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Abstract. We study the properties of the discrete layered case of re-
sistor networks. We will describe the relationship between rotationally
invariant systems and circulant matrices, provide a bounding of the
eigenvalues of the response matrix, and characterize the components of
the layered Kirchhoff matrix.

1. Introduction

A circular network Ω is comprised of m circles and n rays. The mn + 1
nodes of Ω are points in the plane: a center node p(0, 0) and radial nodes

p(i, 2πjn ), for i ∈ (0 . . .m − 1) and j ∈ (0 . . . n). Boundary nodes ∂Ω are

defined p(m, 2πjn ) for j ∈ (0 . . . n); interior nodes are int Ω = Ω − ∂Ω.The
function γ defined on the edges of Ω is called its conductivity. A network
is considered γ-harmonic if for each node p ∈ Ω, the sum of currents out of
that node is 0.

Figure 1. D(7, 15) Spikes case (left) and D(6, 13) Edges
case (right)

In the layered case we have a circular network where the conductivities
are constant on layers. In the continuous case, a layer x0 is defined as the
set of points {(r, θ) : r = x0}. In the discrete case we can use a very similar
definition based on the way the nodes are arranged in the plane. A single
layer consists either of the set of edges between nodes with the same radii
or the set of edges between the two sets of nodes with the two distinct radii
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r1 and r2. We denote a layered network D(l, n), where l is the number of
layers and n is the number of rays in the network.
We denote conductivities on layers by [σ1, σ2, . . . , σl], where σ1 is the

innermost layer. Layered networks can be divided into two types: those
with an odd number of layers (spikes case), and those with an even number
of layers (edges case). Since any rotation of a layered network by θ = 2πi

n
gives us the same network, we can say that such networks are rotationally
invariant.
The (mn + 1) × (mn + 1) Kirchhoff Matrix K takes potentials on the

network to currents on the network, and is defined by:

K(i, j) =















−γ(i,j) i 6= j

∑

i6=j

(γ(i,j)) i = j

The Kirchhoff matrix can be block partitioned in the following manner:

K =

A B

BT C

∂Ω int Ω

∂Ω

int Ω

Figure 2. Block structure of Kirchhoff Matrix

For each conductivity, γ on Ω, the linear map Λ is defined (Λ(φ))p = Iu(p).
The map Λ which takes potentials at the boundary of Λ to currents through
the boundary nodes of Ω at a point p is called the Dirichlet-to-Neumann
map. From the block structure of the Kirchhoff matrix we can use the
Schur Complement to derive the Dirichlet-to-Neumann response matrix, Λ.

Λ = A−BC−1BT

It should be noted that the Kirchhoff matrix is symmetric and since the
resulting Λ matrix is itself a Kirchhoff matrix, the response matrix is also
symmetric.
In [1], David Ingerman addressed the layered case and studied the rela-

tionship between the set of eigenvalues and the set of conductivities. In this
paper we will characterize the layered case further and explore its relation-
ship with rotationally invariant systems.
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2. Circulant matrices

Definition 2.1. If a vector ~x has the components (x1, x2, . . . , xn), the nth
componentwise rotation rotn ~x consists of those components shifted n places

to the left where components that fall off the end are wrapped around to the

beginning.

rot1 ~x = (xn, x1, x2, . . . , xn−1)

Definition 2.2. A n× n circulant matrix M is a matrix parameterized by

its first row j in such a way that any row in the matrix is simply the jth

componentwise rotation of the first.

M =













x0 xn−1 . . x1
x1 x0 xn−1 . x2
. x1 x0 . .

. . . . xn−1
xn−1 xn−2 . x1 x0













We can think of a circulant matrix as the matrix equivalent of a rota-
tionally invariant system; clearly any matrix map M from Rn to Rn such
that

M(~x) = ~y ⇒M(rotj ~x) = rotj ~y

is circulant. Furthermore, matrices which have circulant blocks correspond
to systems that are rotationally invariant on layers.
Circulant matrices have a special relationship with the discrete Fourier

transform, which we can show. We define the matrix Q as

(1) Q =













1 1 1 . 1
1 ω ω2 . ωn−1

1 ω2 ω4 . ω2(n−1)

. . . . .

