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1 Introduction

This paper stems from an observation that all of the methods of Curtis and
Morrow in [1] rely on the representation of a circular planar graph in the disc.
Traditional graph theory, on the other hand, has used a set-theoretic construc-
tion which doesn’t say anything about how to represent the graph. There is
not an immediately obvious way, given an abstract circular planar graph, to
represent it in the disc, and so the question becomes to what degree the prior
results come from graph-theoretic properties. This paper shows that there is,
in some sense, a natural way of representing a circular planar graph.
The idea is that we regard the graph as an electrical network, assigning

positive conductivities to each edge. We then apply a potential to each of the
boundary vertices, and we will thus induce a potential at each of the interior
vertices. If we regard the potential as a coordinate, applying this procedure once
for the x-coordinate and once for the y-coordinate will give, for each node, a
point in the plane. Since the conductivities are real-valued, we can use complex
potentials, with the properties developed in section 3 of this paper, and solve
only one linear algebra problem.
This idea is similar to one developed by Tutte ([2], [3]) for what he calls

”nodally 3-connected non-separable graphs,” and my results could be, to a cer-
tain degree, derived from his, but his terminology is often obscure and we present
here an independent and, we hope, clearer derivation.
The major theorem of this paper is that, if the boundary potentials are

coordinates of points that lie on the boundary of a strictly convex planar region,
and are in the right order along that region, then the interior potentials will
give you a natural representation for a large class of graphs. The critical graphs
defined by Curtis and Morrow [1] form a proper subset of this collection.
We then go on to prove a necessary (but not sufficient) condition on the order

of boundary nodes to give a representation in the disc. This condition is satisfied
by all graphs which can be represented in the disc, and by all representations
in any strictly convex planar region.
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2 Definitions

Definition 2.1 a graph with boundary is a triple (V,E, ∂V ) where V denotes
the set of vertices, E denotes the set of edges, and ∂V is a nonempty subset
of V which we call the set of boundary vertices. In this paper we shall refer to
graphs with boundaries as simply graphs for simplicity.

Definition 2.2 a subgraph G′ = (V ′, E′, ∂V ′) of a graph G = (V,E, ∂V ) satis-
fies the following properties

• (1) V ′ ⊂ V

• (2) E′ ⊂ E, e is an edge of E′ if and only if the ends p and q of e are
both in V ′.

• (3) p ∈ ∂V ′ iff p ∈ ∂V or p has a neighbor vertex q that is not in V ′.

With these definitions, we consider different types of graphs.

Definition 2.3 a path p→ q, for p, q ∈ V , is a finite sequence r0, r1, . . . rk−1, rk,
where for all i, ri ∈ V , ri and ri+1 are joined by an edge in E, p = r0, and
q = rk.

Definition 2.4 a connected graph G = (V,E, ∂V ) is a graph such that, for all
p, q ∈ V , there is a path p→ q.

Definition 2.5 a linear graph is a connected graph with two boundary vertices
of valence 1, and every interior vertex has valence 2.

Definition 2.6 a unipolar graph is a graph G = (V,E, ∂V ) where |∂V | = 1. A
bipolar graph is a graph where |∂V | = 2.

We must also specify what we mean by representing a graph.

Definition 2.7 a vertex map F of G = (V,E, ∂V ) is a 1-1 function F : V → C

Definition 2.8 an edge map H of G = (V,E, ∂V ) is a function H : E → P(C)
such that ∀e ∈ E : H(e) 6= ∅.

Definition 2.9 an edge map H of G = (V,E, ∂V ) is in accord with (a vertex
map) F if

• (i) If e and f are distinct edges incident to a vertex p, H(e) ∩H(f) = ∅

• (ii) If e and f are non-parallel edges incident to a vertex p, then H(e) ∩
H(f) = {F (p)}

• (iii) for all e ∈ E, H(e) is homeomorphic to [0, 1]
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Definition 2.10 an induced edge map H of (a vertex map) F is defined by
H(e) = {z ∈ C : z = λF (p) + (1− λ)F (q) for λ ∈ (0, 1)} if p and q are the ends
of e.

