 and D2. The response matrix corresponding to Γ

′ is

ΛΓ′ =



A1 0 B1
0 A2 B2
BT
1 BT

2 D1 +D2




Since the splice is normal, every identified node is internalized. So, to find the
final response matrix, we take the Schur complement:

ΛΓ∗ =

[
A1 0
0 A2

]
−

[
B1
B2

] [
D1 +D2

]−1 [
BT
1 BT

2

]

In general, the response matrices for disjoint splices will be the easiest to calcu-
late, since the identified nodes only become part of two networks, rather than
several. That is, in the sum over D, disjoint splices will have just two contribut-
ing terms, Di and DS .

Figure 11: The corresponding intermediate network Γ′.

11

3 General Remarks

This paper is concerned with the recoverability of spliced graphs. The general
question is: Given a set of recoverable networks S = {Γ1, . . . ,Γn}, under what
conditions can we say that the spliced graph Γ∗ is recoverable as well? We need
to analyze the conditions that we specify in posing the problem.
First, note that in posing the problem, we always require the component

networks to be recoverable. The next theorem, a result from [4], proves that
this is a good requirement, and gives us an additional requirement on the splice
network S.

Theorem 3.1 We are given a set of networks to splice together, {Γ1, . . . ,Γn}.
If the resulting network Γ∗ is recoverable, then each of the component networks
must be recoverable. Furthermore, the splice network S must be recoverable as
well.

Proof: Assume that Γ∗ is recoverable, but that Γi is not. Then, we could
recover the conductances in Γi as follows. In each Γj , j 6= i set all the conduc-
tances to 1. We can calculate the response matrix for each Γj . Then, splice the
networks together. By theorem 2.1, we can calculate the response matrix for Γ∗.
Since the response matrix for each Γj is set, the only unknowns in ΛΓ∗ will come
from ΛΓi

. Since Γ∗ is recoverable, we can recover the conductances for the en-
tire network — in particular, we can recover the conductances for Γi. However,
since the only unknowns in ΛΓ∗ are entries in ΛΓi

, we have essentially recovered
the conductances in Γi from its response matrix. Thus, Γi is recoverable, which
is a contradiction. So, all component networks must be recoverable.
A similar proof shows that S must be recoverable as well. 2

Even given these conditions, to pose the question correctly, we should specify
further exactly what type of answer we are looking for. In particular, we should
look at the connection properties of Γ∗. For example, consider joining networks
Γ1,Γ2 by the splice shown in figure 12. Let S consist of a collection of disjoint
V-shaped spikes as shown. Then, identify each boundary node in P1 or P2 with
a vertex of a V, and let C contain every identified node. Then, the new network
Γ∗ consists of the disjoint graphs Γ1,Γ2 with several boundary spikes attached.
The resulting graph can quickly be seen to be recoverable — however, it is not a
case that we want to attach much interest to, because we have only made trivial
changes to our original situation.
First of all, we will only be interested in splices on connected networks

{Γ1, . . . ,Γn}, that yield a connected graph Γ
∗, so from now on we will assume

that this is the case (note that S may be disconnected). However, we should
also place requirements on the new connections formed between graphs. For
example, consider the splice described above. Even if we did connect the two
graphs through one path, we would still have many extraneous V’s that add
nothing to the problem. So, in general, we’ll ask that every point p ∈ Pi is
S-connected to at least one other point q /∈ Pi.

12

Figure 12: A spliced network Γ∗ that is disjoint.

Depending on the situation, most of our questions will involve connections of
some sort. For example, we may ask: what are the valid splicing operations on
networks Γ1,Γ2 such that any set of three boundary nodes in Γ1 are S-connected
to any set of three boundary nodes in Γ2?

Another possible way to approach this topic is to consider breaking splices
apart, rather than putting them together. This question is very closely related
to the question of preserving recoverability. We say that we can break a network
apart when we can divide it into pieces, such that we can calculate the response
matrix for each piece individually, and the pieces splice back together to form
our original network. If you can break apart an amalgamation of recoverable
graphs, then the combined graph is recoverable. Although we rarely pose the
question in these terms, it is worth noting that the two problems are more or
less equivalent.

Now, we establish some general properties of splice operations. First, note
that we can express any sequence of splice operations as one large splice opera-
tion. Splice a set of networks S = {Γ1, . . . ,Γn} through S to get Γ

∗. Then, splice
Γ∗ to another set of networks S = {Υ1, . . . ,Υm} through S

′. It is clear that the
resulting network is identical to a splice operation on {Γ1, . . . ,Γn,Υ1, . . . ,Υm}
through a network S∗, which can be constructed from S and S ′. So, successive
splices can be expressed as one large splice operation with the same component
networks.
We can also say something about the converse operation, although it is a bit

more tricky. The trouble arises when we have multiple nodes in the component
networks identified to the same node in the splice network S. Say, for example,
that Γ1 and Γ2 both have nodes that are identified with p in S. Then, we must
be careful about the order in which we splice the networks on individually. That
is, if we splice Γ1 onto S and convert p into an interior node, we can no longer
add Γ2 as well. So, we need to be careful in our choice of C at each step.

Perhaps the most important subclass of splice operations is that of normal
splices, that is, splices in which we internalize every identified node. In a sense,
to say that a splice is normal is the “most stringent” requirement that we can
put on our choice of C (the nodes to internalize). The following theorem makes
this relationship precise:

13

Theorem 3.2 Assume that we have a recoverable normal splice through the
networks {Γ1,Γ2, . . .}. Then, for any other choice of C, the splice operation is
still recoverable.

Proof: Let C ′ be the set of identified nodes that we do not internalize. We know
that when C ′ is empty, the spliced network is recoverable. Call the response
matrix corresponding to this splice operation Λ. Now, assume that C ′ 6= ∅.
By theorem 2.1, we know that we can recover the response matrix Λ′ for the
splice of {Γ1,Γ2, . . .} using C

′. From there, we can then construct Λ, by using
a Schur complement procedure to convert the boundary nodes in C ′ to interior
nodes. We can use Λ to find all the conductances in Γ∗ , thus recovering the
entire network from the response matrix Λ′. 2

Since normal splices serve as the most stringent requirements, we’ll usually
limit our considerations to them whenever possible.

