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Abstract. This paper will examine a probablistic analog of specific

resistor networks. Transitional probabilities, probabilities which char-

acterize movement from one node to the next, will replace the conduc-

tivities calculated in traditional network problems. While less rigorous

mathematically, the probablistic interpretations present complexity in

requiring that we consider two probabilities per edge, rather than one

conductivity.

1. Introduction

Studying resistor networks probablistically requires different representa-
tions of data. Frequently, we will find that the data does not line up sym-
metrically as it does in regular resistor networks, which tends to limit the
amount of information that we can recover from the boundary. It is impor-
tant to note that in these representations particles on the boundary cannot
reenter the system. Boundary nodes are considered absorbing nodes.
Moving from one interior node to the next, moving from an interior node

to a boundary node, and staying at an interior node (i.e. no movement)
are the only allowed movements. The probabilities of these movements are
what we will attempt to recover based on the information from the absorbing
nodes.

2. Data Abstractions

Assume that our network contains u total nodes, where u = m+n and m

and n are boundary and interior nodes respectively. We can then construct a
u×u transitional matrix, which we call P . The entries in P , pij , represent the
probability that a particle will move directly from node i to node j. Ordering
P so that the rows and columns representing boundary information preceed
those containing interior information, we construct a matrix in the form:

P =

[

I 0
R Q

]

.

I represents the m×m identity matrix, 0 is the m×n matrix whose entries are
all zeros, R is the n×m matrix representing the probabilities of moving from
an interior node to an exterior node, and Q is the n× n matrix containing
the probabilities of moving from one interior node to the next.
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¿From the transition matrix P , we would like to derive a matrix B. The
entries in B, bij , represent the probability that a particle which enters the
system at node i will be absorbed by node j. We begin by defining a new
matrix, N , whose entries nij represent the expectation that a particle that
starts at i will be absorbed by a node adjacent to j. The matrix N , known
as the fundamental matrix, is an infinite sum defined by (I − Q)−1, where
I is the n × n identity matrix. The absorption probabilites contained in B

are obtained from N by the following

B = (I −Q)−1R.

The absorbing probabilites take into calculation the probabilities of moving
from an interior node to an external node weighted by the expectation for
the non-absorbing states. [?]

3. Inverse Problem

The inverse problem requires that we use the information contained in B

to recover the entries in P . Given B, we must show that a unique solution
for P exists. We do this by showing that certain systems of equations are
solvable in terms of the unknown probabilities pij .

4. Example One

Once a particle reaches the boundary, it is absorbed and ceases to move,
therefore, networks with boundary to boundary connections are not very
interesting. The first network that I considered was the following

12

6

3 4

5

This network has four boundary nodes and two interior nodes. We can
easily construct the transition matrix from this information.

P =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
p51 p52 0 0 p55 p56

0 0 p63 p64 p65 p66

















.

We can now proceed to define the following matrices:

R =

[

p51 p52 0 0
0 0 p63 p64

]

(I −Q) =

[

1− p55 −p56

−p65 1− p66

]
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B =

[

b51 b52 b53 b54

b61 b62 b63 b64

]

.

As stated earlier, B = NR and N = (I−Q)−1, so R = (I−Q)B. Using this
equation for R and the matrix above, we can define the following system of
equations

p51 = b51 − b51p55 − b61p56(4.1)

p52 = b52 − b52p55 − b62p56(4.2)

0 = b53 − b53p55 − b63p56(4.3)

0 = b54 − b54p55 − b64p56(4.4)

0 = b61 − b51p65 − b61p66(4.5)

0 = b62 − b52p65 − b62p66(4.6)

p63 = b63 − b53p65 − b63p66(4.7)

p64 = b64 − b54p65 − b64p66(4.8)

Writing these equations in the form Ax = b, we find

(4.9)

























1 0 0 0 b51 b61 0 0
0 1 0 0 b52 b62 0 0
0 0 0 0 b53 b63 0 0
0 0 0 0 b54 b64 0 0
0 0 0 0 0 0 b51 b61

