
Infinite Networks in Two Dimensions

Evan Fuller

June 18, 2003

Abstract

In this paper, 2-Dimensional resistor networks of various configura-

tions are considered. It shall be shown that a unique Green’s function

defining the potential at each node exists in each case, putting conditions

on conductances and potential differences. Additionally, power dissipation

in infinite networks is examined.

1 INTRODUCTION

Electrical networks are comprised of graphs containing nodes connected by
edges. A conductance (1/resistance) γpq is associated with each pair of nodes p
and q. If p and q are not connected, then γpq = 0. The nodes are divided up into
two categories: interior and boundary. Boundary nodes need not correspond to
the geometric boundary of the graph; rather, they are locations where known
currents and voltages can be applied. Interior nodes must satisfy Kirchhoff’s
Law, which can be summarized as saying the total current flowing into a node
must equal the total current flowing out. The degree of a node refers to the
number of edges connected to it. Two primary problems are associated with
electrical networks. The forward problem takes a known graph and set of con-
ductances γpq, then uses boundary potentials to find a function u(p) that gives
the potential at every point. A linear map Λ called the response map yields
boundary currents upon input of boundary potentials. The inverse problem is
to use Λ to find all conductances and possibly the structure of the graph as well.
One way to approach the forward problem is to construct a specialized func-

tion called the Green’s function. The Green’s function sets every boundary
potential to 0. It yields the potential at every interior node when a unit current
is applied at some other interior node. This can be conveniently expressed using
an n × n matrix, where n is the number of interior nodes. An entry Gpq gives
the potential at node q when a unit current is applied at node p. This matrix
can be found using the set of conductances. To find it, one uses a Kirchhoff
matrix ,which consists of a square matrix whose size matches the total number
of nodes in the graph. Each entry Kij is defined as follows:

for i 6= j,Kij = −γij
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for i = j,Kij =
∑

j 6=i

γij

For more background information, see [3]. I am building on the work of
Phillip Lynch [2]. However, in the two-dimensional case Lynch chose to require
the potential difference between any 2 nodes to approach zero as distance goes
to infinity, while I require the potentials themselves to go to zero near inifinity.
I feel that my choice makes more sense in terms of defining what is meant by
an infinite network. I am not considering networks that are truly infinite in
extent, but rather networks of finite extent but infinite nodes and edges used to
represent a continuous shape. The distance function I discuss is thus measuring
infitesimal units. In such a case it would be inconceivable for the potential to
go to −∞ (as it tends to do unless required to be 0) at the boundary even if
the potential differences go to 0.

2 Rectangular Grid networks

fig. 1

5cm5cmgrid1.bmp
Consider a network of squares as in figure 1. There is a single boundary

node in the center; all other nodes are interior nodes. Every node has degree
4. Setting the center as my origin and using cartesian coordinates with each
conductor having unit length, I define a distance function d = |x| + |y|. At a
given distance d, there are 4d nodes and 8d − 4 edges connecting these nodes
to nodes 1 unit closer. The goal is to prove the existence (uniqueness is already
proven for the general case) of a Green’s function g(x, y) defining the potential
for all interior nodes given a unit current source at the central node. g must be
γ − harmonic and satisfy the condition that

lim
d→∞

g(x, y) = 0. (1)

Additionally, the potential g must be finite at every point. Now, consider
any node p = (x, y) at distance d. The difference in potential between p and
the center node is given by the sum of the potential differences along a shortest
path (or any path, but choose the shortest for convenience) between p and the
center. That is,

g(0, 0)− g(p) =

d
∑

k=1

∆gk (2)

Where ∆gk refers to the difference in potential between a node at distance
k − 1 and one at distance k. Taking the limit of this equation, g(p) → 0 as
required by (1). Thus

g(0, 0) =

∞
∑

k=1

∆gk. (3)
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Since g(0, 0) must be finite, this sum will converge. Let the value of the sum
be α. Because current is flowing outward in the system, ∆gk is always non-
negative. Thus g(x, y) will be a non-increasing function bounded from above
and below:

0 ≤ g(x, y) ≤ α (4)

Assuming that, in the limit, g depends generally on d, we have a strong case
for existence. A reasonable choice would be for g(x, y) to act like 1

dε
, causing

∆g(x, y) to act like 1
d1+ε for large d. That is,

0 < lim
d→∞

∆g(x, y)(d1+ε) <∞ for some ε > 0 (5)

