The Discrete Transport Equation

Jeffrey Giansiracusa

June 18, 2003

Abstract

For background I first describe the continuous transport equation and the forward and inverse problems associated with it (as posed in [1]). I then formulate discrete analogs of these problems.

1 The Continuous Problem

Let $X \subset \mathbf{R}^n$ be an open convex set with piecewise smooth boundary ∂X , and let $v \in \mathbf{S}^{n-1}$ be any direction and $x \in X$. The *Transport Equation*, also known as the *Linearized Boltzmann Equation*, is

$$-v \cdot \nabla \phi(x,v) - \sigma(x,v)\phi(x,v) + \int_{\mathbf{S}^{n-1}} \kappa(x,v,w)\phi(x,w)dw = 0.$$
(1)

This equation describes the flow of a stream of particles as they move through a medium and are absorbed and scattered. The interpretation of the symbols in this equation is as follows.

- The Flux ϕ is defined on $X \times \mathbf{S}^{n-1}$, where $\phi(x, v)$ is the flux of particles through the point x and in the direction v. Note that in general $\phi(x, v) \neq \phi(x, -v)$ —imagine two beams of photons moving past each other in opposite directions. One does however usually require that $\phi \geq 0$.
- The Absorption Coefficient σ is defined on $X \times \mathbf{S}^{n-1}$ and must be nonnegative, and represents the rate at which particles are absorbed as they move through the point x in the direction v. In many situations one takes σ to be independent of direction and depend only on location.
- The Collision Kernel κ is defined on $X \times \mathbf{S}^{n-1} \times \mathbf{S}^{n-1}$ and takes on nonnegative values. $\kappa(x, v, w)$ gives the rate at which particles moving in the w direction at the point x are deflected into the v direction.

In posing the forward and inverse problem in this setting, we will need the following notation. For $x \in \partial X$, let n(x) be the unit outward pointing normal. Define Γ_+ and Γ_- by $\Gamma_{\pm} = \{(x, v) \in \partial X \times \mathbf{S}^{n-1} | \pm n \cdot v > 0\}.$ Given a nonnegative function ϕ_{-} on Γ_{-} as boundary data, the forward problem is to find a function ϕ on $X \times \mathbf{S}^{n-1}$ which satisfies the transport equation and has $\phi|_{\Gamma_{-}} = \phi_{-}$.

Let $\phi_+ = \phi|_{\Gamma_+}$. The map $\mathcal{A} : \phi_- \longmapsto \phi_+$ is called the *Albedo operator*. The inverse problem is to calculate σ and κ from \mathcal{A} .

2 Now we do it Discretely!

Definition 2.1 Let $G = (V, V_B, E)$ be a finite directed graph with boundary, and with the following additional conditions.

- 1. Each boundary node $p \in V_B$ has degree one.
- At each interior node p there is a bijection in(p) → out(p). The image of an incoming edge e is denoted e⁺ and the image of an outgoing edge f is denoted f⁻. Note that this implies that each interior node has even degree.

Then G is said to be a **Transport Graph**.

Let in(p) denote the set of edges incoming at the node p and let out(p) denote the set of edges outgoing at node p. If P is a set of nodes in G, then $in(P) = \bigcup_{p \in P} in(p)$ and similarly for out(P). Thus $in(V_B)$ is the set of all edges which have no successor, and $out(V_B)$ is the set of all edges which have no predecessor. The sets $out(V_B \text{ and } in(V_B)$ take the place of Γ_- and Γ_+ respectively.

The relevant functions for the discrete transport equation are represented on the graph as follows:

- The flux $\phi: E \to \mathbf{R}^+$ is an *edge* function. $\phi(e)$ is interpreted as giving the flux along the edge e in the direction that e points.
- The absorption coefficient is a function $\sigma : V \to (0, 1)$, where $\sigma(p)$ is now interpreted as the probability that a particle coming into an interior node p along any edge will be absorbed before it leaves. We will need σ to be nonzero in order to prove the uniqueness of the solution to the forward problem.
- The collision kernel is a set of functions $\{\kappa_p : out(p) \times in(p) \to [0, \delta) | \forall p \in V\}$, (for δ sufficiently small as will be described shortly) defined at each interior node $p \in V$, and satisfying the condition that $\kappa_p(e^+, e) = 0, \forall p \in V$, $\forall e \in in(p)$ since direct transmission is mediated by absorption rather than collision. We have the interpretation that $\kappa_p(e, f)$ is the probability that a particle entering node p along edge f will leave along the edge e.