Disjoint splices also have several important properties. Disjoint splices are
associative — we can perform them in whichever order we like. In addition,
as opposed to the general case, a normal disjoint splice can always be broken
up into a series of normal splice operations. Say that we have a disjoint splice
on S = {Γ1, . . . ,Γn} through S. Since every identified node maps to a distinct
node of S, we could construct an identical network by first splicing Γ1 to S,
then splicing Γ2, and so on. So, any series of disjoint splice operations can be
uniquely described by describing the component networks and the appropriate
identifications.

4 Circular Planar Networks

We first limit our examination to circular planar networks. A network Γ is
circular planar if it can be embedded in a disc D in the plane such that the
boundary nodes VB lie on the boundary of D, and the rest of Γ lies in the
interior of D. Circular planar networks have been researched in-depth, and
many interesting results are known (see [1]), so this is an important special
case.

Figure 13: An example of a circular planar network.

14

We will consider the following question: is there a splice operation which
will preserve recoverability for any set of recoverable circular planar networks
{Γ1, . . . ,Γn}? That is, we don’t know the internal structure of any of the com-
ponent networks, besides the fact that they are each recoverable. Is there a
splice operation that will ensure the recoverability of the spliced graph, regard-
less of the structure of the individual components? To start with, we require
that the spliced network Γ∗ is circular planar as well — we will consider the
more general case later.

4.1 Background for Circular Planar Networks

An extensive amount of research has been conducted using circular planar net-
works (see [1]). The results are far too extensive to cover here — we’ll outline
the basic results, without proof.
A circular planar graph Γ is called critical if it meets the following conditions.

Pick an edge in Γ. We can consider removing the edge in two ways: we can
delete it entirely, or we can contract its two vertices into a single point. We say
that the removal of an edge breaks a connection if there are sets of boundary
nodes P,Q, such that P and Q were connected before the removal of the edge
but not afterwards. A graph is critical exactly when we can’t delete or contract
any edge without breaking a connection. So, for example, figure 14 depicts a
critical graph. As shown in [1], a circular planar graph is critical if and only if
it is recoverable.

The best way to work with critical circular planar graphs is to consider their
medial graphs. For an exact construction method, see [1]. For our purposes, a
brief sketch will suffice.
To draw the medial graph of a circular planar network, start by placing

two points ti, t
′
i around each boundary node. Now, draw lines as follows. If

two edges are next to each other around a common vertex (that is, they share
a vertex, and there is no edge inbetween them), then connect their midpoints
with a line. Then, for each point ti or t

′
i around the boundary of the network,

Figure 14: A critical circular planar network.

15

Figure 15: The medial graph for figure 14.

draw a line from the point to the midpoint of the “adjacent” edge, that is, the
next edge in consecutive circular order towards the inside of the graph. Such a
construction is shown in figure 15. The important aspect of the medial graphs
are the geodesics. At each vertex, there are four edges: geodesics are the lines
constructed by continuing from each edge to the edge across from it. One of the
geodesics in figure 15 is highlighted.

The structure of the medial graphs tells us whether a network is recoverable
or not. We say that a medial graph has a lens if either: 1) there are two
geodesics which intersect twice or 2) there is a geodesic which intersects itself.
An example of a medial graph with a lens is shown in figure 16. A circular
planar network is recoverable if and only if its medial graph is lensless (see [1]).

4.1.1 Amalgamating Medial Graphs

We should consider how connecting two circular planar graphs affects the medial
graphs of each. Fortunately, the relationship is easy to describe. It is best shown
through an example. Consider connecting a graph Γ1 to the splice network S

Figure 16: A medial graph with a lens.

16

through a set of boundary nodes, as shown in figure 17. Internalize all identified
nodes. By the construction of the medial graph, we know that two geodesics
end around each boundary node, as shown. To find the new medial graph for
the combined network, we simply attach the geodesics around each boundary
node, resulting in the medial graph in figure 18.

Figure 17: Combining two circular planar networks.

Figure 18: Constructing the combined medial graph.

4.2 Preserving Recoverability of Circular Planar Graphs

Say we are given a set of recoverable circular planar networks S = {Γ1, . . . ,Γn},
but we don’t know the internal structure of the graphs. Is there a splicing
operation that will guarantee that the amalgamated network Γ∗ has 1) Γ∗ is
circular planar, and 2) Γ∗ is recoverable?
First, under most circumstances, we need the splice operation to be normal

(or close to it). In any case, we’ll assume that all splice operations on circular
planar networks are normal from now on.
To simplify our analysis, let’s assume that S is connected. Then, we can put

requirements on our choice of identified nodes that are necessary for there to be
any such splice.

17

Figure 19: If the identified nodes are not in circular planar order, we can get a
non-circular planar graph.

Theorem 4.1 We are given a set of connected circular planar networks S =
{Γ1,Γ2, . . . ,Γn} that we want to splice together through a connected network S.
Assume that we are given a circular ordering of the boundary nodes around each
Γi. If the combined graph, Γ∗, is circular planar, then we must have that the
nodes p, q, . . . ∈ Pi are in consecutive circular order around Γi.

Proof: Assume the converse, i.e. there is a graph Γi such that the nodes
p, q, . . . ∈ Pi are not in consecutive circular order (note that we must have
at least two nodes in Pi, since any set of one node is certainly in circular or-
der). Since the nodes of Pi are not in circular order, pick two nodes p, q ∈ Pi,
such that they are separated by boundary nodes r, s /∈ Pi as in figure 19. Now,
consider the points p, q in the new network Γ∗. Since Γi is connected, there is
a path from p to q through region A in figure 19. Since S is connected, we can
find a path from p to q in region B in figure 19. Therefore, we can construct a
loop in Γ∗ around r, which is a boundary node. Since there are boundary nodes
on both the inside and outside of this loop (r and s), Γ∗ can not be circular
planar. 2

Given this limitation — that the nodes of each Pi are in consecutive circular
order — is it possible to find an S such that Γ∗ is critical circular planar? As
mentioned in the general remarks, we should add additional requirements on
the connections between networks to clarify what problem we are examining.
In our case, a reasonable requirement is to ask that any two networks are fully
S-connected. That is, between any two networks Γi and Γj , we want any set of
min(|Pi|, |Pj |) nodes in Pi to be S-connected to any set in Pj .