Note that the induced edge map of a vertex map F may not be an edge map
in accord with F . Namely, property (i) might be false if, for example, there
are vertices p, q, and r such that p and q are ends of one edge and p and r are
ends of another, and the vertex map F is such that F (q) is on the line segment
joining F (p) and F (r) (see figure 1).

q
rp

Figure 1: The induced edge map of F need not be in accord with F

Definition 2.11 a representation function R = (F,H) of a graph G into a
bounded connected planar region S ⊂ C is an ordered pair such that

• (i) F is a vertex map of G

• (ii) H is an edge map of G in accord with F

• (iii) F maps ∂V into ∂S and maps int V to int S.

• (iv) for all e, f ∈ E, if x ∈ H(e) ∩ H(f), then there is a v ∈ V with
x = F (v), and v is an end of e and f

• (v)
⋃

e∈E H(e) ⊂ S

Definition 2.12 a representation R(G) of a graph G with a representation

function R = (F,H) is defined to be
⋃

e∈E H(e).
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Note that by these definitions a representation function (F,H) where H is
the induced edge map of F is an example of what Tutte calls a ”straight repre-
sentation” ([2]), but includes information about the boundary of the graphs.

Definition 2.13 a circular planar graph G is a graph such that there exists a
representation function from G into the unit disc.

Finally, we need a little terminology to deal with representations due to
electrical problems. We use the definitions of conductivity and resistor network
as found in [1].

Definition 2.14 a connected graph G is called representable by γ in a strictly
convex bounded planar region S if there exists a potential function φ : ∂V → ∂S

on the boundary of the electrical network Γ = (G, γ) such that the function Fγ
that takes vertices to their potential is a vertex map, the edge map Hγ induced
by Fγ is in accord with Fγ , and Rγ = (Hγ , Fγ) is a representation function of
G into S. The existence and uniqueness of Fγ are guaranteed by the proof of
Theorem 3.2 of [1] and the discussion at the beginning of section 3 of this paper.

Definition 2.15 a graph G is called representable if it is representable by γ in
S for any conductivity γ and any strictly convex bounded planar region S. It is
not clear that there are any such graphs, at the outset, but in section 6 we shall
prove that this definition is actually equivalent to the preceding one.

3 Complex Potential Theory

¿From the proof of Theorem 3.2 in [1], given a resistor network Γ = (G, γ) and
a function f : ∂V → R, there is a unique function u : V → R such that Ku = b,
whereK is the Kirchhoff matrix for Γ, and b is the vector containing the currents
generated by f at the boundary of G and 0 for all other entries. Moreover, this
vector u depends linearly on f , so if u is the potential vector induced by f ,
and v is the potential vector induced by g, then au+ bv is the potential vector
induced by af + bg. From an arithmetical point of view, nothing changes if
we allow a and b to be complex, so we define u + iv to be the potential vector
induced by f + ig. Note that the conductances are still postive real numbers.
Before we proceed, we must develop some terminology about convex planar

regions. Given a convex planar region S, we defined a point x ∈ S to be an
extreme point of S if the equation x = cy + (1 − c)z for 0 < c < 1 is only
satisfied when x = y = z. The convex hull of a set Z is the set of points
{x : x = cy + (1− c)z for some y, z ∈ Z, 0 ≤ c ≤ 1}. Also, if Z = {z1, z2 . . . zn},
any point x in the convex hull of Z can be represented as x =

∑n
i=1 cizi, where

for each i, 0 ≤ ci and
∑n

i=1 ci = 1. We define the relative interior of a convex
hull of a finite set Z to be the set obtained by requiring 0 < ci for each i in the
preceding observation.
¿From the perturbability of the coefficients ci which define the relative inte-

rior, we can get a geometric picture of the concept. We must proceed by cases.
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When Z consists of a single point z, then the convex hull of Z and the relative
interior of that convex hull both also consist solely of z. When Z consists of two
distinct points, call them y and z, or of more than two colinear points on the
line segment between y and z, then the convex hull of Z consists of the points
x = cy+ (1− c)z with 0 ≤ c ≤ 1, in other words of the line segment connecting
y and z. The relative interior of this convex hull is the line segment without its
endpoints. When Z contains at least three non-colinear points, the convex hull
of Z is the smallest convex polygon which contains all the points of Z, and its
relative interior coincides with its geometric interior when regarded as a region
in the plane.
The point of this discussion has been to develop a vocabulary in which we

can easily state the following maximum principle for complex potentials:

Theorem 3.1 (Maximum Principle for Complex Potentials) Let Γ = (G, γ)
be a resistor network, p be an interior vertex of Γ, and u be a complex potential
function on Γ. Then u(p) is in the relative interior of the convex hull of the
potentials at its neighbor vertices. That is, for every p, denote by N (p) the set
of vertices q for which p and q are ends of an edge in Γ, and by u(N (p)) the
potentials obtained by vertices in N (p). Then for all interior vertices p, u(p) is
in the relative interior of the convex hull of u(N (p)).

