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The even and odd Tower of Hanoi graphs are constructed and numbered
as shown (for the 8 and 7 boundary node cases) in Figures 1 and 2.

Lemma 0.1 Given Schrödinger and conductivity networks (Γ, γ) and (Γ, q)
on a T.H. graph with 2n boundary nodes, the submatrices Λγ(1..n;n+1..2n)
and Ψq(1..n;n+ 1..2n) are nonsingular.

Sketch of Proof. Setting the potential and Neumann data on nodes v1..vn
equal to 0, processes of harmonic continuation give us potentials of 0 on
nodes vn+1..v2n.2

Corollary 0.2 Given Schrödinger and conductivity networks (Γ, γ) and (Γ, q)
on a T.H. graph with 2n boundary nodes, and potentials and Neumann data

g and p on nodes v1..vn, there are unique γ and q harmonic functions u and

w such that u |v1..vn= w |v1..vn= g with corresponding Neumann data p.

Lemma 0.3 Given Schrödinger and conductivity networks (Γ, γ) and (Γ, q)
on a T.H. graph with 2n + 1 boundary nodes, the submatrices Λγ(1..n;n +
2..2n+ 1) and Ψq(1..n;n+ 2..2n+ 1) are nonsingular.

Sketch of Proof. Setting the potential on nodes v1..vn+1 and Neumann
data on nodes v1..vn equal to 0 , processes of harmonic continuation give us
potentials of 0 on nodes (n+ 2..2n+ 1).2

Corollary 0.4 Given Schrödinger and conductivity networks (Γ, γ) and (Γ, q)
on a T.H. graph with 2n+1 boundary nodes, potentials g on nodes v1..vn+1

and Neumann data p on nodes v1..vn, there are unique γ and q harmonic

functions u and w such that u |v1..vn+1
= w |v1..vn+1

= g with corresponding

Neumann data p.
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1 Recovery of q

Let (Γ, q) be a Schrödinger network on a T.H. graph with 2n+ 1 boundary
nodes. Set the potentials on nodes v1..vn equal to 0. Set the Neumann
data equal to 0 on v1..vn−1 and 1 on vn. The potentials below the diagonal
extending to the South-East of the interior node neighboring node vn+1 are
0. The potentials on this diagonal alternate between 1 and −1. Let node
i be a node on this diagonal. The neighbors of i either have potential of 0
or are boundary nodes. Arbitrarily picking the potential at node vn+1, we
may recover the potentials on the rest of the boundary nodes, by inverting
Ψq(1..n;n+2..2n+1). This allows us to recover the value of q at i. Similarly
we may recover all the values of q on this diagonal.

Set the potential at node vn equal to 1. Set the rest of the potentials and
the Neumann data on nodes v1..vn equal to 0. Potentials below the diagonal
extending to the South-East of node vn are 0. The potentials on this diagonal
alternate between 1 and −1. Potentials above the diagonal (after picking
arbitrary potential at vn+1, and finding corresponding potentials on nodes
vn+2..v2n+1) may be determined using the Neumann data, and the boundary
potentials. Now we may recover q on this diagonal.

For the remaining diagonals a similar procedure is used, with the addition
that the known q’s must be used to determine potentials above the diagonal.

An analogous procedure is used in the even case.

2 Recovery of γ

Let (Γ, γ) be a conductivity network on a T.H. graph with 2n boundary
nodes. Set the potentials on v1..vn equal to 0, the Neumann data on vn
equal to 1, and the Neumann data on v1..vn−1 equal to 0. The potentials on
the interior nodes on or below the diagonal extending to the South-East from
vn are 0. The potential on vn+1 is nonzero, and may be found by inverting
Λγ(1..n;n+ 1..2n). From this information we may calculate γ at vn+1. Let
i be the interior node neighboring vn+1 to the South. the potential at i, and
its neighbors to the South and West is 0. The potential of i’s neighbor to
the east, vn+2 can be calculated, and is nonzero. As we know the value of
γ on vn+1, we may now calculate the value of γ at vn+2. Similarly, we may
calculate γ at vn+1..v2n. Using a symmetric argument, we may calculate γ

at v1..vn.
Set the potentials at v1..vn−1 equal to 0, the potential at vn equal to

1 and the Neumann data at v1..vn equal to 0. Let j be the interior node
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neighboring vn to the South. The potential at j is 0. Using the potential
and Neumann data at vn, and the potential and value of γ at vn+1 we may
calculate the value of γ at j. Set the potentials at v1..vn−2 equal to 0,
the potential at vn−1 equal to 1 and the Neumann data at v1..vn−1 equal
to 0. Pick arbitrary potential and Neumann data at vn and calculate the
potentials on vn+1...v2n. From the Neumann data at vn, the potentials at vn
and vn+1 and the values of γ at j and vn+1, we may calculate the potential at
j. Let k be the interior node neighboring vn−1 to the South. The potential
at k is 0. From the potential at vn−1 and j, the Neumann data at vn−1, and
γ at j, we may calculate γ at k. Similarly we may calculate the values of γ
on every interior node neighboring v1..vn. Using a symmetric argument, we
may calculate the values of γ at the rest of the interior nodes neighboring
boundary nodes.

Let (Γ, γ) be a conductivity network on a T.H. graph with 2n+1 bound-
ary nodes. Set potential on v1..vn equal to 0, the potential on vn+1 equal
to 1, and the Neumann data on v1..vn equal to 0. Calculate the potentials
on vn+2..v2n+1. Now let node i be the interior node neighboring vn+1 to
the South. The potential at i is 0. The value of γ at i can be calculated
using the Neumann data and potential at vn+1. The calculation of γ at the
remaining interior nodes neighboring boundary nodes proceeds similarly to
the even case.

Conjecture 2.1 For a conductivity network (Γ, γ) on a Tower of Hanoi

graph with an odd number of boundary nodes, the value of γ on the boundary

is not determined by Λγ.

The simplest nontrivial odd T.H. graph has three boundary nodes (see
Figure 3). Assigning conductivities a to v1 b to v2 c to v3 and d to the
interior node, the response matrix is easily calculated.

Λγ =







da
a+b+c

− d db
a+b+c

dc
a+b+c

da
a+b+c

db
a+b+c

− d dc
a+b+c

da
a+b+c

db
a+b+c

dc
a+b+c

− d
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Clearly, if we scale a b and c by a common value, Λγ will be unaffected.
Thus, a recovery of a b and c from Λγ is impossible (although we can recover
their relative magnitudes).
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