4.2.1 Two Circular Planar Networks

We’ll start by considering the case of two circular planar networks S = {Γ1,Γ2}.
We must choose a splice network S such that Γ∗ is critical circular planar and

18

Figure 20: A splice across two circular planar networks Γ1 and Γ2.

fully S-connected. From theorem 4.1, we know that P1 and P2 must be in
consecutive order — the only variable is the number of nodes in each. So, S
will depend on the number of boundary nodes in P1 and P2, but on nothing else
(since we don’t know the structure of Γ1,Γ2).

Let us construct S as shown in figure 20. P ′1 and P
′
2 are the nodes in S which

will be identified with P1 and P2. Along the top and bottom are additional
boundary nodes in S — having such nodes will not interfere with the circular
planarity of Γ∗. Consider Γ1. Since we don’t know the structure of Γ1, we
can’t draw its medial graph. However, we do know that each boundary point
in Γ1 will have two geodesics ending near it - to combine this network with S,
we simply attach the geodesics as described earlier. We need to ensure that,
regardless of how we pick geodesics in Γ1, the spliced network has no lenses.

We can characterize certain properties of S which will ensure that the result-
ing splice will be critical. For example, consider all the geodesics which cross
from P ′1 to P

′
2. If there are two of these, then we may very well have a lens, as

shown in figure 21. Therefore, we can have no more than one geodesic which
crosses from P ′1 to P

′
2. So, the general strategy is this: we want to turn the

geodesics emanating from P1 or P2 towards the boundary before they reach the
other side.

Figure 21: A lens formed by two traversals.

19

The following characteristics of S are sufficient to preserve recoverability:

1. No two geodesics emanating from P ′1 may cross in S (similarly for P
′
2). If

they did, then for some networks Γ1 we could have a loop in Γ
∗, as shown

in figure 22.

Figure 22: A lens formed by geodesics crossing from the same side.

2. No geodesic D may cross two geodesics emanating from P ′1 (similarly for
P ′2). If they did, then for some networks Γ1 we could have a lens in Γ

∗,
figure 23.

Figure 23: A lens formed by crossing two geodesics from the same side.

3. No geodesic emanating from P ′1 may cross a geodesic emanating from P ′2.
This requirement ensures that examples such as figure 24 do not occur.

Figure 24: A lens formed by geodesics crossing from opposite sides.

20

4. No geodesic may traverse the graph from P ′1 to P
′
2.

5. There are no lenses or loops in S.

Note that these requirements are stronger than they need to be — for example,
it is perfectly valid to allow one geodesic to cross from P1 to P2. However, they
will certainly imply recoverability if they are met.

We will construct the general case, where P1 contains m nodes and P2 con-
tains n nodes, by an inductive procedure. Assume, without loss of generality,
that m > n. We will first construct a splice network S that will work when
both P1 and P2 consist of just one node. Then, we will inductively construct a
network S that will work for |P1| = m − n + 1 and |P2| = 1. Finally, we will
add nodes to both sides, a pair at a time, to construct an S that will work for
|P1| = m and |P2| = n. To keep track of the intermediate stages, let’s denote
the network S that we have constructed to connect i nodes to j nodes by Si,j .

The graph S1,1 is shown in figure 25, where P1 consists of one node and P2
consists of one node. As is easily seen, S1,1 obeys all five of the above conditions.
Now, we’ll add nodes to P1 by a procedure called “stacking”. First, add a

new boundary node above the previous ones — we now have a splice network
connecting a network of 2 nodes to a network of 1 node. Choose a point q in
between the points p and r as shown. Let the boundary nodes of S1,1 between

Figure 25: The splice network S1,1.

Figure 26: The medial graph for S1,1.

21

Figure 27: The first step in forming S2,1.

the new boundary node and q be denoted by T . Now, connect the new
boundary node to q such that it runs through all nodes in T . Convert these
nodes into interior nodes. The result thus far is shown in figure 27.
Now, add new boundary spikes as follows. At each node in T , add a single

boundary spike. At each segment between nodes in T , add a double-spike,
shaped like a V. Add a double-spike on the edge between the left end of T and
the new boundary node. Add a double-spike at the new boundary node, and a
single spike at q. The result S2,1 is shown in figure 28.
To do this process inductively, relabel q as p, and repeat each of the above

steps.

Figure 28: The network S2,1.

Now, we must verify that the new Sm,1 obeys all the necessary properties. It
is clearly connected. Also, it is clear that any node in P1 is S-connected to the
node in P2. So, we just have to verify the 5 properties listed earlier. This can
be done without too much trouble. Let’s examine the first 3 properties, which
all involve the crossing of geodesics emanating from P1 or P2.
First, note that the geodesics emanating from P2 are not affected by this

stacking procedure. Therefore, properties 1-3 are clearly met for geodesics leav-
ing P2. Also, since these geodesics all end before reaching P

′
1, property 4 is met

as well.
We must check properties 1-3 for geodesics leaving P1. Every geodesic em-

anating from P1 ends on the left side of a double-spike, as shown in figure 29.

22

Figure 29: Every geodesic leaving from P1 ends on the left hand side of a V-
spike.

This property is transferred from Sm−1,1 to Sm,1. Let D be a geodesic em-
anating from P1 in the network Sm−1. Our construction guarantees that the
area surrounding D looks like figure 30 (except for the geodesics leaving the
new boundary node, which we can check separately). Consider the new cross-
ings that D makes by moving from Sm−1,1 to Sm,1. The only new crossings
are with the geodesics labeled L and L’ as shown. We know exactly where L
and L’ begin and end — they simply turn around as shown. Since D’ is not a
geodesic emanating from P1 (since all these geodesics end on the left-hand side
of a double-spike), it is easy to check that D does not violate any of the first
3 properties in the new network Sm,1. Similarly, for geodesics leaving the new
boundary node, it is a quick check that properties 1-3 are satisfied.

Figure 30: The relevant portion of the new graph Sm,1.

So, we have properties 1-4 for the entire graph. It remains to check property
5. Since the only new crossings involve newly-constructed geodesics over most
of the graph, we can check that figure 30 has no lenses or loops, which takes
care of most of the graph. The only region we need to worry about is the region
surrounding q, which looks like figure 31. As you can see, there are also no lenses
or loops here (the geodesics that cross will run parallel to each other through
the rest of the network). So, the entire graph obeys properties 1-5, and thus is

23

a valid choice for Sm,1.