Proof: Kirchhoff’s law for interior nodes, namely that there is no net current
out of any interior node, can be written arithmetically as

∑

q∈N (p)

γ(pq)(u(q)− u(p)) = 0

If we move all the occurences of u(p) to the other side of the equation, and if
we let S =

∑

q∈N (p) γ(pq), we have

u(p) =
1

S

∑

q∈N (p)

γ(pq)u(q)

If p has n neighbor vertices, which we number q1 . . . qn, and we let ci =
γ(pqi)
S
,

then the positivity of γ(pq) for all edges implies that ci > 0, and the definition of
S guarantees that

∑n
i=1 ci = 1, so by the definitions of convex hull and relative

interior, we have that for all interior nodes p, u(p) is in the relative interior of
the convex hull of u(N (p)).

Corollary 3.1 Let Γ be an electrical network, p be an interior node of Γ, and u
be a potential function on Γ. Then u(p) is in the relative interior of the convex
hull of the boundary potentials, u(∂V ).

Proof: Repeated application of the above theorem.
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4 Continuity of the Forward Dirichlet Matrix

In this section we describe the dependence of a certain matrix on the conduc-
tivities of a circular planar network. Specifically, as defined in [1], the Kirchhoff
matrix of a network Γ = (G, γ) is a matrix such that, if c represents the currents
out of every node and u is the vector of potentials at each node, Ku = c. K is
symmetric, and if the nodes are ordered such that the boundary nodes precede
the interior nodes, K has a block structure:

K =

[

A B

BT C

]

In this block structure, A represents the boundary-boundary edges, B repre-
sents the boundary-interior edges, and C represents the interior-interior edges.
If we let φ denote the potentials at the boundary nodes and ψ denote the po-
tentials at the interior nodes, then the potential vector u has the corresponding

block structure u =

[

φ

ψ

]

, and Kirchhoff’s law that the current out of the

network at any interior node is zero can be summarized by block multiplication:
BTφ + Cψ = 0. Since C is invertible (from Lemma 3.1 of [1]), we can express
the dependence of ψ on φ as ψ = −C−1BTφ. If we let D = −C−1BT , then
ψ = Dφ, and D can be called the forward Dirichlet matrix. Thus ψ depends
linearly on φ, and therefore continuously.
It is clear from the definitions of K and D that D depends on the conduc-

tance of an individual edge in a rational way. Thus, by Lemma 3.1 of [1], C is
invertible for any connected circular planar graph, and it is clear that D depends
continuously on any individual conductance as long as that conductance is pos-
itive. The question then becomes whether or not this continuity is preserved as
individual conductances go to zero or to infinity. Setting a conductance to be
zero is electrically equivalent to deleting the edge, and if deleting the edge gives
a graph that is itself connected, then, again from Lemma 3.1 of [1], the new C

matrix is still invertible. If, on the other hand, the new graph is disconnected,
then a reordering of the interior nodes will give a block structure

C =

[

CI 0
0 CII

]

where CI and CII are the interior-interior portion of the Kirchhoff matrices for
the two disjoint subgraphs. Since each of these subgraphs is a connected circular
planar graph, then both CI and CII are invertible, and thus C is still invertible.
Thus the matrix D = −C−1BT is still defined, and since it depends rationally
on the conductance, this means that D varies continuously with an individ-
ual conductance as it varies over all non-negative numbers (because rational
functions don’t have jump discontinuities).
When we ask whether D varies continuously with an individual conductance

as that conductance goes to infinity, we are really asking if there is a finite
limit that is approached. Since D is a rational function, it suffices to show that
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each conductance σ is present to greater or equal degree in the denominators
of each element than in the numerators. We must consider separately whether
the edge we are interested in is a boundary-interior or interior-interior edge (if
it is a boundary-boundary edge, D doesn’t depend on σ at all, and hence varies
continuously). First, if the edge e with conductance σ is an interior-interior
edge, then the corresponding matrix C looks like

C =



















. . .
...

...
· · · σ + a · · · −σ · · ·

...
. . .

