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Abstract

This paper first deals with a physical interpretation of a particular

scattering problem involving acoustic waves. The resulting continuous

equation is discretized in two ways: using edge conductivities and using

vertex conductivities. Boundary spike and boundary edge formulas are de-

rived for both cases and eigenvalues of the vertex conductivity Kirchhoff

matrix are investigated. Finally, examples of recoverable and nonrecov-

erable networks are presented along with several leads and ends - among

them a formulation based on the Schroedinger equation.

1 Introduction

The scattering problem occurs in such areas as acoustics, particle physics, and
electromagnetics. In this section we use first principles to formulate the scat-
tering problem for the case of acoustic waves. Much of the motivation for the
remainder of this section comes from Erkki Heikkola’s thesis [3].
Consider the propagation of sound waves in an isotropic inviscid fluid. Let

~v be the velocity field, p the pressure, and ρ the density of the fluid at an
arbitrary point. Assume that variations in the density and pressure do not
deviate significantly from the static state in which p = p0 and ρ = ρ0. In
particular, δρ ¿ ρ0, where ρ = ρ0 + δρ. This assumption then allows us to
linearize the governing equations as follows:

∂ρ

∂t
+ ρ0∇ · ~v = 0 (Linearized continuity equation) (1)

∂~v

∂t
+
1

ρ0

∇p = 0 (Linearized Euler equation) (2)

∂p

∂t
= c2

∂ρ

∂t
(State equation) (3)

In the state equation, c denotes the speed of sound in the fluid at that
point. We now introduce a time harmonic velocity potential U(x, t) separable
into spatial and temporal components: U(x, t) = u(x)e−iωt. We assume that
the velocity field is obtained from this potential as follows:
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~v =
1

ρ
∇U = 1

ρ
∇ue−iωt (4)

Substituting (4) into the Euler equation (2), we have:

∂

∂t

(

1

ρ
∇ue−iωt

)

+
1

ρ0

∇p = 0

1

ρ
∇ue−iωt

(

−1
ρ

∂ρ

∂t
− iw

)

+
1

ρ0

∇p = 0 (5)

Approximating |∂ρ
∂t
| as δρ ω, the first term in parentheses in (5) becomes

negligible relative to the second term, since δρ ¿ ρo. Also, ρ0/ρ = ρ0/(ρ0 +
δρ) ≈ 1. Thus, we have:

∇p = ρ0

ρ
iω∇ue−iωt ≈ iω∇ue−iωt (6)

This expression suggests that the pressure takes the form:

p = iωue−iωt = −∂U
∂t

(7)

Implicit in the above formulas is that we are concerned only with the real
part of expressions that represent physical observables. Combining (1) and (3)
to eliminate the density term, and using (4) and (7), we have:

ρ0∇ · (
1

ρ
∇u)e−iωt + ω2

c2
ue−iωt = 0

∇ · (1
ρ
∇u) + k2

ρ0

u = 0

∇ · (γ∇u) + λu = 0 (8)

Where k2 = ω2/c2, γ = 1/ρ, and λ = k2/ρ0.

2 Edge Conductivities

2.1 Discretization of Edge Conductivities

We can now discretize (8) for the case of a network with potential u defined at
the nodes, and conductivity γ defined for the edges. The discretization of the
divergence term parallels that given by Curtis and Morrow [1]:
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∇ · (γ∇u) →
∑

j∼i

γi,j [u(j)− u(i)] (9)

Where i refers to a node of the network, j ∼ i refers to the set of nodes
connected to i, γi,j is the conductivity between nodes i and j and u(i) is the
potential at node i.
Continuing the analogy with an electrical network, we use the definition of

a Kirchhoff matrix K given by Curtis and Morrow [1]. K is an m ×m matrix
(where m is the number of nodes in the network), whose entries are defined as
follows:

(1) If i 6= j then Ki,j = −γi,j
(2) Ki,i =

∑

j 6=i γi,j

If we now let ~u be the m×1 column vector of node potentials, the right-hand
expression in (9) becomes equivalent to −K~u, so that the left-hand side of (8)
becomes (−K + Iλ)~u . We make a distinction between boundary nodes and
interior nodes by insisting that the discretization of (8) be satisfied at interior
nodes. This does not have to be true for boundary nodes since, in the case of
acoustic waves (for example), we could have net mass flow out of the system at
the boundary. For convenience, in labeling the nodes of the network, we label
the boundary nodes first. Writing K in block form, the discretization of (8) is:

[

A− λ B
BT C − λ

]

~u =

[

Φ
0

]

Here, A = K(B;B), where B is the set of boundary nodes. Letting ~u =
[

ψ
x

]

where ψ represents the potentials at the boundary nodes while x represents the
potentials at the interior nodes, we have

[

A− λ B
BT C − λ

] [

ψ
x

]

=

[

Φ
0

]

Since the current is conserved at the interior nodes, BTψ + (C − λ)x = 0,
so x = −(C − λ)−1BTψ for all λ such that (C − λ) is invertible. Thus,

[

A− λ B
BT C − λ

] [

ψ
x

]

=

[

(A− λ)ψ −B(C − λ)−1BTψ
0

]

.

We will call the response matrix Λ(λ) : ψ 7→ Φ where

Λ(λ) = (A− λ)−B(C − λ)−1BT . (10)

Since Λ(λ) is a meromorphic function, for large values of |λ| (|λ| > ‖C‖) we
can expand (C − λ)−1 and write Λ(λ) as a power series:
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Λ(λ) = (A− λ) +
(

1

λ

)

B

∞
∑

k=0

(

Ck

λk

)

BT

Λ(λ) = −λ+A+
∞
∑

k=0

BCkBTλ−k−1 (11)

If we know Λ(λ), we know the coefficients of the power series expansion.