Figure 31: The only other portion where there may be a lens.

Now, construct Sm−n+1,1. From here we can construct Sm,n by a similar
stacking procedure. Now, we add two boundary nodes at each inductive step,
one on each side, as shown. The process is almost identical — instead of stacking
from one boundary node to p, we stack across the graph, one boundary node
to the other. S2,2, constructed by using such a procedure on S1,1, is shown in
figure 32.

Figure 32: The network S2,2.

More explicitly, let the new boundary node on the left be denoted L, and
the boundary node on the right be denoted R. Let the set of boundary nodes of
Sm−1,n−1 be denoted by T . Now, connect the L to R by a path that runs through
all nodes in T . Convert these nodes into interior nodes, and add boundary spikes
as before: add single spikes at former nodes, and add double spikes at the new
edges. Finally, add a double spike at L and at R. By using more or less the
same procedure as before, we can show that this new graph Sm,n will also meet
all the necessary criteria. All that remains is to check the connection properties
of Sm,n.

24

Figure 33: A connection from nodes 1,2,5 to 1,2,3 in S5,3.

Sm,n is clearly connected. Now, we will show that any set T of n nodes in P1
is connected to the n boundary nodes in P2. Note that we constructed Sm,n by
stacking layers onto Sm−n+1,1. So, clearly there is a path from each of the top
n boundary nodes in P1 to the node in the corresponding position in P2. That
is to say, the top node in P1 is connected directly to the top node in P2, the
next node down in P1 is connected directly to the next node down in P2, and
so on, as shown in figure 33. We can construct the path we need as follows: For
each node in T , find how many nodes in T are above it. Denote this number
by k. Then, simply follow the path directly upwards, as shown in figure 33,
until we reach the kth layer down from the top. None of these “upwards” paths
will intersect. Once, we reach the appropriate level, we can simply then move
right until we hit P2. Again, these paths will clearly not intersect. So, T is
S-connected to P2.

4.2.2 Arbitrary Number of Circular Planar Networks

It is possible to generalize the above stacking procedure from two networks to
arbitrarily many networks. Since the procedure gets significantly more compli-
cated, we won’t prove that it works here.
The trick is to adjust the above procedure so that, at all stages, we have a

connection from the boundary nodes in the component graphs to consecutive
nodes on the boundary. Then, it is easy to see how to construct the splice for
the general case of n component graphs. Assume that we have found such a
construction for two networks. Let hi = |Pi|, and renumber the graphs so that
the his are in descending order. Splice Γ1 to Γ2 using our new method for two
graphs to get Γ′. After this first step, Γ′ is fully S-connected. Now, let Q be
the set of consecutive nodes in S such that P1 is connected to Q (guaranteed
to exist by our construction). Splice Γ′ to Γ3 with our procedure, using Q as
our choice of identification nodes for Γ′. Then, the new network Γ′′ will be fully
S-connected as well. It’s clear that by repeating this process, we will arrive at
a fully S-connected Γ∗ connecting all of our networks.

All that remains is to show that such a construction exists. We’ll give a brief
description of the stacking procedure, which is very similar to the one already

25

described. Again, we’ll work from S1,1, to Sm−n+1,1, to Sm,n.
To construct Sm−n+1,1 from S1,1, follow this inductive procedure. Add a

new boundary node above the previous ones. Choose a point q in between the
points p and r (the initial p is the same as it was before). Let the boundary
nodes of S1,1 between the new boundary node and q be denoted by T . We’ll
split T into two parts, T1 on the left side, and T2 on the right side. For the first
iteration, we set T1 to be all of T , and T2 to be q. Connect the new boundary
node to q such that it runs through all nodes in T1 and T2. Convert these nodes
into interior nodes.
Now, add new boundary spikes as follows. First, at p, add a downwards

spike. Then, at each node in T1, add a single boundary spike. At each segment
between nodes in T1, add a double-spike, shaped like a V. Add a double-spike
at the new boundary node, and on the edge between the left end of T1 and the
new boundary node. In T2, simply add a boundary spike at each node. To do
this process inductively, relabel q as p, and repeat each of the above steps.

5 Non-Planar Networks

We can ask the same question for arbitrary networks: Given a set of recoverable
networks {Γ1, . . . ,Γn}, is there a splice operation such that the amalgamated
network Γ∗ is recoverable, regardless of the structure of each Γi? Again, since
we know nothing about the structure of the specific networks, the splice network
S that we construct will depend only on the number of boundary nodes in each
Pi.
Since we don’t know that the Γis are circular planar, we can no longer use

medial graphs. We’ll have to develop a different method for proving recover-
ability — surprisingly, this turns out to be much easier. Also surprisingly, it
turns out that it is relatively easy to develop quite a few splice networks that
will satisfy all the conditions we need. Since the solution is so general, there
are several ways of thinking about the solutions. So, we’ll examine a couple
important examples, and follow each by a generalized consideration.

5.1 Example 1

Here, we are going to construct an S for the normal splicing of two networks
Γ1,Γ2 through two boundary nodes each, as in figure 34. The S that we’ll use is
shown in figure 34, as well as the identification we’ll choose. Under this normal
splice operation, it will be possible to recover the entire network Γ∗.
How can we prove that the combined network is recoverable? The trick is

to use the response matrix for the amalgamated graph ΛΓ∗ (which is known) to
recover the response matrices for the component networks, Γ1 and Γ2. Since we
know that these are both recoverable networks, we can then (in theory) recover
the conductances of the entire graph Γ∗.

Let’s begin by calculating the response matrix for Γ1. As described earlier,
the entry λij in the response matrix represents the current flowing out of node i

26

Figure 34: A splice for two networks through two boundary nodes.

given a voltage of 1 at node j (and voltages of 0 everywhere else). So, the trick
will be to assign voltages around Γ∗ so as to reproduce this situation in Γ1.
Begin by considering the entry λij of ΛΓ1

, where j is a boundary node j ∈ P̂1.
Again, we want to set the voltage at node j to 1, and the voltage at all other
boundary nodes in Γ1 to 0. The difficulty is that nodes in P1, which were
boundary nodes in Γ1, are no longer boundary nodes in Γ

∗. So, we’ll set our
boundary conditions as follows: at node j, we’ll set a voltage of 1, and at every
other node p ∈ P̂1, we’ll set a voltage of 0. We’ll also set a voltage of zero at
every node q ∈ P̂2. The voltage pattern so far is shown in figure 35.