Replacing each term in the continuous equation with its discrete analog, one obtains

$$-\left[\phi(e^+) - \phi(e)\right] - \sigma(p)\phi(e) + \sum_{g \in in(p)} \kappa_p(e^+, g)\phi(g) = 0.$$

However, this equation does not correctly conform to the probabilistic interpretation of σ , so we modify it by replacing $\sigma(p)$ with: (absorption probability) + (total collision probability for particle incoming along edge e). Therefore, the correct equation is

$$-\left[\phi(e^+) - \phi(e)\right] - \left[\sigma(p) + \sum_{f \in out(p)} \kappa_p(f, e)\right] \phi(e) + \sum_{g \in in(p)} \kappa_p(e^+, g)\phi(g) = 0,$$

which may be written in a more compact form as,

$$\phi(e^{+}) = \sum_{f \in in(p)} \tau_p(e^{+}, f) \phi(f).$$
(2)

Here τ_p is the transport function at node p. Its values are given by

$$\tau_p(e^+, f) = \begin{cases} 1 - \sigma(p) - \sum_{g \in out(p)} \kappa_p(g, f) & f = e \\ \kappa(e^+, f) & f \neq e \end{cases}$$
(3)

The value of $\tau_p(e^+, f)$ can be interpreted as the probability that a particle entering node p along the edge f will leave p along the edge e^+ . For eq. 3 to make sense under this interpretation, it is apparent that the entries in the collision kernel must be sufficiently small. This consideration places an upper bound on δ . We will thus assume that δ is small enough so that the values of τ_p are all in the range [0, 1). In the continuous setting there is a similar constraint on κ for there to be a well posed forward problem.

Definition 2.2 A transport network Γ is pair (G, τ) , where G is a transport network, and τ is a transport function (which can be decomposed into an absorption coefficient $\sigma : V \to [0,1]$ and a collision kernel κ (with δ sufficiently small).

Number the elements of in(p) as e_1, e_2, \ldots, e_n . We form a matrix T_p , called the *transport matrix at node* p, with entries $[T_p]_{ij} = \tau_p(e_i^+, e_j)$. Let ϕ be a nonnegative function on the edges of Γ and let Φ_p^{in} denote the column vector $[\phi(e_1), \phi(e_2), \ldots, \phi(e_n)]^T$; define Φ_p^{out} similarly. To say that ϕ satisfies the transport equation is to say that $\forall p \in V$,

$$\Phi_p^{out} = T_p \Phi_p^{in}.\tag{4}$$

In this case we say that ϕ is a τ -flow.

2.1 The Discrete Forward Problem

Given transport network Γ and a nonnegative function ψ_{-} defined on $out(V_B)$, the forward problem is to find a τ -flow ϕ such that $\phi|_{out(V_B)} = \psi_{-}$. Equation 2 gives exactly one linear equation for each edge with an unknown flux. Putting these together results in a system of n equations with n unknowns, where n is the number of edges with un-imposed fluxes. This system is of the form Qx = b. **Lemma 2.1** The matrix Q has the following properties:

- 1. Each diagonal entry q_{ii} of Q is 1.
- 2. The non-diagonal entries q_{ij} of Q all satisfy $-1 < q_{ij} \leq 0$.
- 3. In each row or column there is at most a single non-diagonal entry that is larger than δ in magnitude.

Proof: Property (1) follows directly from the form of eq. 2. Property (2) also follows directly from eq. 2 combined with the fact that the values of the transport function are always in the range [0, 1). To prove property (3), first note that $\tau_p(e, f) < \delta$ if f is not the successor of e. From eq. 2, in each row of Q there is at most a single non-diagonal entry that is greater than δ because each edge has only a single predecessor and only the successor-predecessor term can be greater than δ . Similarly, each edge has at most one successor, so by the same reasoning in each column of Q there is at most a single non-diagonal entry that is greater than δ . \Box

Theorem 2.1 Let σ_0 be the minimum value of σ . If $\delta < \sigma_0/(n-2)$ then Q is diagonally dominant and hence nonsingular.

Proof: Computing a row sum of Q in the *i*th row,

$$\sum_{j=1}^{n} q_{ij} = q_{ii} + \sum_{j=1, j \neq i}^{n} q_{ij} > 1 - (n-2)\delta - (1-\sigma_0) = \sigma_0 - (n-2)\delta$$

And clearly if $\delta < \sigma/(n-2)$ then this quantity is positive. A nearly identical argument shows that the column sums are all positive. \Box

Corollary 2.1 Given a transport network Γ , $\exists \delta$ such that if $\forall p \in V$, $\|\kappa_p\| < \delta$ then there is a solution to the forward problem, and this solution is unique.

2.2 The Discrete Inverse Problem

Given ψ_{-} and assuming that the forward problem has a unique solution, we define $\psi_{+} = \phi|_{in(V_B)}$. The Albedo operator is then the linear map

$$\mathcal{A}:\psi_{-}\longmapsto\psi_{+}.$$

The inverse problem is to recover information about σ and κ from \mathcal{A} .

References

 Plemen Stefanov, Gunther Uhlmann, "Optical Tomography in two dimensions", 2002. Preprint available at www.math.purdue.edu/~ stefanov