2.2 Poles and Zeroes of Λ(λ)

A graph of the determinant of the response function Λ(λ) can be constructed
for an electrical network. Notation is the same as in the introduction, where
K is the Kirchhoff matrix and C is the lower right block entry of K. We can
determine the locations of the zeroes and poles of det Λ(λ).

Theorem 2.2.1 For the Kirchhoff matrix K of an electrical network and the
lower right block entry of K, C, the following statements hold

(1) The poles of det Λ are the eigenvalues of the matrix C.
(2) The zeroes of det Λ are the eigenvalues of the matrix K.

Proof We can write the function Λ(λ) in terms of the block entries of K as in
(10).

Λ(λ) = (A− λ)−B(C − λ)−1BT

This is the Schur complement of (C−λ) within (K−λ): Λ(λ) = (K−λ)/(C−λ).
Taking the determinant of both sides gives

detΛ(λ) =
det(K − λ)
det(C − λ)

Thus, the poles of detΛ(λ) are where det(C−λ) = 0, the eigenvalues of C. The
zeroes of detΛ(λ) are where det(K − λ) = 0, the eigenvalues of K.

2.3 Boundary to Boundary Edge Formula

Manipulating the graph to decrease the number of edges is one method of re-
covering edge conductivities in networks. This can be done when there is at
least one boundary to boundary connection within the graph. In the figures to
follow, boundary nodes are emphasized with circles. The two boundary nodes
are denoted 1 and 2 with an edge conductivity of a. Node 1 is also connected to
n other nodes and node 2 is connected to m other nodes with conductivities de-
noted b1, . . . , bn and c1, . . . , cm, respectively. We start with the response matrix
Λ(λ) and show how to recover the conductivity a and how to obtain Λ′(λ), the
response matrix for the graph with the edge between nodes 1 and 2 removed.
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Figure 1: Deletion of a boundary-to-boundary edge

The conductivity a can be determined from the power expansion of the
response matrix (11). By definition, the (1;2) entry of matrix A (boundary sub-
block of the Kirchhoff matrix) is given by: A(1; 2) = −a. Since A is a known
term in the power expansion, the conductivity a can be directly recovered as:
a = −A(1; 2).
To find the currents at the boundary nodes, we solve the Dirichlet Prob-

lem for the matrix K − λI. The potentials, which are denoted by ~u, include
ub1, . . . , ubn, uc1, . . . , ucm where the subscripts correspond to the boundary and
interior nodes connected to 1 and 2. ~Φ denotes the net currents, taken to be
zero at the interior nodes.

(K − λI)~u = ~Φ

Using the notation

α =

n
∑

k=1

−bkubk β =

m
∑

k=1

−ckuck,

Φ1 = (a1 + b1 + · · ·+ bn − λ)u1 − au2 + α

Φ2 = −au1 + (a+ c1 + · · ·+ cm − λ)u2 + β

The next step is to delete the edge between nodes 1 and 2. The rest of the
network remains the same. Writing the currents for the modified network, Φ′1
and Φ′2 we have:

Φ′1 = (b1 + · · ·+ bn − λ)u1 + α

Φ′2 = (c1 + · · ·+ cm − λ)u2 + β

Φ′1 can be written in terms of Φ1 and Φ
′
2 can be written in terms of Φ2 as

seen below.
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Φ′1 = Φ1 − a(u1 − u2)

Φ′2 = Φ2 + a(u1 − u2)

Φ′j = Φj for j 6= 1, 2

Thus the result only depends on the u1 and u2 terms and the rest of the
network is not affected by breaking the connection between nodes 1 and 2. We
can now write the response matrices for the two networks. The response matrix
of the original network is denoted

Λ =











λ11 λ12 · · · λ1j

λ21 λ22 · · · λ2j

...
...

. . .
...

λj1 λj2 · · · λjj











The response matrix for the new network, Λ′, can be written as

Λ′ =















λ11 − a λ12 + a λ13 · · · λ1j

λ21 + a λ22 − a λ23 · · · λ2j

λ31 λ32 λ33 · · · λ3j

...
...

...
. . .

...
λj1 λj2 λj3 · · · λjj















Since we know the beginning conductivity a, the original network can be
simplified to the modified network. Calculations can be continued with this
new network.
Note that in the above derivation, the requirement that the graph remains

connected following the edge deletion was not used. Indeed, the result holds in
the case of a disconnected final graph, and the new response matrix (Λ′) can be
partitioned as follows:

Λ′ =

[

Λ1 0
0 Λ2

]

Here, Λ1 corresponds to the response matrix for the graph connected to
boundary node 1 (graph 1) and Λ2 corresponds to the response matrix for
the graph connected to boundary node 2 (graph 2)(see Figure 1). This block-
partitioning can be understood intuitively by noting that when two graphs are
not connected, potentials on the boundary nodes of one graph do not influence
the currents on the boundary nodes of the other graph. Mathematically, this
result is shown using the Schur complement formula:

Λ = (A− λ)−BT (C − λ)−1B (12)

Let P1 and P2 denote the set of boundary nodes in graph 1 and graph 2,
respectively. We need to show that λ′ij = 0 for i ∈ P1 and j ∈ P2. Since i 6= j,
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and since the only connection between graphs 1 and 2 is through boundary
nodes 1 and 2, we have:

(A− λ)ij = Aij =

{

−a when i = 1, j = 2
0 otherwise

Similarly, since none of the boundary nodes in graph 1 can be connected to
interior nodes of graph 2 (and vice-versa), we have: Bik = 0 for k an interior
node of graph 2 and Bjk = 0 for k an interior node of graph 1. Thus, we can
write:

(BT (C − λ)−1B)ij =
∑

k,`

Bik((C − λ)−1)k`(B
T )lj

=
∑

k,`

Bik((C − λ)−1)k`Bj` (13)

In the above sums, k and ` range over all the interior nodes. When k is in
graph 2, Bik = 0; when ` is in graph 1, Bil = 0; when k is in graph 1 and `
is in graph 2, ((C − λ)−1)k` = 0. Thus, the term given by (13) is also zero.
Substituting these results into (12), we see that:

λij =

{

−a when i = 1, j = 2
0 otherwise

Using the boundary edge formula, λ′12 = −a+ a = 0, and hence λ′ij = 0 for
i ∈ P1 and j ∈ P2. This justifies the decomposition given.
By partitioning Λ as shown, we have effectively created two separate prob-

lems, each one with its own response matrix. These problems can then be
approached independently. In particular, in the case where node 1 is isolated
after the edge removal, Λ1 = 0, and Λ2 is used to further recover the graph.
This approach will be used in conjunction with the boundary spike formula in
recovering general tree graphs(section 5.1).