For g to depend generally on d, γ must also depend generally on d and can
be written (again in a limit approximation) as γd. The unit current flowing into
the central node propogates outward so that the total current flowing both into
and out of each distance level is unity. This means that

∀d, Id ≈ (8d− 4)(γd)(∆gd) = 1. (6)

Because the network is two-dimensional, the number of edges at a certain
distance growns linearly. For 1D cases it would be constant; it would grow like
d2 in 3 dimensions. Since we are only concerned with this expression in the
limit as d → ∞, only the highest order piece of each term need be kept. Thus
the following is obtained:

d
1

d1+ε
γd ≈ 1 or γd ∝ dε. (7)

It makes sense that the conductances must go to∞ as voltage differences go
to 0 in order to maintain current flow, but notice that the required growth rate
is fairly low.

2.1 Power Dissipation

Given general behavior of g and γ for large d, power dissipated by the entire
network can be examined.

Theorem 1 The total power dissipated in an infinite rectangular grid network

on which a Green’s function with potentials going to 0 exists is finite.

proof. For any network of vertices connected by conductors, power dissipation
is generally given by

P =
∑

i<j

γij(gi − gj)
2. (8)

For the rectangular network I am considering, this can be approximated by:

P ≈

∞
∑

d=1

(8d− 4)γd(∆gd)
2. (9)
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That is, the power dissipated at a given distance d is found by multiplying
the number of edges at that distance times the approximate power dissipated
in any given edge at that distance. The total power is then found by summing
over all distances. Again we are concerned with the order of the terms rather
than their coefficients. Substituting for γd and ∆gd, we obtain

P ∝

∞
∑

d=1

(d)(dε)(
1

d1+ε
)2 =

∞
∑

d=1

1

d1+ε
. (10)

Recalling that ε > 0, we can easily see that this sum converges. The power
dissipated in the network is therefore finite. QED.

2.2 More Specific Results

Given the existence of a Green’s function defining potentials at every point, it
seemed feasible to find a pattern for the behavior of potentials at increasing
distance. Matlab was used to generate a Kirchhoff matrix for the rectangular
grid based on a specified pattern of conductances. The conductances entered
were the same at a given distance: γd = d or γd = d2. It was found that the
Kirchoff matrix was not at all dense (most are not) and so could be handled
much more efficiently when declared as sparse. Once the Kichoff matrix was,
the rows and columns corresponding to nodes on the edge–boundary nodes were
deleted. What was left is called the C matrix, which can be inverted to give the
Green’s function for the network. Call the inverse of that matrix G. Gij gives
the potential at node j when a unit current source is placed at node i. The
matrix turns out to be symmetric so that order does not matter. The column
corresponding to the current source placed at the center node was selected out,
thus obtaining the desired potentials. To analyze the potentials, those from
nodes along a single ray (the top of the y axis if the graph is laid on the xy plane)
were examined. It seemed logical that any pattern would be easier to discern
along these nodes. Despite managing to obtain values up to a distance of 350
units, I was unable to find a pattern among the potentials or their differences.
Examined both for polynomial and exponential behavior, they did not achieve a
decent fit. It seems unlikely that lower order terms are still dominating, but that
is possible. It is also possible that the potentials shrink like 1 over a fractional
power of d, which the analysis would not have discovered. Alternatively, the
potentials might not act like either a polynomial or exponential, but rather some
other decreasing function not considered. As a test of whether the strategy was
even feasible, I entered 1 for all the conductances in an attempt to achieve the
behavior that Lynch predicted. However, the fact that my Green’s function was
defined slightly differently made this a futile effort–the behavior was not at all
the same. The program was checked for possible errors, but none were found.
Small cases worked by hand were found to matched the results generated by the
computer. I concluded that using computers to produce a Green’s function for
larger and larger networks is not the best way to understand infinite networks.
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fig. 2

-1cm16cm5cmtri.bmp

In the future, perhaps this will not be the case. For a copy of the matlab code
or plots of ∆g versus distance, see the appendix.