Figure 35: The voltage pattern around the component networks.

Now, we want to put voltages at the boundary nodes of S such that: 1) the
nodes in P1 have voltage 0, and 2) there is no current flowing through Γ2. If
we can meet these conditions, then we will be able to read off the jth column
of ΛΓ1

simply by calculating currents based on ΛΓ∗ . So, we’ll put a voltage of 0
and a current of 0 at four of the boundary nodes in S, labeled q1-q4, as shown
in figure 36. This ensures that both of our conditions will be met: we’ll have a
voltage of 0 at all the nodes in P1 and P2, thus effectively cutting off any current
flow between the two graphs Γ1 and Γ2. Note that there are still four boundary
nodes, nodes q5-q8, at which we haven’t set any voltage. These voltages are
determined by the fact that there is 0 current through boundary nodes q1-q4.
Label the voltages at nodes q5-q8 as α, β, γ, δ respectively (actually, in this case,
it is easy to see that β and δ must be 0, but we include them to illustrate the

27

Figure 36: The voltage pattern across all of Γ∗.

method generally). Then, we know an expression for the current at nodes q1-q4
based on our voltage pattern:

∑
Uiλki = Ik

resulting in a system of equations determining our α, β, γ, δ:

(1) ∗ λ1j + α ∗ λ15 + β ∗ λ16 + γ ∗ λ17 + δ ∗ λ18 = 0
(1) ∗ λ2j + α ∗ λ25 + β ∗ λ26 + γ ∗ λ27 + δ ∗ λ28 = 0
(1) ∗ λ3j + α ∗ λ35 + β ∗ λ36 + γ ∗ λ37 + δ ∗ λ38 = 0
(1) ∗ λ4j + α ∗ λ45 + β ∗ λ46 + γ ∗ λ47 + δ ∗ λ48 = 0

or




λ15 λ16 λ17 λ18
λ25 λ26 λ27 λ28
λ35 λ36 λ37 λ38
λ45 λ46 λ47 λ48







α
β
γ
δ


 =




−λ1j
−λ2j
−λ3j
−λ4j


 (1)

This system is solvable, by theorem 1.1. Since there is only way to form a
connection between q1-q4 and q5-q8, the submatrix of Λ corresponding to those
boundary nodes is invertible, thus implying a unique solution to our system of
equations (1). So, we can solve to find α, β, γ, δ.
Now, we have set voltages everywhere around the boundary of Γ∗, so we

can find the currents using ΛΓ∗ . Denote the entries of ΛΓ1
by λ∗ij . For nodes

i, j ∈ P̂1, we have:

λ∗ij = Ii

λ∗ij = (1)λij + αλi5 + βλi6 + γλi7 + δλi8

giving us part of the jth column of the response matrix ΛΓ1
. We still need

to calculate the entries corresponding to the nodes p ∈ P1. Label these nodes
p1 and p2 (see figure 37). Since there is no current flowing between p1 and p2

28

Figure 37: The current flow through the identified nodes.

through S, the current flowing out of each will correspond to the appropriate
entry in ΛΓ1

:

λ∗p1j = I1 + I5
λ∗p1j = [(1)λ1j + αλ15 + βλ16 + γλ17 + δλ18]+[(1)λ5j + αλ55 + βλ56 + γλ57 + δλ58]

λ∗p2j = I3 + I7
λ∗p2j = [(1)λ3j + αλ35 + βλ36 + γλ37 + δλ38]+[(1)λ7j + αλ75 + βλ76 + γλ77 + δλ78]

This gives us the entire jth column of ΛΓ1
, where j ∈ P̂1.

It remains to calculate the last two columns of ΛΓ1
corresponding to p1, p2 ∈

P1. Let’s start by finding the column corresponding to p1. Here, we must
choose a different voltage pattern, displayed in figure 38. We’ll set a 0 voltage
at every node p ∈ P̂1 and every node q ∈ P̂2. At node q1, we’ll set a voltage of
1 and a current of 0. We’ll set a voltage and current of 0 at nodes q2-q4 as well.
Again, we have 4 unknown voltages α, β, γ, δ, and, by the same theorem 1.1, we
can solve to find them. Note that we still have no current flowing from p1 to

Figure 38: A voltage-current pattern to recover the column corresponding to
identified node p1.

29

p2 through S — the connection is cut off along the bottom. The appropriate
entries in ΛΓ1

are as follows:

For i ∈ P̂1
λ∗ip1

= (1)λi1 + αλi5 + βλi6 + γλi7 + δλi8

For p2
λ∗p2p1

= I3 + I7

For p1
λ∗p1p1

= I1 + I5 + I2 + I6 +
∑

q∈P̂2
Iq

We can find the column corresponding to p2 in a similar fashion.
By the same procedure, we can find the response matrix ΛΓ2

. All that
remains is to ensure that we can recover the conductances of edges in S. It is
a quick matter to find an appropriate voltage pattern — we won’t go into the
details here.

5.2 General Case 1

In general, the strategy is just the same as the previous two cases. We’ll choose
an S such that we can pick a voltage pattern that will effectively cut off the
current between the networks {Γ1, . . . ,Γn}. In general, this is easy to accomplish
by adding double-spikes at the nodes in S. Again, we’ll limit our consideration
to normal splice operations only.
Now, we’ll describe a way to convert any recoverable network S ′ into a valid

splice network S.

Theorem 5.1 Let S = {Γ1, . . . ,Γn} be a set of recoverable networks. Given
P1, . . . , Pn and any recoverable network S ′, we can construct a splice network S
from S′ that will maintain the recoverability of Γ∗ under a normal splice. In this
way, we can construct a splice network with any (valid) set of S-connections.

Proof: We’ll construct S as follows. First, we create a number of “spiked
bar” networks as follows: connect two boundary nodes with an edge, then add
a double-spike on each side. An example is shown in figure 39.
Now, pick an ordered set T of (possibly non-distinct) boundary nodes in S ′,

such that |T | >
∑
|Pi|. Each time a node occurs in this set, attach a spiked bar

as in figure 40, converting the identified node to an interior node. This process

Figure 39: A spiked-bar network.

