Notes on Schrödinger and conductivity networks with Tower of Hanoi graphs

Richard Oberlin

June 18, 2003

The even and odd Tower of Hanoi graphs are constructed and numbered as shown (for the 8 and 7 boundary node cases) in Figures 1 and 2.

Lemma 0.1 Given Schrödinger and conductivity networks (Γ, γ) and (Γ, q) on a T.H. graph with 2n boundary nodes, the submatrices $\Lambda_{\gamma}(1..n; n+1..2n)$ and $\Psi_q(1..n; n+1..2n)$ are nonsingular.

Sketch of Proof. Setting the potential and Neumann data on nodes $v_1..v_n$ equal to 0, processes of harmonic continuation give us potentials of 0 on nodes $v_{n+1}..v_{2n}.\square$

Corollary 0.2 Given Schrödinger and conductivity networks (Γ, γ) and (Γ, q) on a T.H. graph with 2n boundary nodes, and potentials and Neumann data g and p on nodes $v_1..v_n$, there are unique γ and q harmonic functions u and w such that $u \mid_{v_1..v_n} = w \mid_{v_1..v_n} = g$ with corresponding Neumann data p.

Lemma 0.3 Given Schrödinger and conductivity networks (Γ, γ) and (Γ, q) on a T.H. graph with 2n + 1 boundary nodes, the submatrices $\Lambda_{\gamma}(1..n; n + 2..2n + 1)$ and $\Psi_q(1..n; n + 2..2n + 1)$ are nonsingular.

Sketch of Proof. Setting the potential on nodes $v_1..v_{n+1}$ and Neumann data on nodes $v_1..v_n$ equal to 0, processes of harmonic continuation give us potentials of 0 on nodes (n + 2..2n + 1).

Corollary 0.4 Given Schrödinger and conductivity networks (Γ, γ) and (Γ, q) on a T.H. graph with 2n + 1 boundary nodes, potentials g on nodes $v_1..v_{n+1}$ and Neumann data p on nodes $v_1..v_n$, there are unique γ and q harmonic functions u and w such that $u \mid_{v_1..v_{n+1}} = w \mid_{v_1..v_{n+1}} = g$ with corresponding Neumann data p.

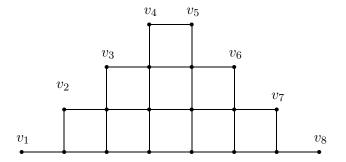


Figure 1:

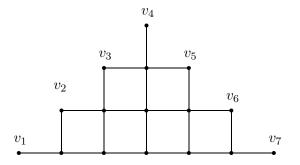


Figure 2:

1 Recovery of q

Let (Γ, q) be a Schrödinger network on a T.H. graph with 2n + 1 boundary nodes. Set the potentials on nodes $v_1..v_n$ equal to 0. Set the Neumann data equal to 0 on $v_1..v_{n-1}$ and 1 on v_n . The potentials below the diagonal extending to the South-East of the interior node neighboring node v_{n+1} are 0. The potentials on this diagonal alternate between 1 and -1. Let node *i* be a node on this diagonal. The neighbors of *i* either have potential of 0 or are boundary nodes. Arbitrarily picking the potential at node v_{n+1} , we may recover the potentials on the rest of the boundary nodes, by inverting $\Psi_q(1..n; n+2..2n+1)$. This allows us to recover the value of *q* at *i*. Similarly we may recover all the values of *q* on this diagonal.

Set the potential at node v_n equal to 1. Set the rest of the potentials and the Neumann data on nodes $v_1..v_n$ equal to 0. Potentials below the diagonal extending to the South-East of node v_n are 0. The potentials on this diagonal alternate between 1 and -1. Potentials above the diagonal (after picking arbitrary potential at v_{n+1} , and finding corresponding potentials on nodes $v_{n+2}..v_{2n+1}$) may be determined using the Neumann data, and the boundary potentials. Now we may recover q on this diagonal.

For the remaining diagonals a similar procedure is used, with the addition that the known q's must be used to determine potentials above the diagonal.