...
· · · −σ · · · σ + b · · ·

...
...

. . .



















where a and b are constants with respect to σ. Clearly, then, det C has a σ2 term
and no term of higher degree. Thus, C−1 approaches a limit as σ → ∞. Since
σ does not occur in B, clearly D = −C−1BT approaches a limit as σ →∞.
The case when e is a boundary-interior edge is even simpler. Since σ occurs

in only one term in C, then every element of C−1 except those in one row
and one column depends in a linear fractional manner on σ, and the elements
in that row and column do not have a σ in their numerator, but only in their
denominator. Since σ occurs once in B, it is not hard to see that it is the column
that lacks a σ in the denominator that gets multiplied by a σ in B in order to
form the product D = −C−1BT . Thus, D approaches a limit as σ →∞.
Notice that allowing a conductance σ of an edge e to go to infinity is elec-

trically equivalent to contracting the edge e.
What we have thus demonstrated, through this discussion, is the following

lemma:

Lemma 4.1 (Continuity Lemma) Let Γ = (G, γ) be a circular planar net-
work, fixing γ except for the conductance σ of an edge e. The resulting forward
Dirichlet matrix D varies continuously with σ as σ varies over [0,∞) and ap-
proaches a finite limit as σ →∞.

5 A Geometric Class of Circular Planar Graphs

The major results of this paper, in section 6, do not apply to all circular planar
graphs, but rather only to a subset defined by a certain geometric property. The
definition of this property is motivated by an observation about which graphs
are not representable. From Corollary 3.1 it follows that a unipolar graph or
subgraph will always have constant potential, so any attempt to represent it
using potentials will always map the entire graph to a single point. Similarly, a
bipolar graph will always have potentials lying along the line segment connecting
the potentials of the two boundary vertices. It is clear, therefore, that any graph
containing a nontrivial unipolar subgraph or a nonlinear bipolar subgraph will
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not be representable. This section defines the geometric property and proves
that it is equivalent to requiring that a graph have neither of these types of
subgraphs.
First, we need a set of combinatoric manipulations that will change one graph

into another. For one, we can add a boundary pendant. That is, given a graph
G = (V,E, ∂V ), we can add a vertex p to form a new graph G′ in the following
way: we select a boundary vertex q ∈ ∂V , and let G′ = (V + p,E+ pq, ∂V + p).
We can also add an edge between two distinct vertices which are not already
joined by a linear bipolar subgraph (loops are not allowed). This is called
splitting a cell and is the opposite of deletion. Finally, we can replace one interior
vertex p with two interior vertices p1 and p2, such that each edge incident to p
is now incident to either p1 or p2 (but not both), p1 and p2 each is a boundary
vertex or has a valence 2 or greater. This is called splitting a vertex and is the
opposite of contraction of an edge that isn’t part of a ∆.
We also need a graph that is, in some sense, basic. This is accomplished

by the simplest non-trivial graph, with two boundary vertices and a single edge
connecting them. We shall refer to this graph as the base graph. It is depicted
in figure 2, and is clearly circular planar.

Figure 2: The base graph

With this terminology, we can proceed to the definition of the geometric
property we are interested in:

Definition 5.1 A circular planar graph G is said to have the geometric property
if there is a sequence of graphs G0, G1, . . . Gn = G such that G0 is the base
graph, and for each i, Gi+1 is obtained from Gi by adding a boundary pendant
or splitting a vertex or a cell.

Note that if G is a circular planar graph, every graph in such a sequence
must be circular planar, because the manipulations only add edges; they don’t
delete them. Clearly, then, every graph Gi in such a sequence must also have the
geometric property. Specifically, the base graph has the geometric property, and
will be used as the base case in the inductive proofs in the following section.
Notice also that no graph that has the geometric property will have either a
nontrivial unipolar subgraph (to do so would require adding an interior pendant)
or a nonlinear bipolar subgraph (to do so would require adding either an interior
pendant or an edge between two nodes joined by a linear bipolar graph). The
converse of this statement, that no graph with a nontrivial unipolar subgraph or
a nonlinear bipolar subgraph has the geometric property, is proven in the next
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lemma, and shows that the geometric property is the analog for circular planar
graphs of Tutte’s conditions for non-separable nodally 3-connected graphs ([3]).

Lemma 5.1 If a connected graph G has no non-trivial unipolar subgraphs and
no non-linear bipolar subgraphs, then it has the geometric property.

