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Abstract

In [1] Curtis and Morrow have extensively studied the recoverability properties of

undirected graphs and their conductances. Here directed graphs are defined and their

properties are discussed. The uniqueness of the Dirichlet problem for directed graphs

is proved, the recoverability of certain conductivities are outlined, and connection

equivalences within graphs are listed.

1 Defining a Directed Graph

For an electrical network, represented by an undirected graph, Γ = (G, γ), the
conductivities are defined along the edges of the graph. The magnitude of the
current read at the nodes at the opposite ends of an edge is the same, namely

|(up − uq)γpq|

the potential drop times the conductivity of the edge as defined by Ohm’s Law.
However, in the case of directed graphs the conductivity is defined for an edge
at each vertex and the resulting current is allowed to differ depending at which
node the current is measured. For a network with current flow out of a node
defined to be positive, the current at node p with neighbors q is

∑

q∼p

γpq(up − uq),

where γpq is the conductivity on edge pq as seen by node p. This can lead
to counterintuitive results as, for example, the conductivity on edge pq can be
defined to be zero according to p and some positive quantity, γqp, according
to q. Then q will read a current of γqp(uq − up) with the current flowing to-
wards q for uq < up and current flowing away from q for uq > up whereas
p will see no current at all. For this reason, it may be easier to understand
directed graphs as a set of defined relationships between nodes rather than as
symbolic representations of electrical networks. As was the case with undi-
rected graphs for a γ-harmonic potential function u(p) on the interior of the
graph

∑

q∼p γpq(up−uq) = 0 for each interior node. As will be necessary below
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it is important that not all γpq = 0 for an interior node p in order to prove the
uniqueness of the Dirichlet problem.
The Kirchhoff matrixK for a graph withm nodes that satisfies the properties

named above is the m x m matrix with entries defined as:

(1) Ki,j = −γi,j for i 6= j

(2) Ki,i = −
∑

j:j 6=iKi,j

This matrix has the properties that row sums are equal to zero and the off-
diagonal entries are negative or zero, but it is no longer symmetric as was the
case with undirected graphs. Writing K in block form

Ku =

[

K(B;B) K(B; I)
K(I;B) K(B;B)

] [

ψ

x

]

=

[

φ

0

]

= i

where u is the vector of potentials, i is the resulting vector of currents, B
are boundary nodes, and I are interior nodes. Because u is γ-harmonic on
the interior of G, K(I;B)ψ + K(I; I)x = 0 so x = −K(I; I)−1K(I;B)ψ and
φ = K(B;B)ψ −K(B; I)K(I; I)−1K(I;B)ψ. Let

Λ = K(B;B)−K(B; I)K(I; I)−1K(I;B)

be the response matrix, which when multiplied by ψ, the vector of boundary
potentials, results in φ the vector of boundary current. In the above derivation
it is important that K(I; I) be invertible which is the case and is shown below.
For directed graphs the response matrix Λ of flow at the boundary nodes,

resulting from potentials imposed at the boundary nodes, is a Kirchhoff matrix
for a well-connected graph.

2 The Dirichlet Norm

In the undirected case there is a useful relation between the Kirchhoff matrix
and a discrete analog of one of Green’s identities. This is the Dirichlet Norm of
K where

uTKu =
∑

q∼p

γpq(up − uq)
2.

This is minimized when u(p) is a γ-harmonic function and defines the power loss
of the system. For directed graphs K is no longer symmetric and a correction
factor must be added to the Dirichlet Norm. Let

K =
1

2
(K +KT ) +

1

2
(K −KT ).

Then

uTKu = uT [
1

2
(K +KT )]u

as

[
1

2
(K −KT )]T = −

1

2
(K −KT )
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and therefore

[uT [
1

2
(K −KT )]u]T = −uT [

1

2
(K −KT )]u = 0.

1
2 (K + KT ) is symmetric but the rows no longer sum to zero so a diagonal
correction matrix must be added with entries defined by:

(1) Dp,p =
∑

q∼p
1
2 (γpq − γqp)

(2) Dp,q = 0

Summing over the average of the two vertex conductivities with these sym-
metrizing corrections the corresponding Dirichlet Norm for directed networks
is:

∑

q∼p

1

2
(γqp + γpq)(up − uq)

2 = uTKu+ uTDu

A few observations. First, in the case of undirected graphs γqp = γpq ⇒ D =
0 and the new formula simplifies to the original formula. Second, this formula
can no longer be used to prove the uniqueness of the Dirichlet problem as K is
no longer positive definite and uTKu no longer has a definite sign.