30

Figure 40: An example of a spiked-bar splice through many nodes.

will give us our splice network S. For the splice operation, we will identify nodes
in Pi to nodes on the ends of the spiked bars. This is a normal splice operation,
so all identified nodes are internalized. An example is shown in figure 40.

Now, we must check that the resulting network is recoverable. Let’s find
a voltage pattern so that we can derive ΛΓi

from ΛΓ∗ . We’ll start by finding

the columns of ΛΓi
that correspond to j ∈ P̂i. Set the voltage at j to 1, and

the voltages at all other p ∈ P̂i to 0. Now, consider the identified nodes in
Pi. We want the voltage at each of these nodes to be 0. By our “spiked bar”
construction, there is a double-spike leaving each node p ∈ Pi. We’ll set the
voltage and current to be 0 on one end of the double-spike by adjusting the
voltage on the other end. So, we can set the proper voltages all the way around
Γi.
We also must ensure that the current flow through the rest of the graph is

isolated, that is, we never have current flowing between nodes in Pi through the
rest of the graph. To do this, we set the voltage and current at the other end
of each “spiked bar.” We’ll set the voltage and current on one branch to be 0,
again by adjusting the voltage at the other branch. This configuration will cut
off the current through each “spiked bar”, thus isolating the network from the
rest of the graph. Finally, set the voltage everywhere else to 0. Our theorem 1.1
guarantees that this voltage pattern uniquely determines the circuit, since there
is only one connection between the unknown voltages and the known currents.
Now, it is easy to find the column corresponding to j ∈ P̂i. After solving

for the unknown voltages, it is a quick matter to calculate the current flowing
through any of the boundary nodes in Γi.

We also must calculate the columns corresponding to j ∈ Pi. The voltage
pattern here is similar; we set a voltage of 1 and a current of 0 at one end of the
double-spike leaving j, thus forcing a voltage of 1 at j. By using our double-
spikes, we can force the voltage to be zero at all other nodes in Pi. Then, we

31

Figure 41: A voltage-current pattern to recover spiked-bar splices.

can put 0 voltages on the other end of every “spiked bar.” This pattern will cut
off current between nodes in Pi, and so we can simply read off the entries in the
response matrix.

The final step is to analyze the connection properties of Γ∗. However, it’s
easy to see that S has more or less the same connection properties as S ′. Thus,
we can create whatever connection properties we want by constructing S ′ in the
proper manner. 2

It is worth noting that by adding double-spikes to interior nodes, we are
essentially maintaining the same amount of freedom as we would have if we
had a boundary node there instead. That is, by setting the voltage-current
conditions on the double-spike, we can force either a current or a voltage at
our interior node. So, this case is essentially the same as the “abnormal” case,
where we don’t internalize any identified nodes.

5.3 Example 2

Here, we’ll have three graphs connected through one boundary node, as shown
in figure 42. The splice network S is trivial, consisting of just one point, which
will be internalized. This splice operation was examined in [4]. Although this
looks simpler than the previous case, the argument is actually a bit more subtle.
Since S is trivial, we’ll need to rely on the properties of the structure of the graph
as a whole, rather than just on the structure of S.
Similar to above, we look to set a voltage pattern that will enable us to

recover the response matrices for Γ1, Γ2, and Γ3. Again, we’ll have to consider
P̂1 and P1 separately. Let’s start by finding the jth column of ΛΓ1

, where

j ∈ P̂1. We’ll set a voltage of 1 at j, and 0 everywhere else in P̂1. We’ll set a
voltage of 0 at all the nodes in Γ2, and all but one of the nodes in Γ3. Then, we
set the unknown voltage α at the node labeled q1, so as to get a 0 current at a
node in Γ2, shown in figure 43.
Consider the current flow in Γ2. There is a voltage of 0 at all boundary

nodes q ∈ P̂2, and a current of 0 through one of these nodes. By [3], there is a
unique solution to this Dirichlet-Neumann problem, consisting of a voltage of 0

32

Figure 42: A splice of three networks through one boundary node.

everywhere. In particular, this implies that the voltage at p ∈ P2 is 0. So, we
have set an appropriate voltage pattern to calculate the jth column of ΛΓ1

. We
have:

For i ∈ P̂1
λ∗ij = Ii

λ∗ij = (1)λij + αλi1

For p ∈ P1
λ∗pj =

∑
q∈P̂3

Iq
λ∗pj =

∑
q∈P̂3

(1)λqj + αλq1

Now we must find the pth column, where p ∈ P1. This is easy to do by using
the fact that rows in a response matrix sum up to 0. Since we know all but one
column of the response matrix, we can write a simple equation that determines
the last column.
Note that we have made one assumption about the nature of the Γis —

namely, that there is at least one boundary node in P̂1, P̂2, and P̂3. This is
a necessary condition — if any of the Γis are the trivial graph consisting of a
point, the spliced network may not be recoverable.

Figure 43: A voltage-current pattern to recover the three-network splice.

33

Figure 44: An example of a simple splice.

5.4 General Case 2

To generalize, we consider networks as follows: we limit ourselves to considering
splice networks S which consist of a set of disjoint boundary nodes. We’ll call
these splice operations simple splices. An example of such a splice is shown in
figure 44. Rather than relying on the properties of S to prove recoverability, we’ll
need to use the structure of the spliced network, encoded in the set of Φis. As
the previous example showed, we may have to put some (trivial) requirements
on the number of boundary nodes each component network has.
In general, the argument for recoverability will be similar to the argument we

made in the previous example. That is, we’ll use the structure of the graphs to
lead us to a voltage pattern that will enable us to recover the response matrices.
There’s one detail in the following analysis which is worth emphasizing here.

We are no longer considering only normal splices — that is, there will be cases
in which we do not internalize every identified node.