3 Generalized quadrilateral networks

Rectangular grid networks are actually a specialized case of a more general
generating algorithm. To generate an alternate version, begin with a single
point that will be the origin. Draw an arbitrary number (> 1) of rays emanating
outward from that point. Choose a point on each of the rays. Next, repeat ad
infinitum the following:
1. Choose a point between each pair of adjacent rays, farther from the origin
than either point on the surrounding rays.
2. Connect each of the farthest chosen points on the surrounding rays to the
adjacent points chosen in 1.
3. Choose a new point on each ray, farther than any previously chosen point.
Every vertex except the center will have degree 4; the degree of the center is
given by the number of beginning rays. Such graphs are in fact far easier to
draw than describe. The first 3 iterations of a graph generated using 3 rays are
displayed in fig 2 (next page). It is actually quite easy to expand the applicability
of the results for rectangular grid networks. (3),(4), and (5) are derivable in the
exact same manner. Starting with r original rays, (7) turns into

∀d, Id ≈ (r(2d− 1)(γd)(∆gd) = 1. (11)

We still find that γd ∝ dε, but with different coefficients. The total power
dissipated remains finite. Moreover, in the case with perfect symmetry (γ and g

the same for a given distance), the power dissipated remains constant regardless

of the number of principal rays used. Let ∆gd =
1

d1+ε . Thus γd =
d1+ε

r(2d−1) . We

find that

P =

∞
∑

d=1

(r(2d− 1)
d1+ε

r(2d− 1)

1

d1+ε
)2) =

1

d1+ε
. (12)

The sum is independent of r, so it will converge to the same value for any
r. One major difference between general infinite quadrilateral networks and
rectangular grid networks is in the choice of the central boundary node. In an
infinite rectangular grid, all points look the same and so the unit current can
be applied anywhere with identical results. However, for other cases there is
one and only one node with degree 6= 1. The unit current must be applied here
for the aforementioned results to hold. However, if the current is applied far
from that point, the network reverts to the grid case–it looks rectangular and
the Green’s function will be very close to that for the rectangular grid.
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fig. 3: part of a binary tree

-1cm5cm5cmtree.bmp

4 Tree Networks

I will next consider an alternative type of infinite network I will call tree net-
works. To construct a tree network, begin with 2 nodes connected by a singe
edge. For any branching factor b, connect one node to b new points lying beyond
the edge. Now continue connecting each new node to b nodes created farther
away from the initial edge. This causes the number of nodes to grow at a fixed
exponential rate as farther distances are looked at.
Every node but one will have degree b+1. The single node with degree 1 is

designated as the only boundary node. In formulating a Green’s function, we
will consider a unit current entering that node. There is only one path between
any interior node and the boundary node, so a distance function d(i) is simply
defined as the number of edges from the boundary node to a node i. There are
bd−1 nodes at a distance d. It will again be required that

lim
d→∞

g(i) = 0.

Morever, I will require symmetry among branches so that g and γ can be
expressed as proper functions of d, abbreviated gd and γd. Again the potential
at the boundary node can be found by summing potential differences out from
infinity:

g1 =

∞
∑

d=1

∆gd (13)

where ∆gd = (gd−1 − gd). At a distance d, there will be bd−1 nodes and a unit
current travelling outward. So,

Id = (b
d−1)(∆gd)(γd) = 1. (14)

Given a pattern of conductances, the forward and reverse problems can be
solved. For instance, let γd = c so that there is constant conductance every-
where. Then ∆gd =

c
bd−1 . g1 can be found by computing the geometric series

∞
∑

d=1

1

(c)bd−1
=

1

c(1− 1
b
)
.

The value of g at any node could be found by subtracting a finite sum from
this quantity. Thus, gd could be found from the conductance c, or c from gd. A
similar approach can be done for any pattern of γd (e.g. γd = cn3) such that

∞
∑

d=1

1

γd(bd−1)

converges to a computable value. Practically, this means that γd must be a
relatively simple function with any growth rate or a decay slower than 1

bd
.
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fig. 4: part of a diamond network

4cm5cm4cmdiamond.bmp

fig. 5: reduction of a diamond network

0cm10cm5cmdiam.bmp

5 Diamond Networks

Another infinite network, called a diamond network, I considered consists of
rectangles lined up and connected at the corners, as in fig. 4. In the infinite
case, the rectangles extend off to infinity in one or both directions.
The nodes where corners of rectangles intersect are interior nodes; all other
nodes are boundary nodes. Thus each interior node has degree 4, while each
boundary node has degree 2. Any finite diamond network is a critical circular
planar graph and therefore clearly recoverable. The infinite case should therefore
be theoretically recoverable, albeit in infinite time. Current flow in diamond
networks can be analyzed locally. This is primarily because there are no interior
to interior connections. In fact, the matrix corresponding to a Green’s function
for the network is diagonal; the unit current applied to some interior node flows
straight out the 4 surrounding boundary nodes–rather uninteresting behavior.
If we instead require that no current flow out of the local boundary nodes (i.e.
turn them into interior nodes) and apply a current source at some interior node,
then the current will propogate in both directions out to infinity. In this case,
the diamond network can be reduced because there are now series and parallel
connections. Each rectangle can be reduced to a single edge with conductivities
as seen in fig. 5, according to the formula