3 Uniqueness of the Dirichlet Problem

3.1 The Maximum Principle

Because u(p) is γ−harmonic on the interior of Γ,
∑

q∼p γpq(up − uq) = 0 for
each interior node p. Rearranging (where

∑

q∼p γpq 6= 0)

up =

∑

q∼p γpquq
∑

q∼p γpq

The potential at p is the weighted average of the potential at its neighbors,
therefore either up = uq for all q ∼ p or there exist q1, q2 such that up > uq1 and
up < uq2 . To prove uniqueness of the Dirichlet problem the additional condition
that for each interior node there is a directed path to the boundary is placed on
Γ. Then for an interior node p there exists a directed path pq1q2 . . . qδ where qδ
is a boundary node. If u(p) were a maximum at p then the value of u(p) at all
q ∼ p would equal that at p and this would propagate along the directed path to
the boundary. Therefore, on each directed path of nodes either u(p) is constant
or the maximum (similarly minimum) value is attained at the boundary. This
yields the result that if u(p) = 0 for all boundary nodes then u(p) = 0 for all
interior nodes.
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3.2 ‘Positive Definite’ Submatrices

Although C = K(I; I), the submatrix of K containing interior node data, is
not symmetric and positive definite it can be shown that all principal submatri-
ces of C have positive determinants (with the conditions that for every interior
node p

∑

q∼p γpq 6= 0 and there exists a directed path from p to the boundary).
The process of Gaussian elimination produces a lower triangular matrix with
diagonal entries that are ratios of sums of monomials in γpq with positive in-
teger coefficients. In particular, when taking the Schur complement K(I; I) is
invertible and there exists a unique solution to the Dirichlet problem.
Let E be any principal submatrix of C corresponding to a set of indices J

where q ∈ J . Then with an appropriate reordering of the indices extracted from
C

E =



















κ11 κ12 . . . κ1m κ1n d1

κ21 κ22 . . . κ2m κ2n d2

...
...

. . . . . . . . .
...

κm1 κm2

... κmm κmn dm

κn1 κn2

... κnm κnn dn



















where 1, . . . , n are interior nodes and (d1, . . . , dn) is the column of row sums of
E. From the definition of the Kirchhoff matrix,

(1) all off-diagonal entries κij = γpq ≤ 0 and

(2) all diagonal entries κii = γpp = di −
∑

j 6=i κij where di = −
∑

q 6∈J γiq ≥ 0.

(3) All κii 6= 0 from the condition that
∑

q∼p γpq 6= 0.

Also at least one
∑n

j=1 κij > 0 from the condition that there exist a directed
path from node i to the boundary (this prevents C from having a kernel). Then
Gaussian elimination using the bottommost, righthand entry, κnn, to reduce
the entries above it to zero produces a new matrix

E
′ =















κ′11 . . . κ′1m 0 d′1
...

. . . . . . 0
...

κ′m1

... κ′mm 0 d′m

κn1

... κnm κnn dn















where (d′1, . . . , dn) is the column of row sums of E
′. From Gaussian elimination

κ′ij = κij −
κinκnj

κnn
= −

(−κnnκij) + κinκnj
κnn

.

From above
(−κnnκij) ≥ 0, κinκnj ≥ 0, and κnn > 0
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which implies that κ′ij is a negative ratio of sums of monomials in γpq with
positive integer coefficients. This satisfies (1). Also

d′i = di −
κindn

κnn
=
κnndi + (−κindn)

κnn

where
κnndi ≥ 0, (−κindn) ≥ 0, and κnn > 0

implies that d′i is a ratio of sums of monomials in γpq with positive integer
coefficients. In addition

d′i =

m
∑

j=i

κ′ij ⇒ κ′ii = d′i −

m
∑

j=1(i6=j)

κ′ij

Therefore κ′ii is also a ratio of sums of monomials in γpq with positive integer
coefficients. This satisfies (2). From above κii 6= 0 ⇒ either some κij 6= 0 or
di 6= 0. For j 6= n from the first expansion above it can be clearly seen that
κij 6= 0 ⇒ κ′ij 6= 0. Similarly di 6= 0 ⇒ d′i 6= 0. If κii = −κin then node i
has a directed connection to node n and is directly connected to no other node.
However, there must be a directed path from i to a boundary node. Therefore,
there must be either be a directed edge from n to a boundary node so dn 6= 0
or n is directly connected to another interior node that is eventually directly
connected to a boundary node so some κnj 6= 0. dn 6= 0 ⇒ d′i 6= 0 from the
second term in the above expansion for d′i and similarly κnj 6= 0 ⇒ κ′ij 6= 0.
Thus,

κii 6= 0 ⇒ some κ′ij 6= 0 or d
′
i 6= 0 ⇒ κ′ii 6= 0.