1 ωn−1 ω2(n−1) . ω(n−1)
2













, ω = e2πi/n

Q is the the matrix used in the discrete Fourier transform (DFT). The DFT
of a vector ~x is defined as

F(~x) =
1

n
Q̄~x

= Q−1~x(2)

In fact, there is an equivalence relationship between the factorizationQEQ−1

and circulant matrices, which we can now show.

Theorem 2.3. The matrix R is circulant and can be parameterized by a

single row if and only if R can be diagonalized by Q.

Proof. First, assume

R = QEQ−1

Q−1R = EQ−1
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We multiply by a vector, ~v

Q−1R~v = EQ−1~v

From (2),

Q−1(R~v) = F(R~v)

EQ−1~v = EF(~v)

Define ~u to be the vector formed by the diagonal entries of the matrix E.
Let ~x•~y represent the componentwise product, (x1y1, x2y2, . . . , xnyn). Then

EF(~v) = ~u • F(~v)

Note that ~u is the Discrete Fourier Transform of some vector ~q = F−1(~u).

~u • F(~v) = F(~q) • F(~v)

We note that the Fourier transform takes convolution to multiplication,
hence

F(~q ◦ ~v) = F(~q) • F(~v)

The convolution ~q ◦ ~v is defined as

(~q ◦ ~v)k =
n−1
∑

j=1

qk−jvj

where for (k−j) ≤ 0 we let qk−j = qn−|k−j|. This can be expressed in matrix
form as X~v, where

X =













q0 qn−1 . . q1
q1 q0 qn−1 . q2
. q1 q0 . .

. . . . qn−1
qn−1 qn−2 . q1 q0













The form of X is precisely circulant. Bringing it all together,

F(R~v) = F(~q ◦ ~v)

R~v = X~v

so the response matrixR is circulant and can be parameterized by the vector
~q which is the first row of R.
We prove the converse by assuming that the we are given a circulant ma-

trix R. We know that circulant matrices are convolution matrices, therefore

R~v = ~q ◦ ~v

where ~q is a row of R and ~v is some vector. We take the Fourier transform
of both sides of the equation and once again note that the Fourier transform
takes convolution to multiplication.

F(R~v) = F(~q ◦ ~v)

F(~q ◦ ~v) = F(~q) • F(~v)

F(R~v) = F(~q) • F(~v)(3)
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Letting F(~q) = ~u, we express the Fourier transform in matrix form:

F(~q) • F(~v) = ~u •Q−1~v

Since the componentwise product on the right can be expressed by placing
the elements of ~u down the diagonal of a matrix, E,

F(~q) • F(~v) = EQ−1~v

Substituting back into (3),

Q−1R~v = EQ−1~v

R~v = QEQ−1

Since this is true for all ~v, we are done. ¤

Since Q diagonalizes all m×m circulant matrices, Q must be the matrix
of eigenvectors. It follows that all m×m circulant matrices have the same
eigenvectors.

Corollary 2.4. The vector of eigenvalues of a circulant matrix R is the

Discrete Fourier Transform of its parameterization ~q.

Proof. Since Q is the matrix of eigenvectors. The matrix E of the diagonal-
iztion QEQ−1 must be the diagonal matrix of eigenvalues. We know that
vector of representation of E is ~u which in turn is F(~q). It follows then
that the eigenvalues of any circulant matrix are the DFT of its parameteri-
zation. ¤

Because the response matrix Λ is rotationally invariant, we expect it to
be a circulant matrix. In [1], Ingerman showed that the eigenvectors of the
response matrix Λ in the layered case are of the form

(4) eikθ|∂n , k ∈ Z

Λ is known to be symmetric; symmetric real matrices have real eigenvalues.
The eigenvectors can be chosen orthonormal, hence by the Spectral Theorem
we can diagonalize Λ by the factorization Λ = QEQ−1, where the columns
of Q are the eigenvectors, E is the matrix whose diagonal entries comprise
the eigenvalues, and Q−1 = QT . Hence,

(5) Q =













1 1 1 . 1

1 e2πi/n e4πi/n . e(n−1)πi/n

1 e4πi/n e6πi/n . e2(n−1)πi/n

. . . . .