2.4 Boundary Spike Formula

A boundary spike is an edge of a graph connecting an isolated boundary node
to the rest of the graph, as shown in Figure 2a. We label the boundary node 1,
the interior node to which it is connected n, and the connecting conductivity a.
Λ denotes the response matrix for this graph. Following the edge contraction,
node n becomes a boundary node, and node 1 and edge a are deleted (Figure
2b). Λ′ is the response matrix for this new graph. Given Λ, we wish to determine
a and Λ′, and thereby reduce the problem.
To determine a, we use the power expansion for Λ(λ) (11). Noting that a is

the conductivity of the only edge connected to node 1, K(1; 1) = A(1; 1) = a.
Since knowing Λ is equivalent to knowing each term in the power expansion,
we know A, and hence a = A(1; 1). Thus, recovery of a follows from the power
expansion of Λ.
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Figure 2: Deletion of a boundary spike

Let u1 and un denote the potentials of nodes 1 and n, respectively. Let
xi denote the conductivities of the edges connected to node n, and uxi the
potentials at the corresponding nodes connected to node n. By the problem
statement, (K − λ)~u = ~Φ. Writing out the nth equation of this system for both
problems,

un(a− λ)− u1a+

s
∑

i=1

unxi −
s
∑

i=1

uxixi = Φn = 0 (14)

un(−λ) +
s
∑

i=1

unxi −
s
∑

i=1

uxixi = Φ
′
n (15)

Subtracting (14) from (15), we have:

Φ′n = a(u1 − un) (16)

The current at node 1 of the original graph can be found from the Kirchhoff
matrix and from the response matrix:

Φ1 = (a− λ)u1 − aun =
∑

i

λ1iui = λ11u1 +
∑

j 6=1

λ1juj (17)

The above sums are carried out over all boundary nodes of the original graph
with the restrictions shown. Solving (17) for u1:

u1 =
a

a− λ− λ11

un +
∑

j 6=1

λ1j

a− λ− λ11

uj (18)

We use this expression for u1 to write the currents of the new graph in terms
of un and uj . This will then yield the response matrix for the new graph. By
(16):
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Φ′n =
a(λ+ λ11)

a− λ− λ11

un +
∑

j 6=1

a

a− λ− λ11

λ1juj (19)

Since node 1 is not connected to any other boundary node in the original
graph, the edge contraction does not change the expression for the currents
at boundary nodes k, where k 6= 1. This can be verified by writing out the
expressions for Φk and Φ

′
k using the Kirchhoff matrix. Substituting for ui, the

result is:

Φ′k = Φk =
∑

i

λkiui = λk1u1 +
∑

j 6=1

λkjuj

=
a

a− λ− λ11

λk1un +
∑

j 6=1

(

λk1λ1j

a− λ− λ11

+ λkj

)

uj (20)

Now, let J be the set of all boundary node indices excluding the index 1.
In the equations that follow, uJ refers to the vector of potentials at the nodes
in J , and Λ(J ; J) refers to the submatrix of Λ where the rows and columns are
referenced by the elements of J . Combined with the expression for Φ′1, this
result can be used to write Λ′:

Λ′
[

un
uJ

]

=

[

Φ′n
ΦJ

]

Λ′ =







a(λ+ λ11)

δ

a

δ
Λ(1; J)

a

δ
Λ(J ; 1)

1

δ
Λ(J ; 1)Λ(1; J) + Λ(J ; J)






, δ = a− λ− λ11 (21)

2.5 Numerical Example: One Boundary Node Chain

A chain network is a sequence of nodes 1 . . . n in which node 1 is the only
boundary node and node i is connected to node i+1 by an edge of conductivity
ai, for 1 ≤ i < n (see Figure 3).
Recovery of this network follows by repeated application of the boundary

spike formula. Since there is only one boundary node, the response matrix
is a scalar function. Let Λ(λ) be the response matrix at the step when node
k is the boundary node. Given Λ(λ), ak is computed from the power series
expansion (11), and the response function following the next contraction, Λ′(λ)
is computed from (21):

ak = lim
λ→∞

(λ+ Λ(λ)) (22)

Λ′ =
ak(λ+ Λ)

ak − (λ+ Λ)
(23)
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Figure 3: A one-boundary-node chain

For computational ease, it is desirable to characterize Λ(λ) by the location
of its zeroes and poles. This is done by Theorem 1.1. Since both K and C are
symmetric matrices, they each have real eigenvalues whose number, including
multiplicities, corresponds to the size of the matrix. Noting that K is singular
(rows sum to 0), 0 is always an eigenvalue of K. We label the eigenvalues of
K by 0, z1, z2, ...zm, and the eigenvalues of C by s1, s2, ...sm. K has only one
more eigenvalue than C because the network has only one boundary node at
each step. Since Λ(λ) is a rational function, we can write it as a quotient of two
polynomials: Λ(λ) = P (λ)/Q(λ). By Theorem 1.1, the roots of P (λ) are the
eigenvalues of K, and the roots of Q(λ) are the eigenvalues of C. Thus, we can
write:

Λ(λ) = −λ(λ− z1)(λ− z2) . . . (λ− zm)
(λ− s1)(λ− s2) . . . (λ− sm)

(24)

The minus sign in equation (24) arises because Λ(λ) asymptotes to −λ as
λ→∞ by the power expansion. Thus, a numerical recovery program only needs
to store the sets {z1 . . . zm} and {s1 . . . sm} at each step. By equation(23) the
new zeroes and singularities are determined as follows:

(1) λ is a zero of Λ′(λ) when λ+ Λ(λ) = 0

(2) λ is a singularity of Λ′(λ) when −ak + λ+ Λ(λ) = 0

These two linear equations (indicated by the dashed lines) are plotted on a
Λ− λ plot, along with Λ(λ), in Figure 4. In this example, the starting conduc-
tivities (a1, a2, a3, a4) = (1, 2, 3, 4) are used in the initial forward problem. The
new zeros and poles are determined by the intersections of these lines with Λ(λ).
As the graph shows, the intersections for finding the new singularities occur in
regions where the two curves are almost tangent. This situation becomes more
pronounced with the addition of more conductivities. As a result, this inverse
problem becomes ill-conditioned as the number of initial conductivities grows.
Some of the initial and recovered conductivities for n = 11 are shown in Table
1.
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Figure 4: Λ− λ plot for a 4-edge chain before any reductions (k = 1)

Edge Initial Recovered
1 1.0 1.0000
2 2.0 2.0000
3 3.0 3.0000
...

...
...

9 9.0 8.6810
10 10.0 9.6159
11 11.0 11.5701

Table 1

The loss of accuracy is clearly evident at the inner edges (the ones furthest
from the initial boundary node).

3 Vertex Conductivities

3.1 Discretization for Vertex Conductivities

We can now discretize (8) for the case of a network where both the potential u
and the conductivity γ are defined at the vertices. The discretization parallels
that of the edge conductivity case. The main difference is in our new choice for
the discretization of the divergence operator:
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∇ · (γ∇u) →
∑

j∼i

γ(j)[u(j)− u(i)] (25)

The index i refers to a node of the network, j ∼ i refers to the set of nodes
connected to i, γ(j) is the conductivity at node j and u(i) is the potential at
node i.
The analogous m×m Kirchoff matrix K (where m is the number of nodes

in the network) is no longer symmetric. The entries of K are defined as follows:

(1) If i 6= j and there is an edge joining i to j , then K(i; j) = γ(j)

(2) If i 6= j and there is no edge joining i to j , then K(i; j) = 0

(3) K(i; i) = -
∑

j 6=iK(i; j)

As in the edge conductivity case, let ~u be the m× 1 column vector of node
potentials, the right-hand expression in (25) becomes equivalent to K~u, so that
the left-hand side of (8) becomes (K + Iλ)~u. The same convention for labeling
the boundary nodes first holds with K. Thus, writing K in block form, the
discretization of (8) is:

[

A+ λ B
C D + λ

]

~u =

[

Φ
0

]

Letting ~u =

[

ψ
x

]

where ψ represents the potentials at the boundary nodes

while x represents the potentials at the interior nodes, we have
[

A+ λ B
C D + λ

] [

ψ
x

]

=

[

Φ
0

]

Since the current is conserved at the interior nodes, Cψ + (D + λ)x = 0, so
x = −(D + λ)−1Cψ for λ such that (D + λ) is invertible. Thus,

[

A+ λ B
C D + λ

] [

ψ
x

]

=

[

(A+ λ)ψ −B(D + λ)−1Cψ
0

]

.

Now, we will call the response matrix for the vertex conductivity case Λ(λ) :
ψ 7→ Φ where

Λ(λ) = (A+ λ)−B(D + λ)−1C. (26)

So the power series expansion for Λ(λ) is

Λ(λ) = λ+A−
∞
∑

k=0

B(−D)kCλ−k−1 (27)
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3.2 Boundary to Boundary Edge Formula

As seen in the edge conductivity section, the graph can be manipulated to
decrease the number of edges present. For the vertex conductivity case, the
argument if similar. The two boundary nodes are labeled 1 and 2 with vertex
conductivities a and b respectively. Node 1 is connected to n other nodes denoted
c1, . . . , cn and node 2 is connected to m other nodes denoted d1, . . . , dm.
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Figure 5: Deleting a boundary-to-boundary edge

The conductivities a and b can be determined from the power expansion of
the response matrix (27). By definition, A(2; 1) = a, and A(1; 2) = b. Since A
is a known term in the power expansion, a and b can be directly recovered.
To find the currents at the boundary nodes, we solve the Dirichlet Prob-

lem for the matrix K + λI. The potentials, which are denoted by ~u, include
ub1, . . . , ubn, uc1, . . . , ucm where the subscripts correspond to the boundary and
interior nodes connected to 1 and 2. ~u represents the vector of all the potentials
in the network, while ~Φ denotes the net currents, taken to be zero at the interior
nodes.

(K + λI)~u = ~Φ

Using the notation

α =

n
∑

k=1

−ckuck β =

m
∑

k=1

−dkudk,

Φ1 = −(b1 + b1 + · · ·+ bn − λ)u1 − bu2 + α

Φ2 = au1 − (a+ d1 + · · ·+ dm − λ)u2 + β

The next step is to delete the edge between nodes 1 and 2. The rest of the
network remains the same. We determine the currents for the modified network,
Φ′1 and Φ

′
2:

Φ′1 = (c1 + · · ·+ cn − λ)u1 + α

Φ′2 = (d1 + · · ·+ dm − λ)u2 + β
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Φ′1 can be written in terms of Φ1 and Φ
′
2 can be written in terms of Φ2:

Φ′1 = Φ1 + b(u1 − u2)

Φ′2 = Φ2 − a(u1 − u2)

Φ′j = Φj for j 6= 1, 2

Thus the result only depends on the u1 and u2 terms and the rest of the
network is not affected by breaking the connection between nodes 1 and 2. We
can now write the response matrices for the two networks. The response matrix
of the original network takes the form:

Λ =











λ11 λ12 . . . λ1j

λ21 λ22 . . . λ2j

...
...