This satisfies (3).
The upper, lefthand m x m submatrix of E ′ is of the same form as C.

Proceeding by induction a lower triangular matrix with diagonal entries that
are ratios of sums of monomials in γpq with positive integer coefficients, and off-
diagonal entries that are either zero or negative ratios of sums of monomials in
γpq is formed. In particular all the diagonal entries of K(I; I) are positive so C
has a positive determinant and is invertible. When taking the Schur complement
of K with respect to C the Dirichlet problem has a unique solution.
The process of taking the Schur complement is equivalent to the process of

Gaussian elimination of interiorizing one node at a time, so using the above
described method on the entire K matrix, leaves the response matrix Λ, the
upper lefthand square matrix that remains after eliminating the interior nodes,
with almost the same form as E ′. Λ has rows that sum to zero with diagonal
entries that are either zero or ratios of sums of monomials in γpq with positive
integer coefficients and off-diagonal entries that are either zero or negative ratios
of sums of monomials in γpq with positive integer coefficients.

4 Recoverability of Conductances

In looking at many directed graphs the only ones found to be totally recoverable
were those with no interior nodes in which case the Kirchhoff matrix is the
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response matrix. It is conjectured that these are the only fully recoverable
directed graphs. There are, however, pieces of every graph that can be recovered.

4.1 One-way Boundary Spikes

A boundary spike is a boundary node connected only to one interior node and
nothing else. Let a graph contain a boundary spike consisting of a boundary
node p connected to an interior node q where γpq 6= 0 and γqp = 0. Then the
Kirchhoff matrix has the form

K =















γpq −γpq 0 0

0
. . . . . . . . .

0
...

. . . . . .

0
...

...
. . .















Here κpp = γpq and κqp = 0 for all q 6= p. The process of taking the Schur
complement does not affect this column as the only non-zero entry is due to a
boundary conductivity. Thus, the response matrix has the form

Λ =











γpq
. . . . . .

0
...

. . .

0
...

...











The conductivity γpq can be directly read from the response matrix.

4.2 Boundary Edges

The method of recoverability of conductivities as outlined here is adapted from
Curtis and Morrow in [1] with only minor changes from undirected to directed
graphs. A boundary to boundary directed edge can be recovered if deleting that
edge breaks a directed connection in the original graph. Let P = (p1, . . . , pk)
and Q = (q1, . . . , qk) be sequences of boundary nodes in a graph G such that
there is a disjoint directed connection from each node pn to node qn. Then from
Blunk and Coskey in [2] it is known that detΛ(P ;Q) 6= 0 in the original graph G.
The response matrix from the new graph G′ obtained by deleting the directed
edge p1q1 has detΛ

′(P ′;Q′) = 0. The new Kirchhoff matrix K ′ differs from the
original K by κ′p1q1

= κp1q1 + γp1q1 = 0 and κ
′
p1p1

= κp1p1
− γp1q1 , all other

entries staying the same. The process of taking the Schur complement only adds
and multiplies with data from nodes being interiorized so the response matrix Λ′

only differs from the original Λ by λ′p1q1
= λp1q1+γp1q1 and λ

′
p1p1

= λp1p1
−γp1q1 ,
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(with relation)

1 2

3

1 2

3

all other entries being the same. This being known γp1q1 is found by solving

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λp1q1 + γp1q1 λp1q2 . . . λp1qk

λp2q1 λp2q2 . . . . . .
...

...
. . . . . .

λpkq1

...
... λpkqk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

All directed boundary edges recovered so far have been shown to break a
connection. It is conjectured that only directed boundary edges that break a
connection can be recovered.