1 e(n−1)πi/n e2(n−1)πi/n . e(n−1)
2πi/n













Since this is precisely the matrix Q defined above, we have our proof.
In the special case of the response matrix Λ, not only is it circulant,

but symmetric as well. In the circulant matrix described above, this forces
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x1 = xn−1, x2 = xn−2, and so forth. Hence,

Λ =













x0 x1 x2 . . x2 x1
x1 x0 x1 x2 . . x2
x2 x1 x0 x1 x2 . .

. . . . . . x1
x1 x2 . . . x1 x0













We call a matrix of this form circulant symmetric and note that it can be
completely parameterized by the first

[

n
2

]

+ 1 entries of the first row.
From observation we can generalize the stucture of the components of the

Kirchhoff Matrix, A, B, and C.

2.1. A (boundary-boundary edges). In the spikes case, there are no
boundary-boundary edges and the only non-zero entries of A are the diag-
onal entries which are equal to the sum of the other entries of that row in
the Kirchhoff matrix. The structure of B shown below implies that these
entries must be σl. In the edges case, each boundary node is connected to
exactly two other boundary nodes. Numbering the nodes in an appropriate
fashion, the resulting matrix is circulant:

A =















(Σ) −σl 0 . . . −σl
−σl (Σ) −σl . . . 0
0 −σl (Σ) . . . 0
...

...
...

. . .
...

−σl 0 0 . . . (Σ)















, where Σ = 2σl + σl−1

2.2. B (boundary-interior connections). In both the spikes and the
edges case, B represents the single connection from a given boundary node
to the nearest interior node. Let β represent the conductivity on this con-
nection; in the spikes case β = σl and in the edges case β = σl−1. Assuming
the nodes are numbered in the appropriate order, B has following form:

B =



 −βI 0





2.3. C (interior-interior connections). C represents data for l−1 layers
of a given network. We can partition C into layer blocks. On a given layer,
each node is connected to two other nodes and forms a circulant pattern
similar to A in the edges case. The radial connections between layers form
a diagonal pattern much like B. Thus, the resulting matrix takes on a block
form, except for the final row and column which represent the connections
to the innermost layer from a single center node. The structure of C can be
described as block circulant:
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. . .

...

C =

0 0

0

0

00

1

2

3

4

1234 Layer

−σ1

−
σ1

−σ5I

−σ5I

−σ3I

−σ3I

C3

C2

C1

Σ

Figure 3. Block structure of C

where each n× n circulant block Cr has the circulant form:

Cr(i, j) =







−σ2r |i− j| = 1
Σ i = j

0 otherwise

and Σ is equal to the sum of entries of a given row.

3. Circulant matrices and the Schur Complement

3.1. Generalizing the Schur Complement. Since Λ is circulant and A
is circulant, BC−1BT is circulant as well. Denoting the n × n principle
submatrix of C−1 by (C−1)0, we have

BC−1BT =



 −βI 0















. . .

(C−1)0 . . .

...
...

. . .



























−βI

0

















= β2(C−1)0(6)

Hence, (C−1)0 is circulant.

3.2. C Inverse. The layer block pattern of C is preserved in C−1. In fact
each of the n×n layer blocks is circulant with the exception of those blocks
which are single rows or columns. These blocks are constant. It will be
proven that C−1 takes the block form shown.
where Ci is some circulant matrix and k is some constant vector.

Theorem 3.1. C−1 of a network Ω is the Green’s function that maps a

current source at one interior node to the resulting potentials on int Ω,
holding potentials on the boundary to be 0.
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. . .

...

C−1 =

k4 k3

C7

k3

k4C3

1

2

3

4

1234 Layer

k2

k2

C2

C4

C8

C6

C1

C5

C9

k1

Proof. We begin with the block form of the Kirchhoff matrix and hold the
potential on the boundary constant at 0.

[

A B
BT C

] [

0
φ

]

=

[

I∂
Iint

]

Cφ = Iint

φ = C−1Iint

¤

Theorem 3.2. C−1 is block circulant.

Proof. For a given unit current source at a interior node p, the resulting
potential on the set of interior nodes is the pth column of C−1. The pth

column can be subdivided in a block layer fashion as shown. This is similar
to the block layer partioning of C.