Proof: We proceed inductively. Clearly the base graph satisfies the hypothesis,
and has the geometric property. We then assume that all graphs with fewer
than N edges and which have no non-trivial unipolar subgraphs or non-linear
bipolar subgraphs have the geometric property. Then we need to prove that
given any graph G with N edges, there is at least one edge that can be removed
to give a graph G′ with N − 1 edges which satisfies the hypothesis.
If G has any pair of edges in series (that is, an interior vertex of valence 2),

then you could contract one of these edges to get G′. If G has any boundary-
boundary edges, one could be deleted to obtain G′ (or contracted if it is a
boundary pendant). Otherwise, every interior vertex in G has valence at least 3
and there are no boundary-boundary edges. If G has any edge that is not part
of a ∆, you can contract it without generating a non-linear bipolar subgraph,
thus obtaining a G′ with N − 1 edges and which, by the inductive hypothesis,
has the geometric property. Otherwise, every edge in G is part of a ∆, and any
interior-interior edge could be deleted without generating a non-linear bipolar
subgraph, thus obtaining G′. But any graph G wherein every edge is part of a
∆ and without any boundary-boundary edges has to have an interior-interior
edge (otherwise it has no ∆s).

6 Dirichlet Representation of Graphs

The previous section started with the observation that any graph which con-
tains a nontrivial unipolar subgraph or a nonlinear bipolar subgraph is not
representable. Now that we have developed the basic terminology and prelim-
inary results, we can prove the converse statement, and thus the major result
of this paper: that a graph G is representable if and only if it has no nontrivial
unipolar subgraphs and no nonlinear bipolar subgraphs (Theorem 6.3). The
result will follow from other, related results.

Theorem 6.1 Given a circular planar graph G with the geometric property and
a strictly convex bounded planar region S, there is a conductivity γ such that G
is representable by γ in S.

Proof: We proceed by induction on the number of edges of G. The base graph is
trivially representable by any γ in any strictly convex planar region S. Pick the
conductance of this edge to be any positive real number. Let N be the number
of edges in G. Now we assume, inductively, that any circular planar graph with
the geometric property and fewer than N edges is representable by some γ in
S. By the definition of the geometric property there is a sequence of graphs
G0, . . . GN−1, GN = G such that G0 is the base graph and Gi is obtained from
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Gi−1 by adding a boundary pendant, or splitting a cell or a vertex. In specific,
GN−1 has the geometric property, and has N − 1 edges, so by the inductive
hypothesis there is a conductivity γ ′ such that GN−1 is representable by γ

′ in
S. There are three ways we could have obtained G from GN−1; we proceed by
cases.

• If G was obtained from GN−1 by adding a boundary pendant, the inte-
rior potentials do not depend on the conductance of the new boundary-
boundary edge. Since G is finite, there is a neighborhood about the vertex
q that doesn’t contain any other vertices. We assign p a potential that
is on ∂S and in that neighborhood, and we choose the conductance of pq
to be any positive real number. Thus there is a 1-1 boundary potential
function φ and a conductivity γ such that G is representable by γ in S.

• If G was obtained from GN−1 by splitting a cell, let m be the number of
internal vertices (numbered v1 . . . vm) of G. The finiteness of G guarantees
that there exist positive real numbers ε1 . . . εm such that, if F denotes the
vertex map from GN−1 into S, F (vi) can be perturbed within a neighbor-
hood of radius εi for each internal vertex vi, and F will remain a vertex
map of GN−1 into S, the induced edge map H will be in accord with F ,
and R = (F,H) will be a representation function of GN−1 in S. We add
the edge e to GN−1, obtaining G, but declare the conductance of e to
be zero. Now, by Lemma 4.1, there is a number δ > 0 such that, if the
conductance of e is less than δ, F (vi) will be perturbed less than εi for all
i. So we let the conductance of e be δ

2 , and thus there is a conductivity γ
such that G is representable by γ in S.