5 Recoverability of Graphs

5.1 Connection Equivalences

As motivation, given a square matrix with row sums equal to zero is it possible
to find a graph or “Y – 4” equivalent set of graphs which would have the given
matrix as its response matrix? Before tackling this question perhaps it would be
better to start by seeing if there is a corresponding “Y – 4” transformation for
directed graphs, i.e. a set of circular planar directed graphs, linked by a specific
group of substitutions, that have the same connections for all circular pairs
of boundary nodes. This is the case but it is more complicated for directed
graphs as there are many more substitutions. These substitutions are found
from looking at the response matrix for a three boundary node graph. Because
in the directed case the Kirchhoff matrix is no longer symmetric and the graphs
can by double edged there are many more possibilities for equivalences. Unlike
the undirected case, there are also three boundary node directed graphs for
which there are no equivalent substitutions.
As stated above making any of the above substitutions in a directed graph

does not change the set of connections between the boundary nodes. This is
similar to the undirected case as studied extensively by Curtis and Morrow in
[1]. Let there be a graph G′ obtained by making one of the above substitutions
to a graph G. Referring to the graph fragments above, suppose that in G the
original form was similar to a 4 with a directed path from 3 to 2 and that in G
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3

1 2

3

1 2

3

1 2

3

1 2

2
1 2

3

1 2

3

1

3

2
1 2

3

1 2

3

1

3

3

1 2

3

1 2
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3

1 2

3

1 2

3

1 2

3

1 2

2
1 2

3

1 2

3

1

3

21 2

3 3

1

3

1 2

3

1 2
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(without relation)

1 2

3

12 2

3

3

1 2

3

12 2

3

1 2

3

12 2

there were disjoint directed paths α that used node 1 and β that used nodes 2
and 3. Then if G′ contains the equivalent Y form there exist disjoint paths α′

that uses node 1 and β′ that uses nodes 2 and 3. Again, if

α = a1 . . . 1 . . . a2

β = b1 . . . 32 . . . b2

then
α′ = a1 . . . 1 . . . a2

β′ = b1 . . . 3c2 . . . b2

where c is the center node between nodes 1, 2, and 3.

5.2 Ratio Relations

In undirected graphs if two graphs were connection equivalent they were also
electrically equivalent and had similar conductance recoverability properties.
For directed graphs this is not the case. For example, a given 3 x 3 matrix with
negative (all non-zero) off-diagonal entries and row sums equal to zero could
always have come from a 4 graph but not necessarily from a Y graph. For a 4
graphK = Λ and is therefore fully recoverable but Y graphs are not recoverable.
Boundary conductances γδI are recoverable where

γ1I = λ11 −
λ21λ13

λ23
.
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Interior conductances are not recoverable but are related by the ratios

γI1

γI2
=
λ31

λ32
,
γI2

γI3
=
λ12

λ13
,
γI3

γI1
=
λ23

λ21
.

Rewritten this is the relation λ12λ23λ31 = λ13λ32λ21 which is always present in
response matrices from Y graphs. There are many of these nontrivial multiplica-
tive relations in response matrices from directed graphs that are not a factor
in their undirected counterparts with symmetric response matrices. These re-
lations are a consequence of determinantal relationships from the connections
present in the graph. These relations reduce the number of independent entries
in the response matrix and may be a clue to why directed conductivities are so
difficult to recover.

6 Directed Medial Graphs

Once again relying heavily upon the example of the undirected case, now that
the class of connection equivalent graphs are known, is it possible to find a
directed medial graph in the effort towards recovering the directed graph from
information in the response matrix? This is still an open question. (The defini-
tion and usefulness of medial graphs is described in detail by Curtis and Morrow
in chapters 8 and 9 of [1].) First, it is unknown what is the most helpful way to
depict and consequently think about directed graphs. Between two nodes two
edges can be drawn, one going each way, an edge being deleted if the conductiv-
ity on that edge is zero. Or, between two nodes one edge can be drawn labeled
with a double headed arrow for a non-zero conductance both ways or labeled
with a single headed arrow if the conductance in one way is zero.
In the case where doubled edged graphs are drawn there is an algorithm to

draw medial graphs with consistently directed geodesics. For a geodesic that
crosses two directed edges the relationship between the directions of the edges
uniquely determines the direction of the geodesic. Consequently when drawing
the graph from the medial graph, for an edge that is crossed by two geodesics the
relationship of the directions of the geodesics uniquely determines the direction
of the edge. The main problem found with this process is that due to the double
edges in the original graphs there are many lenses in the medial graphs. Also,
it is difficult if not impossible to understand how to manipulate the geodesics
in these directed medial graphs to describe connection equivalent substitutions
in the original graphs.
Looking at graphs drawn with single edges eliminates the problem of an

excessive amount of lenses in the medial graph but leads to problems when
trying to label the geodesics. No good scheme for drawing medial graphs with
possibly one-way or two-way directed geodesics to correspond to graphs with
one-way and two-way directed edges has been found.
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edges

1 2

3

1 2

3

1 2

3

1 2

3

edges
double

single

graph

1 2

33

1 2

1 2

3

1 2

3
medial graph
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