. . .
...

λj1 λj2 . . . λjj











The response matrix for the new network, Λ′, is then written as:

Λ′ =















λ11 + b λ12 − b . . . λ1j

λ21 − a λ22 + a . . . λ2j

λ31 λ32 . . . λ3j

...
...

. . .
...

λj1 λj2 . . . λjj















Since we know a and b from the power series expansion, the original network
can be simplified to the modified network. Calculations can be continued with
this new network to recover the remaining edges.

3.3 Boundary Spike Formula

The derivation of the boundary spike formula for a vertex conductivity function
parallels that of the edge conductivity function. The graph before and after the
spike contraction is shown in Figure 6(a,b). Node 1 is a boundary node with
conductivity a and potential u1, and node n is an interior node with conductivity
b and potential un. Let x1 . . . xs and ux1 . . . uxs denote the conductivities and
potentials, respectively, of all other vertices connected to node n. Given the
response matrix Λ for the original graph, we wish to determine the conductivity
a and the new response matrix Λ′, and thereby reduce the problem.
We can, in fact, determine both a and b, using the power expansion for

Λ(λ) (27). We partition K as usual into A, B, C, and D. Noting that b is the
conductivity of the only vertex connected to node 1, K(1; 1) = A(1; 1) = −b,
K(1;n) = B(1; 1) = b, and K(n; 1) = C(n; 1) = a (node n is labeled as the first
interior node). All of the other entries in the first row of B and the first column
of C are 0, since node 1 is not connected to any other interior nodes. Since

14



A
A
AA

HHHH

©©
©©

¢
¢
¢¢

A
A
AA

HHHH

©©
©©

¢
¢
¢¢

d d
1
a

n
b

x1
ux1

xs
uxs

...
n
b

x1
ux1

xs
uxs

...=⇒

(a) (b)

Figure 6: Deleting a boundary sipke

we know each term in the power expansion of Λ, we know A and BC. Thus,
b = −A(1; 1). The (1;1) entry of (BC) is ab by the above discussion. Thus,
a = (BC)(1; 1)/b.

By the problem statement, (K + λ)~u = ~Φ. Writing out the nth equation of
this system for both problems,

un(−a+ λ) + u1a−
s
∑

i=1

unxi +

s
∑

i=1

uxixi = Φn = 0 (28)

unλ−
s
∑

i=1

unxi +
s
∑

i=1

uxixi = Φ
′
n (29)

Subtracting (28) from (29), we have:

Φ′n = a(un − u1) (30)

The current at node 1 of the original graph can be found from the Kirchhoff
matrix and from the response matrix:

Φ1 = (−b+ λ)u1 + bun =
∑

i

λ1iui = λ11u1 +
∑

j 6=1

λ1juj (31)

The above sums are carried out over all boundary nodes of the original graph
with the restrictions shown. Solving (31) for u1:

u1 =
b

b− λ+ λ11

un −
∑

j 6=1

λ1j

b− λ− λ11

uj (32)

We use this expression for u1 to write the currents of the new graph in terms
of un and uj . This will then yield the response matrix for the new graph. By
(30):
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Φ′n =
a(λ11 − λ)
b+ λ11 − λ

un +
∑

j 6=1

aλ1j

b+ λ11 − λ
uj (33)

Since node 1 is not connected to any other boundary node in the original
graph, the edge contraction does not change the expression for the currents
at boundary nodes k, where k 6= 1. This can be verified by writing out the
expressions for Φk and Φ

′
k using the Kirchhoff matrix. Using the response

matrix and substituting for ui, the result is:

Φ′k = Φk =
∑

i

λkiui = λk1u1 +
∑

j 6=1

λkjuj

=
b

b+ λ11 − λ
λk1un +

∑

j 6=1

(

− λk1λ1j

b+ λ11 − λ
+ λkj

)

uj (34)

Now, let J be the set of all boundary node indices excluding the index 1.
In the equations that follow, uJ refers to the vector of potentials at the nodes
in J , and Λ(J ; J) refers to the submatrix of Λ where the rows and columns are
referenced by the elements of J . Combined with the expression for Φ′1, this
result can be used to write Λ′:

Λ′
[

un
uJ

]

=

[

Φ′n
ΦJ

]

Λ′ =







a(λ11 − λ)
δ

a

δ
Λ(1; J)

b

δ
Λ(J ; 1) −1

δ
Λ(J ; 1)Λ(1; J) + Λ(J ; J)






, δ = b+ λ11 − λ

4 Eigenvalues

4.1 Finding Real Eigenvalues

The following theorem, taken from Wilkinson (page 355), is the motivation be-
hind Theorem 4.3.1.

Theorem 4.1.1 A general tridiagonal matrix can be transformed into a real
symmetric matrix.

Proof Let M be a general tri-diagonal matrix with the following entries, for
i = 1, 2, . . . , n and j = 1, 2, . . . , n− 1

mi,i = si mj+1,j = aj+1 mj,j+1 = bj+1
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where the entries above and below the main diagonal are of the same sign,
that is aibi > 0.
Then there exists a diagonal matrix, G, and its inverse defined by

g1,1 = 1 gi,i =

(

a2a3 . . . ai
b2b3 . . . bi

)
1
2

Multiplying M by G and G−1 the following results

G−1MG = T

where T is a symmetric tri-diagonal matrix with the following entries

ti,i = si tj,j+1 = tj+1,j = (aj+1bj+1)
1
2 .