• If G was obtained from GN−1 by splitting a vertex p into p1 and p2, let
F denote the vertex map of GN−1. By an argument parallel to the one
for splitting a cell and by Lemma 4.1, there is a large positive number
R such that, if the conductance of the edge joining p1 and p2 is larger
than R, then F (v) for every interior vertex v will be perturbed by a small
amount. The only thing that remains left to be checked is that the vertices
p1 and p2 don’t separate in such a way that any edges meet where they’re
not supposed to. Since G is circular planar and is derived from GN−1 by
splitting p, there must be a pair of rays emanating from F (p) with the
following properties: the union of the two rays splits S into two disjoint
nonempty parts S1 and S2; the image F (q) of each neighbor q of p1, with
the exception of p2, lies in S1, and likewise F (q) for each neighbor q of
p2, with the exception of p1, lies in S2. See figure 3. If the union of
the rays forms a line, then the maximum principle guarrantees that if the
conductance of the edge joining p1 and p2 is high enough, then p1 will
be in S1 and p2 will be in S2, so there is a conductivity γ such that G
is representible by γ. If, on the other hand, the two rays do not form a
line, then one of the two regions, wlog S1, will have an acute corner at
F (p). If the conductance of the edge joining p1 and p2 is high enough,
then u(p1) will not be in the relative interior of u(N (p1)−p2), so it is clear
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that no edge incident to p1 intersect any edge incident to p2. Thus there
is a conductivity γ such that G is representible by γ. This completes the
proof.

p1 p2

S
S

2
1

Figure 3: splitting a vertex

Note that the preceding theorem only guarantees the existence of a conduc-
tivity γ, and the proof implies the existence of conductivities with very large
and very small conductances. We have no bound on how large or small we may
need a conductance to be; we are only guaranteed that it is positive and finite.
The next theorem, then, establishes that the conductivity itself is unimportant,
and thus that we can select any conductivity we like.

Theorem 6.2 Let G be a graph and S be a bounded strictly convex planar region
such that G is representable by γ in S for some γ. Then G is representible by
γ in S for any conductivity γ.

Proof: Let γ0 be a conductivity such that G is representable by γ0 in S. We
fix γ = γ0 except for a single conductance σ of an edge e. We denote by σ0 the
conductance of the edge e in the conductivity γ0. The proof of the Theorem 6.1
guarrantees the perturbability of the interior potentials, and Lemma 4.1 thus
guarrantees that the set of σ such that G is representable by γ in S is an open
set. We shall show by contradiction that this set is all of R+.
As a bit of notation, we shall denote the Dirichlet representation of G due

to the conductivity γ by Rσ = (Fσ, Hσ) to emphasize that we are only allowing
the conductance σ to vary.
If the set Σ = {σ : G is representable by γ in S} is bounded above, let

µ = sup Σ. This µ is clearly finite, so the potentials Fµ still satisfy the Maximum
Principle (Theorem 3.1). However, since Σ is an open set, then Rµ is not a
representation function of G into S. Since Rµ−ε is a representation function
of G into S for all small ε > 0, and since Lemma 4.1 guarantees that Rσ
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Figure 4: A portion of Rµ−ε if F (p) ∈ H(e)

varies continuously with σ, then either Fµ must not be a vertex map of G, or
Fµ(p) ∈ Hµ(e) for some p ∈ intV, e ∈ E. We consider the latter possibility first.
Since G is connected, and since Rµ−ε is a representation function for small

ε, the Maximum Principle can only be satisfied if Fµ(q) is on the line of which
Hµ(e) is a segment whenever q ∈ N (p). See figure 4. Let r1 and r2 denote the
ends of edge e. If r1 is not a neighbor of p, and indeed perhaps even if it is, then
there is an edge f such that Fµ(r1) ∈ Hµ(f), and we can repeat this process for
r1 and r2 and their neighbors. The end is only reached when we find two vertices
q1 and q2 such that all linear subgraphs of G that are sufficiently large and that
go through either the vertex p or the edge e must go through q1 and q2. The
process is guaranteed to stop, since G is finite, and q1 and q2 might be boundary
vertices. The repeated application of the Maximum Principle guarantees that
there is no vertex q whose potential Fµ(q) is on the open line segment connecting
Fµ(q1) to Fµ(q2) but which has a neighbor whose potential is not also on the
open line segment. In other words, if we take the subgraph of G whose vertices
consists precisely of the vertices q1, q2, and the vertices q such that Fµ(q) lies
in the line segment between Fµ(q1) and Fµ(q2), then it is a nonlinear bipolar
subgraph of G, which contradicts our hypothesis that G is representable by γ0

in S, since graphs with nonlinear bipolar subgraphs are not representable by
any conductivity in any planar region S. So if Fµ is a vertex map, then Rµ is a
representation function of G into S.
The only way Fµ could not be a vertex map is if there exist two vertices p1