0 0 0 0 0 0 b52 b62

0 0 1 0 0 0 b53 b63

0 0 0 1 0 0 b54 b64

















































p51

p52

p63

p64

p55

p56

p65

p66

























=

























b51

b52

b53

b54

b61

b62

b63

b64

























Using our probabilistic representation, however, we must consider two
additional equations. The sum of the transition probabilities for each node
must add up to one, therefore, we have the following

p51 + p52 + p55 + p56 = 1

p63 + p64 + P65 + p66 = 1

Using these systems of equations, we can begin to characterize the behavior
of this network.
If we assume that we are given certain conditions, delineated by the B

matrix, we will find certain restrictions on the transitional probabilities.
Let the absorbing probability for any one node be zero, say b51 = 0, and

all other absorbing probabilities lie strictly between zero and one. From the
equations, we find

p66b61 = b61 ⇒ b61 = 0,

since if b61 were not zero, then p66 would have to equal 1. We know that
this is not so, because none of the other absorbing probabilities are zero,
which would be a necessary result. Therefore, saying that b5i = 0, we can
say that b6i = 0 as well.



4 CARLA M. PELLICANO

Using this information and the equation p51+p56b61 = 0, we can conclude
that p51 = 0. Essentially, if the absorption probability for a node is zero,
then the transition probability to that node must also be zero.
Using similar logic, we can make the following statements:

if b51 = b52 = 0, then p51 = p52 = 0 and p55 + p56 = 1
if b51 = b53 = 0, then p51 = p63 = 0
if all bij = 0, then p55 + p66 = 1, p65 + p66 = 1, and all other pij = 0.
The general case, or the case in which the absorptions probabilities, 0 <

bij < 1 requires that we look at subdeterminants to determine whether or
not we have a unique solution. Exchanging a few of the rows in our system,
we get the form

























1 0 0 0 b51 b61 0 0
0 1 0 0 b52 b62 0 0
0 0 1 0 0 0 b53 b63

0 0 0 1 0 0 b54 b64

0 0 0 0 b53 b63 0 0
0 0 0 0 b54 b64 0 0
0 0 0 0 0 0 b51 b61

0 0 0 0 0 0 b52 b62

















































p51

p52

p63

p64

p55

p56

p65

p66

























=

























b51

b52

b63

b64

b53

b54

b61

b62

























We want to look more closely at the subdeterminants
∣

∣

∣

∣

b53 b63

b54 b64

∣

∣

∣

∣

and

∣

∣

∣

∣

b51 b61

b52 b62

∣

∣

∣

∣

If we write each of the terms from the B matrix in terms of transition and
fundamental probabilities, we find

[

n11 n12

n21 n22

] [

0 0
p63 p64

]

=

[

b53 b54

b63 b64

]

(4.10)

=

[

p63n12 p64n12

p63n22 p64n22

]

.(4.11)

We find quickly, that our equations are not linearly independent and that
our determinants will always be zero. We can, however, define a parameter-
ization for our solutions. We have from (4.4) and (4.5) that

b53p55 + b63p56 = b53

b51p65 + b61p66 = b61.

Say that p55 and p66 equal x and y respectively. We can then say that

(4.12) p56 =
b53 − b53x

b63

(4.13) p65 =
b61 − b61y

b61

.
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Further, we can define the parameterization that for 0 < x < 1 and 0 < y < 1

(4.14) p56 =
b53(1− x)

b63

(4.15) p65 =
b61(1− y)

b51

.

We now have a parameterization in terms of the static probabilities of stay-
ing at a node. This parameterization characterizes the least amount of
information necessary for recovery.

5. Example Two

The next example that I considered was the following structure containing
three interior nodes and four boundary nodes.