4.2 The Block Analogy

This result can be applied to a matrix M with the following block form

Mi,i = Si Mj+1,j = Aj+1 Mj,j+1 = Bj+1

Let A denote the set of all matrices Aj+1 and B denote the set of all matrices
Bj+1 and S denote the set of all the matrices Si. We are assuming that all the
elements of S are symmetric and commute with all the elements of A∪B . We
are also assuming that all the elements of A and B are symmetric, positive-
definite and that all the elements of A ∪ B commute with each other. The
analogous block diagonal matrix G is defined as

G1,1 = 1 Gi,i =
(

(A2A3 . . . An)(B2B3 . . . Bn)
−1
)

1
2

Following the same steps as above,

G−1MG = T

where

Ti,i = Si Ti,i+1 = Ti+1,i = (Ai+1Bi+1)
1
2 .

4.3 Application to Vertex Conductivity Networks

We can apply a transformation similar to the one in Theorem 4.1.1 to sym-
metrize a vertex conductivity K or D matrix - where D is the interior node
sub-matrix of K defined in the discretization section. The K and D matrices are
not necessarily tri-diagonal, but have the property that the off-diagonal terms
are positive and that the zero entries are symmetric about the main diagonal.
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Theorem 4.3.1 All the eigenvalues of the K matrix of a vertex conductivity
network are real.

Proof The proof that follows is for a complete graph, for which K has no
zero entries. The generalization to other graphs follows readily by the above
observation that zeros are symmetric about the diagonal of K. With aj as the
conductivity at vertex j, the K matrix is given by:

ki,i = σi = −
n
∑

j 6=i

aj ki,j = aj for i 6= j

Since ai > 0, (a1/ai) > 0, and we can define the diagonal matrix G by

g1,1 = 1 gi,i =

(

a1

ai

)
1
2

Here we take the positive root of each radical. G−1 exists because all the
diagonal entries are positive. When we multiply K on the left by G−1 and on
the right by G, we obtain:

G−1KG = S

where

si,i = σi si,j = sj,i = (aiaj)
1
2 for i 6= j

Again we take the positive roots of each radical in the last equation - the
radical exists since ai > 0. Thus, S is symmetric, and hence has real eigenvalues.
Note that if K contained zero elements, S would remain symmetric. Since K
and S share the same eigenvalues, we conclude that the K matrix for a vertex
conductivity network has real eigenvalues.

Corollary 4.3.1 All the eigenvalues of the D matrix (interior node sub-matrix
of K) of a vertex conductivity network are real.

Proof The proof is the same as in the case of the K matrix, since the zero row
sum property was not used in the diagonalization.

The principal minors of an n × n matrix A are given by A(J ; J), where
J ⊂ {1, . . . , n}, J 6= ∅). The following lemma applies in particular to K ′ = −K
for vertex conductivity networks, but more generally to K matrices for directed
graphs (see Section 6).

Lemma 4.3.1 The determinants of the principal minors of a matrix Kn of the
following form are all nonnegative:

Kn =











σ1 + ε1 −a12 · · · −a1n

−a21 σ2 + ε2 · · · −a2n

...
...

. . .
...

−an1 −an2 · · · σn + εn











σi =
∑

j 6=i aij
aij ≥ 0
εi ≥ 0

(35)
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Proof We proceed by induction on n, where n is the size of the principal minor
being considered. For the base case n = 1, the determinant is nonnegative
since σ1 + ε1 = ε1 ≥ 0. Now assume that all principal minors of size m − 1
have nonnegative determinant, for some integer m > 1. Consider a principal
minor of size m: Km. If (σm + εm) = 0 then amj = 0 and so det Km =
0 (ie. the determinant is nonnegative). Now assume that (σm + εm) 6= 0.
Since row operations do not change the determinant, we can perform Gaussian
elimination on Km to obtain Km with the same determinant. In particular, we
add appropriate multiples of row m to rows 1 through m − 1 so that the last
entry in rows 1 through m− 1 is zero.

Km =











σ1 + ε1 −a12 · · · 0
−a21 σ2 + ε2 · · · 0
...

...
. . .

...
−am1 −am2 · · · σm + εm











(36)

The off-diagonal entries of the resulting Km are:

−aij = −aij −
ainanj
σn + εn

≤ 0 (37)

The new row sums remain nonnegative:

εi = εi +
ainε1n
σn + εn

≥ 0 (38)

The determinant of Km (and Km) is then found by a cofactor expansion
about the last column, which has only one nonzero entry. By (37) and (38),
Km({1, . . . ,m− 1}; {1, . . . ,m− 1}) is a principal minor of size m− 1, its deter-
minant is nonnegative; call it δ. Thus, detKm = detKm = (σm + εm)δ ≥ 0.

Theorem 4.3.2 The eigenvalues of a vertex conductivity K matrix are all non-
positive.

Proof Let K ′ = −K. We show that the eigenvalues of K ′ are nonnegative by
showing that K ′ is similar to a symmetric, positive semi-definite matrix under
the transformation given by Theorem 4.3.1:

G−1K ′G = S′

S′ is positive semi-definite if and only if the determinants of its principal
minors are all nonnegative. The principal minors of S ′ and K ′ are similar in
this case because G is diagonal. Hence, the determinant of each principal minor
of S′ is equal to the determinant of each principal minor of K ′. By Lemma
4.3.1, the principal minors of K ′ have nonnegative determinants. Thus, S ′ is
positive semi-definite, and its eigenvalues, which equal the eigenvalues of K ′,
are nonnegative.
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Corollary 4.3.2 The eigenvalues of the D matrix corresponding to a connected
network are all negative.

Proof Let D′ = −D. D′ is positive semi-definite by Theorem 4.3.2. To show
that D′ is positive definite, it is sufficient to show that it is nonsingular. To this
end we consider the system C~ub +D~ui = 0; i refers to the interior nodes, and
b to the boundary nodes. This system is the current conservation statement
for the interior nodes (see the discretization section). The uniqueness of the
solution to the Dirichlet problem then requires D to be invertible.1 Thus D′ is
positive definite, which means that the eigenvalues of D are all negative.