and p2 such that Fµ(p1) = Fµ(p2). Let I = {p : Fµ(p) = Fµ(p1)}. Since the
potential of boundary vertices is fixed and there aren’t any nontrivial unipolar
subgraphs (because G is representable by γ0), then the Maximum Principle
ensures that no member of I is a boundary vertex. Since Rµ−ε is a representation
function of G into S for all small ε, and since Rσ varies continuously with σ,
the Maximum Principle implies that Fµ(q) lies on a certain line (which passes
through Fµ(p1)) whenever q has a neighbor p ∈ I. Since there are no unipolar
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Figure 5: A portion of Rµ−ε if Fµ is not a vertex map

subgraphs in G, there are at least two vertices r1 and r2 that are not in I

but that have neighbors in I. If these two vertices are the only vertices which
are not in I but have neighbors in I, then the subgraph of G with vertices
consisting of r1, r2, and the vertices in I form a nonlinear bipolar subgraph
(a quick arithmetic check ensures that this situation cannot happen with finite
conductivities in a linear bipolar subgraph). If r1 and r2 are not the only
vertices not in I but with neighbors in I, then there is either a vertex p and
an edge e such that Fµ(p) ∈ Hµ(e), or there is another pair of vertices with
equal potential. See 5. In the former case, the arguments in the preceding
situation construct a nonlinear bipolar subgraph of G, and in the latter case,
we can repeat this process until we come across two vertices q1 and q2 such that
every linear subgraph of sufficient size through a vertex in I must pass through
q1 and q2. This means that there is a nonlinear bipolar subgraph of G with
boundary vertices q1 and q2. The presence of a nonlinear bipolar subgraph of
G contradicts the hypothesis that G is representable by γ0 in S.
Thus Fµ must be a vertex map ofG into S, andRµ is a represenation function

of G into S. But this means that µ ∈ Σ, which contradicts the definition of µ
as the supremum of Σ since Σ is open. It is clear, then, that Σ is not bounded
above. The same arguments can be made about the infimum of Σ, substituting
the word ’positive’ for ’finite’ and the appropriate inequalities. This shows that
we can vary σ over R+ and G will still be representable by γ in S. The full
theorem follows by changing the conductivity γ0 into γ one conductance at a
time, which is possible since G is finite.
Now, the main theorem of this paper can be stated and proven succinctly:

Theorem 6.3 A connected circular planar graph G is representible if and only
if it has no nontrivial unipolar subgraphs and no nonlinear bipolar subgraphs.

Proof: If G does not have any nontrivial unipolar subgraphs or nonlinear bipolar
subgraphs, by Lemma 5.1 it has the geometric property, and thus by Theorem

13



6.1 for each strictly convex bounded planar region S there is a conductivity γ
such that G is representable by γ in S. By the preceding theorem, for each S,
G is representable by γ in S for all conductivities γ, and thus G is representable
by γ in S for all γ and all strictly convex bounded planar regions S. Thus, G
is representible. The converse is obvious because if G has a nonlinear bipolar
subgraph or a nontrivial unipolar subgraph, then it is not representible by γ in S
for any conductivities γ or any planar region S. Thus it cannot be representible.

7 Boundary Orders

All the preceding discussion has assumed that the potentials of the boundary
vertices have been well chosen so that the induced potentials on the interior
form a vertex map, etc. From the proof of Theorem 6.2, it is apparent that
if a boundary potential function works for one conductivity, it works for all
conductivities. Furthermore, it is relatively simple to prove, given the results
and methods in the previous section, that given a strictly convex region and
a Dirichlet representation of a graph G in that region, that you can vary the
boundary potentials of G along the boundary of the strictly convex region, and
as long as the boundary vertices occur in the same order as one traverses ∂S,
then the Dirichlet representation with the new boundary potential is also a
representation function of G in S.
The key question then becomes in what order one should put the boundary

vertices along ∂S. Given a graph G = (V,E, ∂V ), there is nothing to indicate
an order. This section, then, establishes some facts about the order in which
the boundary vertices must appear. We begin with some relevant definitions.

Definition 7.1 For G = (V,E, ∂V ) and p, q ∈ V , dG(p, q) is the length of the
shortest path p→ q.