1

7

2

3 4

5

6

The transition matrix is

P =





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
p51 p52 0 0 p55 p56 p57

0 0 p63 0 p65 p66 p67

0 0 0 p74 p75 p76 p77





















We can also define the following matrices:

R =





p51 p52 0 0
0 0 p63 0
0 0 0 p74





(I −Q) =





1− p55 −p56 −p57

−p65 1− p66 −p67

−p75 −p76 1− p77





B =





b51 b52 b53 b54

b61 b62 b63 b64

b71 b72 b73 b74
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Using these matrices and the equation R = (I − Q)B, we can obtain the
following useful equations

b51 − b51p55 − b61p56 − b71p57 = p51(5.1)

b52 − b52p55 − b62p56 − b72p57 = p52(5.2)

b53 − b53p55 − b63p56 − b73p57 = 0(5.3)

b54 − b54p55 − b64p56 − b74p57 = 0(5.4)

−b51p65 + b61 − b61p66 − b71p67 = 0(5.5)

−b52p65 + b62 − b62p66 − b72p67 = 0(5.6)

−b53p65 + b63 − b63p66 − b73p67 = p63(5.7)

−b54p65 + b64 − b64p66 − b74p67 = 0(5.8)

−b51p75 − b61p76 + b71 − b71p77 = 0(5.9)

−b52p75 − b62p76 + b72 − b72p77 = 0(5.10)

−b53p75 − b63p76 + b73 − b73p77 = 0(5.11)

−b54p75 − b64p76 + b74 − b74p77 = p74(5.12)

Also, we have the following equations

p51 + p52 + p55 + p56 + p57 = 1(5.13)

p63 + p65 + p66 + p67 = 1(5.14)

p74 + p75 + p76 + p77 = 1(5.15)

Again, writing the equations in matrix form, we obtain the following
(5.16)


















































1 0 0 0 b51 b61 b71 0 0 0 0 0 0
0 1 0 0 b52 b62 b72 0 0 0 0 0 0
0 0 0 0 b53 b63 b73 0 0 0 0 0 0
0 0 0 0 b54 b64 b74 0 0 0 0 0 0
0 0 0 0 0 0 0 b51 b61 b71 0 0 0
0 0 0 0 0 0 0 b52 b62 b72 0 0 0
0 0 1 0 0 0 0 b53 b63 b73 0 0 0
0 0 0 0 0 0 0 b54 b64 b74 0 0 0
0 0 0 0 0 0 0 0 0 0 b51 b61 b71

0 0 0 0 0 0 0 0 0 0 b52 b62 b72

0 0 0 0 0 0 0 0 0 0 b53 b63 b73

0 0 0 1 0 0 0 0 0 0 b54 b64 b74

1 1 0 0 1 1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0 1 1 1





























































































p51

p51

p63

p74

p55

p56

p57

p65

p66

p67

p75

p76

p77











































=



















































b51

b52

b53

b54

b61

b62

b63

b64

b71

b72

b73

b74

1
1
1



















































Again, we can examine specific cases, but we will not find much useful
information from doing so. Using row reduction, we find that the last three
rows are actually absorbed in our boundary considerations. We obtain the
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following,
(5.17)




























1 0 0 0 a1,5 a1,6 a1,7 0 0 0 0 0 0
0 1 0 0 b5,3 b6,3 b7,3 0 0 0 0 0 0
0 0 0 0 b5,4 b6,4 b7,4 0 0 0 0 0 0
0 0 0 0 0 0 0 b5,2 b6,2 b7,2 0 0 0
0 0 0 0 0 0 0 a5,8 a5,9 a5,10 0 0 0
0 0 0 0 0 0 0 b5,4 b6,4 b7,4 0 0 0
0 0 1 0 0 0 0 0 0 0 b5,2 b6,2 b7,2

0 0 0 0 0 0 0 0 0 0 b5,3 b6,3 b7,3

0 0 0 1 0 0 0 0 0 0 a9,11 a9,12 a9,13





























Where ai,j are the following,

a1,5 = b5,1 + b5,2 − 1, a1,6 = b6,1 + b6,2 − 1, a1,7 = b7,1 + b7,2 − 1

a5,8 = b5,3 − 1, a5,9 = b6,3 − 1, a5,10 = b7,3 − 1,

a9,11 = b5,4 − 1, a9,12 = b6,4 − 1, a9,13 = b7,4 − 1.

Our new matrix is not invertible; we have four free variables. Once again,
we can obtain a parameterization for our solutions, but we cannot actually
obtain solutions. It is clear, that we need more than just the boundary
information to determine the transitional probabilities for a network with
this geometry.