5 Recoverable Networks

5.1 Tree Graphs

In previous sections, we discussed ways to manipulate graphs in order to simplify
them so that the conductivities can be recovered. As a direct result, tree graphs
are recoverable with repeated application of the aforementioned procedures to
delete edges.
A tree graph consists of a graph with no closed paths and with all single

valence vertices designated as boundary nodes. An example of such a graph is
given in Figure 7.
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Figure 7: An example of a tree graph

Theorem 5.1.1 All tree graphs are recoverable.

Proof The following argument is for either edge or vertex conductivities. Each
spike is either a boundary spike or boundary to boundary edge connection. For
either type of connection, after removing the associated edge, the modified graph
has a boundary node where the corresponding edge is removed. The remaining
graph is still a tree graph by definition. Thus, our method can be repeated and
every conductivity can be recovered down to the case where a single boundary
node remains. At this point, all the conductivities will be known.

1The uniqueness of the Dirichlet problem solution can be proven by assuming that two

solutions exist, and then using the maximum principle on their difference, which is also a

solution. The result is that the difference between the solutions has to be zero.
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5.2 Ring Networks

Ring networks are recoverable in a similar way to which tree graphs are recov-
erable. A ring network is denoted R(r, `), where r is the number of rays and `
is the number of layers. The rays are evenly distributed around the circles with
2π
r
radians between each ray. The outer most layer consists of boundary spikes.

R(5, 2) is shown in figure 8.

Figure 8: Ring Network R(5,2)

Theorem 5.2.1 Ring networks are recoverable.

Proof The following argument is for either edge or vertex conductivities. Start-
ing with the boundary spikes, each edge can be removed using the boundary
spike formula. This yields a graph with the outermost ring consisting of all
boundary nodes. The boundary to boundary edge formula can now be applied.
The resulting graph is an R(r, ` − 1) network. The next step is to remove the
edges using the boundary spike formula again. This process continues until a
single boundary node remains. Thus, the whole graph is recoverable.

6 Non-recoverable Networks

6.1 Double Interior Spikes

By inspection and working with the K matrix generally, we found patterns to
graphs that were not recoverable. One such graph is one with two interior spikes
joined to one boundary node. We are defining an interior spike as an edge of a
graph connecting an isolated interior node to the rest of the graph.

Theorem 6.1.1 A graph that includes two interior spikes joined to one bound-
ary node is not recoverable.

Proof From the K matrix of the network, a power series expansion can be
derived. The following matrix shows the key entries in the K matrix.
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K =

































−(b+ c)− σ ∗ · · · ∗ b c ∗ · · · ∗
∗ ∗ · · · ∗ 0 0 ∗ · · · ∗
...

...
. . .

...
...

...
...
. . .

...
∗ ∗ · · · ∗ 0 0 ∗ · · · ∗
a 0 · · · 0 −a 0 0 · · · 0
a 0 · · · 0 0 −a 0 · · · 0
∗ · · · · · · ∗ 0 0 ∗ · · · ∗
...

. . .
. . .

...
...

...
...
. . .

...
∗ ∗ · · · ∗ 0 0 ∗ · · · ∗

































a is the conductivity of the single boundary node (labeled first among the
other boundary nodes) while b and c are the conductivities of the interior nodes
of the spikes (labeled first among the other interior nodes). The K matrix is
divided into four submatrices.

B =











b c ∗ · · · ∗
0 0 ∗ · · · ∗
...
...
...
. . .

...
0 0 ∗ · · · ∗











C =















a 0 · · · 0
a 0 · · · 0
∗ ∗ · · · ∗
...
...
. . .

...
∗ ∗ · · · ∗















A and D are the remaining upper left and lower right submatrices of the K
matrix. The following is a representation of the power series

Λ(λ) = λ+A−
∞
∑

k=0

B(−D)kCλ−k−1

Λ(λ) = λ+











−(b+ c)− σ ∗ · · · ∗
∗ ∗ · · · ∗
...

...
. . .

...
∗ ∗ · · · ∗











−
∞
∑

k=0











−ak+1(b+ c) + εk ∗ . . . ∗
∗ ∗ . . . ∗
...

...
. . .

...
∗ ∗ . . . ∗











λ−k−1

where σ and ε are sums that are determined by the remainder of the network,
and do not involve b and c. The network can be composed of any number of
boundary and interior nodes and edges that join them.
Since DkC has the first two rows equal, we can conclude that the conductiv-

ities b and c will always appear as a sum (b+ c) in the coefficients of the power
series. Thus, the two conductivities cannot be distinguished from one another.
Therefore, the network is not recoverable.
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6.2 An Edge Conductivity Example

An example of a non-recoverable network for the edge conductivity case is shown
in Figure 9. It consists of four interior nodes, one boundary node found in the
center of the graph, and nine edges.

Figure 9: A non-recoverable edge conductivity graph

From Theorem 3.2.2, we know that that the poles and zeroes of det Λ are
found from the eigenvalues of the K and C matrices. Since K is 5× 5, we know
that there are four non-trivial zeroes of det Λ (by non-trivial we mean all zeroes
except λ= 0, and we are including multiplicities). Since C is a 4×4 matrix, there
are four eigenvalues, none of which are zero (since C is nonsingular). Referring
to (24), Λ(λ) is fully determined by s1, . . . , s4, z1, . . . , z4. This means that there
are eight givens and nine unknowns for this network. Thus, the system in not
solvable. Therefore, the network in not recoverable.

7 Miscellaneous Leads and Ends

The following is a small collection of results, ideas, and counter-examples. We
did not have time to consider most of these questions in depth.