5.4.1 Requirements on Simple Splices

First, let’s look at our boundary node requirements for simple splices. In ex-
ample 2, we required that each of the graphs have at least one boundary node.
Will we ever run into a situation where we need at least two boundary nodes?
Fortunately, as we’ll argue, requirements of two or more boundary nodes are
unsuited for the problems we want to consider.
Say that we have a set of networks connected through a simple splice. To

recover the response matrix for the splice, we set a voltage-current pattern.
So, we’ll have unknown voltages α1, α2, . . . in some of the component networks,
which we’ll solve for by using the current pattern and the response matrix. We
want to show that we shouldn’t set two unknown voltages α1, α2 in the same
component network Γi (which would be equivalent to requiring that we have at
least two boundary nodes in Γi).
Assume we do need to set two unknown voltages in Γi. Then, consider

the network shown in figure 45. This graph has two boundary nodes, but the
connection properties are such that both boundary nodes are connected to both
of the interior nodes. Thus, with this graph we can’t use theorem 1.1, and so can

34

Figure 45: A network with two unidentified nodes that are both connected to
two identified nodes.

not ensure that the αs are well determined. In effect, this graph gives us no more
freedom than having a network with one boundary node would. So, requiring
two (or more) boundary nodes is not a good choice for our considerations.
(Note that we could require two or more boundary nodes and certain connection
properties — this could give us more freedom. However, we want to assume that
we know nothing about the internal structure of the graphs, thus eliminating
considerations such as these.) Therefore, the only assumptions we will allow are
that certain component networks have at least one boundary node.

5.4.2 Forming Recoverable Simple Splices

We know that, given a simple splice which is recoverable in general, we can create
specific examples of graphs that are recoverable as well. Now, we’ll show that,
given a network with an algorithm for recoverability, we can work backwards
and construct a recoverable simple splice.
First, we must be precise about what we mean by an algorithm for re-

coverability. We’ll say that a network Γ has an algorithm for recoverability if it
satisfies the following conditions. There must be at least one spike or boundary-
boundary node e in Γ. Also, Γ has to be constructed so that we are able to find
a voltage-current pattern with the following conditions:

1. The voltages on the endpoints of e are 1 and 0.

2. No current between the endpoints of e flows through the rest of Γ.

Of course, this voltage-current pattern must be valid, in the sense that it
uniquely determines the voltages in the circuit. Under these conditions, we
can recover the conductance of the edge e.
Our final condition for having an algorithm for recoverability is that we

can repeat this process to recover the entire network. That is, once we find the
conductance of e, we can remove e from the network, resulting in a new network
Γ′. From a result in [4], we can calculate the response matrix for Γ′. We want
to be able to repeat this process with Γ′ to recover another edge. So, we require
that, by successively picking off boundary-boundary edges and spikes, we can
recover the conductance of every edge in the graph. Naturally, this implies that
the network is recoverable.
Note that all critical circular planar graphs have an algorithm for recover-

ability. In [1], the authors give an explicit algorithm for setting voltage patterns

35

Figure 46: A source network and its translated splice.

and currents so as to recover any boundary-boundary edge or spike. Also, the
new graph Γ′ formed by picking off any such edge is also critical circular planar.
So, we can repeat this process, implying that we have an algorithm for recov-
erability for any recoverable circular planar graph. There are also non-circular
planar networks that have algorithms for recoverability.

Now, assume we have a network with an algorithm for recoverability. We
will use this network to construct a recoverable simple splice, by a process called
translation. We’ll call the original network (with an algorithm for recoverability)
the source network, and the new splice operation the translated splice.
To translate from the source network to the simple splice, simply replace

each edge in the source network with an arbitrary graph. An example is shown
in figure 46. As described earlier, we should put conditions on the number of
boundary nodes in each component of the translated splice. The requirement
is that each spike in the source network correspond to a network with at least
one boundary node p ∈ P̂i in the translated splice (the only requirement for the
other networks is that they are non-trivial).

We must show that the translated simple splice is recoverable as well. That
is, we’ll give an algorithm to recover the response matrix of each component
of the translated splice, based on the algorithm to recover the source network.
At each step, we’ll calculate the response matrix for the component network
corresponding to e. Call this network Γ1. Let’s start by calculating the column
corresponding to a boundary node i ∈ P̂1.
We’ll choose a voltage-current pattern that is a direct translate of the voltage-

current pattern that we use for the source network. For each node v in the source
network (either boundary or interior), we’ll associate a unique node in the trans-
lated splice as follows. If v is not a boundary node on a spike, then it connects
at least two edges in the source network. Therefore, there is no ambiguity in
identifying it with the same node in the translated splice, which connects at
least two component networks. However, if v is the boundary node on a spike,
then it could be possible to identify it with many nodes in the associated com-
ponent network (we’re guaranteed that at least one exists, since we constructed

36

Figure 47: The voltage-current pattern for the translated splice.

it that way). We can just pick one arbitrarily, thus making this association
unique as well. If v is a node in the source network, let’s represent the node
that we identify it with in the translated splice by v∗.
Now, consider the voltage-current pattern that we use for the source network.

Let {A,B, . . .} be the boundary nodes where we set voltages or currents, and
{a, b, . . .} be the boundary nodes that we leave undetermined. For our voltage-
current pattern to uniquely determine the pattern over the network, there must
be one connection from {A,B, . . .} to {a, b, . . .}. Now, for every A in the source
network where we set a current and/or voltage, set the same current and/or
voltage at the corresponding node A∗ in the translated splice. For nodes a, b, . . .
where we leave an undetermined voltage, we should also leave an undetermined
voltage on their translates a∗, b∗, Set the current at every other boundary
node to 0. The result is shown in figure 47.

Consider any component graph Γi. The current through the boundary nodes
of Γi is 0, except at possibly the two nodes that we connect through. So, we have
effectively converted all but two of the boundary nodes of Γi into interior nodes,
as shown in figure 48. So, we can replace Γi by a single edge with its equivalent

Figure 48: A network with 0 currents at all but two boundary nodes is effectively
a single edge.

37

Figure 49: A network equivalent to the translated splice.

resistance without changing the current flow through the network. Thus, our
voltage-current pattern effectively converts our splice into a network closely
resembling the source network (with a similar voltage-current pattern), as in
figure 49. As is easily seen, this voltage-current pattern uniquely determines
the voltages in the circuit, so our original setup accomplishes the same feat —
that is, we have uniquely determined the voltages in the circuit.