(C−1)p =















φn
φn−1
...
φ2
φ1















Take the potential on a layer l as a result of a unit source at a node p to
be φl as given. Given the rotational symmetry of the network an unit source
at the next node φ′l would shift (φ′l = rot1 φl) the resulting potentials on
the layer:

φl =















x1
x2
...

xn−1
xn















, φ′l =















xn
x1
x2
...

xn−1
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As we move through each node of a particular layer’s subset of the inte-
rior nodes, that layer block completes a full rotational sequence forming a
circulant matrix. This occurs in each layer block of C−1, therefore C−1 is
block circulant.

¤

4. Bounding of the eigenvalues

We denote the eigenvalues of a matrix [e1, e2, . . . , en]. The following will
enable us to present a bounding argument for the eigenvalues of Λ:

Theorem 4.1. An eigenvalue ek of Λ is equal to the the difference of the

corresponding eigenvalues of A and k2(C−1)0.

(7) (ek)Λ = (ek)A − k2(ek)(C−1)0

Proof. Because Λ, A, and k2(C−1)0 are all n × n circulant matrices, they
share the same matrix of eigenvectors, F. The result follows. ¤

Now, we can derive some useful results about the pieces of the Schur
complement which will help us reconstruct properties of the response matrix.
Letting β be defined as above, β = σl in the spikes case and β = σl−1 in the
edges case, we have the following:

Theorem 4.2. The eigenvalues ek of (C−1)0 are bounded by 0 < ek ≤
1
β

Proof. To prove that ek > 0, we need the fact C is positive definite. From
[3] we know that all Kirchhoff matrices are positive definite. Lemma 3.1 of
[3] shows that any submatrix K(P ;P ) such that P is a proper subset of the
vertices of a given graph Γ is positive definite. Since the set of interior nodes
of the graph Γ which form C is a proper subset, it follows that C is positive
definite. This implies that C−1 is positive definite. One of the conditions
that C−1 is positive definite is that each of the principle submatrices is
positive definite, so (C−1)0 is positive definite, and hence ek > 0.
In the spikes case, the structure of A given above shows that its eigen-

values are identically β = σl. Since Λ is positive semidefinite, we have

0 ≤ β − β2ek = β(1− βek)

since β > 0,

ek ≤
1

β

For the edges case, we begin by removing the outside layer. Because this
layer consists entirely of boundary-boundary connections, the only com-
ponent of the Kirchhoff matrix that is affected is A; B and C are un-
changed. We still have a valid Kirchhoff matrix, so the Schur complement
A − BC−1BT still produces a valid positive semidefinite response matrix
Λ′. Thus, by the argument above the eigenvalues ek of (C

−1)0 are bounded
above by (β = σl−1)

−1.
¤
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Figure 4. Eigenvalue spread with σl ≡ 1

0 1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of layers

E
ig

en
va

lu
es

The eigenvalue spread shown in figure 4 suggests the following, which we
can prove.

Theorem 4.3. The eigenvalues ek of the response matrix Λ in the layered

case are bounded by

0 ≤ ek ≤ σl

in the spikes case and by

0 ≤ ek ≤ 4σl + σl−1

in the edges case.

Proof. ek ≥ 0 because Λ is a Kirchhoff matrix, and all Kirchhoff matrices
are positive semidefinite [3].
In the spikes case, the eigenvalues of A are exactly equal to σl. Since the

eigenvalues of BC−1BT are between 0 and σl, by the difference formula for
eigenvalues ek is bounded by 0 ≤ ek ≤ σl.
In the edges case, the eigenvalues of A can be found by taking the Fourier

transform of its first row, ~q. Since ~q is of the form

~q =
[

(2σl + σl−1) −σl 0 0 . . . 0 −σl
]

the kth component of the Discrete Fourier Transform of ~q will be

ek = [F(~q)]k = (2σl + σl−1)− e
2π(k−1)i

n σl − e
2π(k−1)i(n−1)

n σl,

k ∈ [1, 2, . . . , n]
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By the triangle inequality,

ek ≤ |(2σl + σl−1)|+ |e
2π(k−1)i/nσl|+ |e

2π(k−1)i(n−1)/nσl|

ek ≤ 4σl + σl−1

¤
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