7.1 Directed Networks

Directed networks are networks in which the conductivity from node i to j is not
necessarily the same as from node j to i. This is difficult to conceive physically,
as the difference in conductivity is not related to the direction of the current.
Rather, the conductivity of an edge assumes one value when one writes the
current conservation equation for node i and another value when one writes a
similar equation for node j.
The Kirchhoff matrix, K, for a directed graph is asymmetric. A vertex

conductivity network is an example of a directed graph, but it is special in
that its K matrix has all off-diagonal column entries equal, and zeros symmetric
about the main diagonal. For a general directed graph, K can be written as:

K =











σ1 −a12 · · · −a1n

−a21 σ2 · · · −a2n

...
...

. . .
...

−an1 −an2 · · · σn
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The row sums of K are still zero, and the determinants of the principal
minors of K are nonnegative by Lemma 4.2.1. However, it turns out that the
eigenvalues of K for directed graphs do not have to be real, as in the following
example:

K =





4 −3 −1
−1 3 −2
−2 −2 4



 λ = eigenvalues =





0

(1/2)(11 +
√
3i)

(1/2)(11−
√
3i)





Moreover, K is not necessarily diagonable (in C):

K =





5 −2 −3
−2 6 −4
−2 −1 3



 λ =

[

0
7

]

~v =





1
1
1



 ,





2.5
−1
−1





We have not looked at recoverability criteria for these graphs with respect to
the scattering problem. The above properties of K suggest that quite different
results are possible.

7.2 Recoverable Asymmetric Double Interior Spike

In section 6.2, a network with two interior spikes connected to a boundary node
was determined to be non-recoverable for the vertex conductivity scattering
problem. However, the following network (Figure 10) is recoverable:

J
JJ

d




a

b c

d

Figure 10: A recoverable double spike arrangement

The following is the K matrix for the network.








−(b+ c) b c 0
a −a 0 0
a 0 −(a+ d) d
0 0 c −c









Using the power series expansion, we recover the conductivities as follows.
From the A matrix, we obtain the quantity (b+ c). Then from expanding BC,
we can recover the conductivity a. From BDC we can recover dc. Then by
expanding BD2C, we can recover (d+ c). Thus we can determine d and c, and
hence b. So the whole network is recoverable. This seems counterintuitive at
first because the case with two edges, two interior spikes, and one boundary
node is not recoverable, but buy adding one more interior node and edge to the
network, it is recoverable.
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7.3 The Schroedinger Equation

The continuous (time independent) Schroedinger equation for scattering off a
spatially-dependent potential q(x), at constant wavelength, is given by:

4u = qu

If we are speaking of scattering in quantum mechanics, u is the wave func-
tion that governs the scattered particle. More realistically, for scattering using
different wavelengths (designated by λ), we can write:

4u = (q − λ)u

Discretizing this equation, we have:

K1u = (q − λ)u (39)

Here, K1 is the discretization of the Laplace operator. K1 corresponds to a
network in which all the conductivities are 1; it is the same up to sign for edge
conductivities as for vertex conductivities.
Making the distinction between boundary nodes and interior nodes, we write

(39) in block form:

[

A+ λ− Iq(B;B) B
BT C + λ− Iq(I; I)

]

~u =

[

Φ
0

]

Iq is a diagonal matrix formed from the vector q, while B and I refer to the
boundary and interior nodes, respectively. As in the edge and vertex conduc-
tivity case, we can write a power expansion for the response matrix:

Λ(λ) = λ+A− Iq(B;B)−
∞
∑

k=0

B(−C + Iq(I; I))kBTλ−k−1

We assume that the network is known, which means that A, B, and C are
known. Given Λ(λ), it is desired to determine ~q, and hence Iq. Clearly, Iq(B;B)
is recovered from the λ0 term. It is not clear whether Iq(I; I) can be recovered
simply from the expansion terms, the difficulty being the surrounding B and
BT , which have the effect of selecting only a portion of (−C + Iq(I; I))k, or
summing its entries.
Boundary spike and boundary edge formulas also exist for the Schroedinger

formulation. Derivation of these formulas follows closely the derivations for the
edge and vertex conductivity cases. Only the results are summarized below.
In contracting a boundary spike, we use the response function for the original

network, Λ(λ), to derive the potentials at nodes 1 and n (see Figure 6), q1 and
qn, and the new response function, Λ

′(λ). q1 is recovered from the λ0, and qn
is recovered from λ−2:
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q1 = A(1; 1)− λ0(1; 1) = −1− λ0(1; 1)

qn = C(n;n)− λ−2(1; 1)

Λ′(λ) is obtained by writing the equations corresponding to (K1−Iq+λ)~u =
~Φ for nodes 1 and n before the contraction and for node n after the contraction.
u1 is eliminated from these equations, and the new currents are written as
functions of the new boundary potentials to give Λ′(λ):

Λ′(λ) =







(q1 + λ11 − λ)
δ

1

δ
Λ(1; J)

1

δ
Λ(J ; 1) −1

δ
Λ(J ; 1)Λ(1; J) + Λ(J ; J)






, δ = 1+q1+λ11−λ

In the above expression, J is the set of all boundary nodes excluding nodes
1 and n. In the boundary edge case (see Figure 5), q1 and q2, corresponding to
nodes 1 and 2, are recovered directly from λ0 of the power expansion:

q1 = A(1; 1)− λ0(1; 1) = −1− λ0(1; 1)

q2 = A(2; 2)− λ0(2; 2) = −1− λ0(2; 2)

Current conservation is written for boundary nodes 1 and 2 before and after
the edge deletion. These equations lead to the following new response matrix:

Λ′(λ) =











λ11 + 1 λ12 − 1 · · · λ1n

λ21 − 1 λ22 + 1 · · · λ2n

...
...

. . .
...

λn1 λn2 · · · λnn











The above boundary spike and boundary edge formulas can then be used to
recover potentials for entire graphs when at each step there is always a boundary
spike or boundary edge.
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