Now, say that e is a spike. Then, we need to ensure that this voltage-current
pattern creates a voltage of 0 at the node p ∈ P1. We can use essentially the
same argument as before. By replacing each component network Γi by an edge
with the equivalent conductance, we create a network that closely resembles the
source network (see figure 49). Since the voltage pattern for the source network
sets p to 0, independent of the values of the conductances in the network, it
should work also in the network equivalent to our translated splice.
So, we can recover any column of the response matrix that corresponds to

j ∈ P̂1. We still have to recover the final column, corresponding to q ∈ P1.
However, we can easily find this column by using the properties of the response
matrix. We know all the columns of the response matrix but one. Since the
row sums of the response matrix are 0, it is easy to find the entries in the last
column.
A similar argument works if e is a boundary-boundary edge. Say that we

want to recover the column corresponding to q ∈ P1. Then, our voltage pattern
puts a voltage of 1 at q and 0 at every other node in Γ1, so we only need to check
that no current flows through the rest of the network. Note that the current flow
in our translated splice (with the proper voltage pattern) is identical to that in
the source network (under the similar voltage pattern). Thus, the fact that the
current across Γ is cut off in the source network implies that the current across
Γ∗ is cut off in the translated splice. So, we can calculate the column of the
response matrix corresponding to q ∈ P1.
To recover any other column for j ∈ P̂1, we can simply set a voltage of 1 at

j and 0 everywhere else. Since Γ1 is isolated from the rest of the graph by the
boundary nodes in P1, there will be no current flow in the rest of the network,

38

and we can simply read off the entries of the response matrix.

We now know that we can recover the response matrix for Γ1. By removing
Γ1 from the network, we arrive at a network that is the translate of the source
network with e removed. So, by mirroring our algorithm for the source network
in our translated splice, we can recover the response matrix for each component
graph, thus implying that the entire network is recoverable. Although this
process may seem a bit cumbersome, in practice, most of the voltages and
currents that we set will be 0, so we will have a minimum amount of computation
to do.
In particular, we have the following result:

Theorem 5.2 Take any critical circular planar graph Γ. If we replace any set
of edges in Γ by recoverable networks, the new graph Γ∗ is still recoverable.

Note also that we can replace any edge recoverable in this manner, even if the
source network is not entirely recoverable. That is, if we can recover an edge by
picking off boundary-boundary edges and spikes, then even if the entire network
is not recoverable, we can still replace the recoverable edge with a network.

This translation procedure is sufficient to show recoverability, but it is by no
means necessary. Consider, for example, the simple splice in figure 50, where
we assume that each component network has at least one boundary node. The
associated resistor network is clearly not recoverable — however, by setting
the voltage pattern as shown in figure 51, we can recover the shaded network.
So, this splice is recoverable without having a source network. However, by
replacing some of component graphs by Y-shaped networks (instead of edges),
as in figure 51, we can still arrive at an associated network. This “source
network” can quickly be seen to be recoverable, and in some sense is the proper
way to think about translating this splice.

Figure 50: An example of a simple splice with a corresponding resistor network
that is unrecoverable.

39

Figure 51: The corresponding “source network.”

6 Discussion

As we have seen, splice operations that preserve recoverability are surprisingly
common, so it is difficult to characterize them in general. It seems that we can
find splice operations that satisfy most of the characteristics that we want (full
S-connections, for example). However, there are still some areas that could be
interesting to explore.
There are a few areas for further research involving circular planar networks.

It might be worthwhile, albeit a bit tedious, to try to make the argument for
the general case more precise. Also, the splice operation given in this paper is
rather complicated. It might be interesting to develop an algorithm for creating
a simple splice graph, based on some characteristics of the medial graphs for the
component networks. For example, it’s much easier to construct a valid splice
network S if we assume that all the geodesics leaving P1 are distinct (similarly
for P2). In that case, we no longer have conditions 2 or 3. If we limit ourselves to
2 graphs, we can construct appropriate splice networks by a simpler “stacking”
procedure — in moving from level to level, we simply add more spikes. The
first couple of iterations are shown in figure 52.

It could also be interesting to look at different methods of finding recoverable
splices. Every example listed analyzed in this paper is constructed either by a
simple splice or by adjoining “spiked bars” to a recoverable network. It could
be worthwhile to see if there are any other types. It doesn’t seem that any
approach similar to the “spiked bar” method will yield much. We can generalize
the “spiked bar” method a bit, but that doesn’t add anything to the problem.
In general, to construct a recoverable splice similar to the “spiked bar”, we’ll
need to have:

1. We can set voltages at nodes in the Pis.

2. We can cut off currents along paths leaving the Pis.

40

Figure 52: The first few iterations of a stacking procedure assuming non-
reentrant geodesics.

It seems clear that, to set these voltages, we’ll need double-spikes (or some
equivalent structure which will also give us the same amount of information as
a boundary node) at certain nodes in the structure.
However, it seems like much more work can be done using simple splices.

There should be stronger results, perhaps concerning replacing pieces of net-
works by arbitrary graphs. The difficult part is specifying what exactly an
“algorithm for recoverability” should consist of. If we can come up with a good
definition, then the stronger properties should follow somewhat naturally. For
example, it seems clear that if an “algorithm for recoverability” only allows you
to set voltages and currents to 0 (besides the lone voltage of 1), then you can
replace Y-shaped pieces of a graph by any network in a simple splice. Also, it
would be interesting to see if any recoverable edge (not necessarily recoverable
by picking off spikes and boundary-boundary edges) can be replaced by an ar-
bitrary graph. It seems like a reasonable question, but it appears difficult to
analyze. One way to attack this problem could be to consider how to “zero out”
portions of networks by setting appropriate voltages and currents to 0.

References

[1] Edward B. Curtis and James A. Morrow, Inverse Problems for Electrical
Networks Series on applied mathematics — Vol. 13. World Scientific, c©2000.

[2] Edward B. Curtis and James A. Morrow, Determining the Resistors in a
Network SIAM J. of Applied Math, 50 (1990), pp. 918-930

[3] Edward B. Curtis and James A. Morrow, The Dirichlet to Neumann Map
for a Resistor Network SIAM J. of Applied Math, 51 (1991), pp. 1011-1029

[4] Ryan Card and Brandon Muranaka, Using Network Amalgamation and Sep-
aration to Solve the Inverse Problem

41