1
1
j
+ 1

m

+
1

1
k
+ 1

l

After reduction, the network is simply a straight line, as studied in [1]. For it
to have a valid Green’s function, the conductances must grow fast enough that
∑∞

d=1
1
γd
converges. The conductances will be slightly altered by the reduction,

but not enough to affect convergence.

6 Further Results

Theorem 1 The total power dissipated in any infinite network on which a

Green’s function with potentials going to 0 exists is finite.

proof Let d = the number of edges traversed in going from the origin O along
the shortest path to some particular node in an infinite network. Let the Sd

denote the set of conductors at distance d (that is, conductors connecting nodes
at distance d − 1 to nodes at distance d). Regardless of the configuration of
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the network, a unit current applied at some node O will propogate outward
through each set of conductors at a certain distance (circular currents would
violate Kirchoff’s law). That is, for any d,

∑

e∈Sd

∆g(e)γ(e) = 1

Using the definitions above, power dissipation is given by

P =

∞
∑

d=1

(
∑

e∈Sd

(∆g(e))2γ(e))

Substituting ∆gd, the maximum potential difference at distance d, for one factor
∆g(e), we get

P ≤

∞
∑

d=1

(∆gd
∑

e∈Sd

(∆g(e)γ(e)) =

∞
∑

d=1

∆gd.

The argument I presented in prior sections will hold, requiring
∑∞

d=1∆gd to
converge so that the potential at the origin will be finite regardless of path used
to find it. Since P ≤ a convergent expression, it must converge to a finite value
itself. QED.

A Matlab Code for Green’s Function On Rect-

angular Grid Network

function G = Green(z)

a = (2*z^2+10*z+9); %Total # of nodes

C = sparse(a,a); %Create Kirchoff Matrix

for n = 1:z

c = (2*n^2+2*n-4); %Current level starting node

d = (2*n^2+6*n); %Next level starting node

%Individual connections

C(1+c, 2+c) = n;

C(2+c,1+c) = n;

C(1+c, d) = n;

C(d, 1+c) = n;

C(1+c, d+1) = n;

C(d+1, 1+c) = n;

e = d + n + 3;

for i = 2+c+n:n+1:d %Generates intralevel connections

C(i,i-1) = n;

C(i-1,i) = n;

C(i,i+1) = n;

C(i+1,i) = n;

C(i,e) = n+1; %interlevel connection
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C(e,i) = n+1; %interlevel connection

e = e + n + 2;

end

j = 2 + c;

k = 2 + d;

while j <= d

if mod(j-1-c,n+1) == 0

j = j + 1;

k = k + 2;

end

%generates remaining interlevel connections

C(j, k) = (n+1);

C(k, j) = (n+1);

C(j, k+1) = (n+1);

C(k+1,j) = (n+1);

j = j + 1;

k = k +1;

end

end

% enter edges connnecting to center

C(1,a) = 1;

C(a,1) = 1;

C(3,a) = 1;

C(a,3) = 1;

C(5,a) = 1;

C(a,5) = 1;

C(7,a) = 1;

C(a,7) = 1;

D = sum(C);

for i = 1:a %Make row and column sums 0

C(i,i) = -D(i);

end

C(:,(a-4*z-8):(a-1)) = []; %reduce to only interior (C)

C((a-4*z-8):(a-1),:) = []; %reduce to only interior (C)

F = size(C);

%G = -C\eye(F(1)); old method

%G = G(:,F(1)); old method

Q = zeros(F(1),1);

Q(F(1),1) = 1;

G = -C\Q; %alternative way of finding C inverse
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B Plots of ∆g versus distance for rectangular

grid networks with γ(d) = d

5cm4.5cmgraph1.bmp 5cm4.5cmgraph2.bmp
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