An analogous procedure is used in the even case.

2 Recovery of γ

Let (Γ, γ) be a conductivity network on a T.H. graph with 2n boundary nodes. Set the potentials on $v_1..v_n$ equal to 0, the Neumann data on v_n equal to 1, and the Neumann data on $v_1..v_{n-1}$ equal to 0. The potentials on the interior nodes on or below the diagonal extending to the South-East from v_n are 0. The potential on v_{n+1} is nonzero, and may be found by inverting $\Lambda_{\gamma}(1..n; n + 1..2n)$. From this information we may calculate γ at v_{n+1} . Let *i* be the interior node neighboring v_{n+1} to the South. the potential at *i*, and its neighbors to the South and West is 0. The potential of *i*'s neighbor to the east, v_{n+2} can be calculated, and is nonzero. As we know the value of γ on v_{n+1} , we may now calculate the value of γ at v_{n+2} . Similarly, we may calculate γ at $v_{n+1}..v_{2n}$. Using a symmetric argument, we may calculate γ at $v_1..v_n$.

Set the potentials at $v_1..v_{n-1}$ equal to 0, the potential at v_n equal to 1 and the Neumann data at $v_1..v_n$ equal to 0. Let j be the interior node

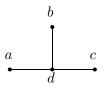


Figure 3:

neighboring v_n to the South. The potential at j is 0. Using the potential and Neumann data at v_n , and the potential and value of γ at v_{n+1} we may calculate the value of γ at j. Set the potentials at $v_1..v_{n-2}$ equal to 0, the potential at v_{n-1} equal to 1 and the Neumann data at $v_1..v_{n-1}$ equal to 0. Pick arbitrary potential and Neumann data at v_n and calculate the potentials on $v_{n+1}...v_{2n}$. From the Neumann data at v_n , the potentials at v_n and v_{n+1} and the values of γ at j and v_{n+1} , we may calculate the potential at j. Let k be the interior node neighboring v_{n-1} to the South. The potential at k is 0. From the potential at v_{n-1} and j, the Neumann data at v_{n-1} , and γ at j, we may calculate γ at k. Similarly we may calculate the values of γ on every interior node neighboring $v_1..v_n$. Using a symmetric argument, we may calculate the values of γ at the rest of the interior nodes neighboring boundary nodes.

Let (Γ, γ) be a conductivity network on a T.H. graph with 2n+1 boundary nodes. Set potential on $v_1..v_n$ equal to 0, the potential on v_{n+1} equal to 1, and the Neumann data on $v_1..v_n$ equal to 0. Calculate the potentials on $v_{n+2}..v_{2n+1}$. Now let node *i* be the interior node neighboring v_{n+1} to the South. The potential at *i* is 0. The value of γ at *i* can be calculated using the Neumann data and potential at v_{n+1} . The calculation of γ at the remaining interior nodes neighboring boundary nodes proceeds similarly to the even case.

Conjecture 2.1 For a conductivity network (Γ, γ) on a Tower of Hanoi graph with an odd number of boundary nodes, the value of γ on the boundary is not determined by Λ_{γ} .

The simplest nontrivial odd T.H. graph has three boundary nodes (see Figure 3). Assigning conductivities a to v_1 b to v_2 c to v_3 and d to the interior node, the response matrix is easily calculated.

$$\Lambda_{\gamma} = \begin{bmatrix} \frac{da}{a+b+c} - d & \frac{db}{a+b+c} & \frac{dc}{a+b+c} \\ \frac{da}{a+b+c} & \frac{db}{a+b+c} - d & \frac{dc}{a+b+c} \\ \frac{da}{a+b+c} & \frac{db}{a+b+c} & \frac{dc}{a+b+c} - d \end{bmatrix}$$

Clearly, if we scale $a \ b$ and c by a common value, Λ_{γ} will be unaffected. Thus, a recovery of $a \ b$ and c from Λ_{γ} is impossible (although we can recover their relative magnitudes).