Since the shortest path is obviously non-self-intersecting, and the set of non-
self-intersecting paths p→ q is finite, dG(p, q) is well-defined if G is connected.
Also, since reversing the order of a path p → q gives a path q → p, dG(p, q) =
dG(q, p). It is equally clear that the triangle inequality must hold, namely that
∀p, q, r ∈ V, dG(p, q) ≤ dG(p, r) + dG(r, q).

Definition 7.2 A boundary order P of G is a sequence {pi} of boundary ver-
tices of G such that each boundary vertex occurs precisely once in P . We label
the vertices circularly, so if N = |∂V |, pN+k = pk.

Definition 7.3 The norm of a boundary order P = {pi} on a connected graph

G is ‖P‖G =
∑N

i=1 dG(pi, pi+1), where N = |∂V |.

Definition 7.4 A perimeter πP of a boundary order P = {pi} on a connected
graph G is a path p1 → p2 → . . .→ pN → p1, the length of which is ‖P‖G.
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Definition 7.5 Given a representation R(G) of a connected circular planar
graph G in the unit disc, the induced boundary order P = {pi} of R(G) is a
boundary order on G such that for each i, the circular arc pipi+1 contains no
other boundary vertex.

Definition 7.6 The order set P(G) is the set of boundary orders on G. If G
is finite, so is P(G).

Now that we have the language, we can state and prove a property of induced
boundary orders:

Theorem 7.1 Let G = (V,E, ∂V ) be a connected circular planar graph, and
let P0 = {pi} be an induced boundary order of a representation R(G) in the unit
disc. Then ∀P ∈ P(G) : ‖P‖G ≥ ‖P0‖G.

Proof: Let π0 be a perimeter of P0 on G, and let π be a perimeter of P on G.
Let G′ be the graph consisting solely of the vertices in π and the edges whose
endpoints are consecutive in π. The boundary vertices of G′ are the same as
the boundary vertices of G. Note that G′ is not a subgraph of G as it is defined
in section 2.
Let R = (F,H) be a representation function from G to the unit disc, such

that the induced boundary order of R(G) is P0, and let R
′ = (F ′, H ′) be the

restriction of R to G′. Since R′(G′) is compact, the complement of R′(G′) is
a disjoint union of open subsets of the complex plane, one of which, call it S,
is unbounded. Then there is a shortest path π′ = (p1 → p2 → . . . → pN →
p1), such that if e is an edge whose endpoints occur consecutively in π

′, then
H ′(e) ⊂ ∂S. Since π′ includes the boundary vertices in the same order as π0,
and π0 is a perimeter of P0, length(π

′) ≥ length(π0).
For an example, see Figure 6, where P0 is the induced boundary order by

this representation and P = (1, 4, 3, 5, 2, 7, 6). In this example, a possible G′ is
shown by the darkened edges, and those edges not in G′ are dotted lines, and S
includes everything but the shaded regions. In this example, there is only one
edge in G′ that is not in ∂S, but in more elaborate examples arbitrary numbers
of edges from G′ can be left out.
Every edge e with endpoints consecutive in π′ is an edge in G′, and hence

has endpoints consecutive in π. Also, since π′ is a shortest path and the union
of the H ′(e) for e with endpoints consecutive in π′ is equal to the boundary of
S, no edge is traversed in π′ more than twice. If an edge e in π′ is traversed
twice, the definition of π′ implies that points in S occur on both sides of e, so
deleting e would create a disconnected graph. Since π is a closed path, then π
must traverse e at least twice. Thus, length(π) ≥ length(π′).
Finally, we see that ‖P‖G = length(π) ≥ length(π

′) ≥ length(π0) = ‖P0‖G,
and the theorem is proved.
The converse of this statement is not necessarily true. The clearest instance

of this is a tree. Because of the lack of cycles, there are many boundary orders
which result in a representation. But if you construct a graph from a tree by
adding a linear bipolar subgraph of sufficiently large size between two boundary
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Figure 6: An example of our construction of G′ and S

vertices, you will not affect the norm of any boundary order, but you might, as
a side effect, prevent certain boundary orders from being induced orders. As an
example, any ordering of the boundary vertices in the graph in part (a) of figure
7 is an induced order of a representation, and hence the norms are constant.
Adding the linear bipolar subgraph of length 3, resulting in the graph in (b),
does not affect any distances, and hence not any boundary order norms, but
now the boundary order {1,3,2,4} is no longer the induced boundary order of
any representation.
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Figure 7: a tree with a linear bipolar subgraph added
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