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Abstract

This paper explores some properties of critical circular planar net-
works. The main theorem, which builds upon the other theorem and
lemmas, is that two disjoint edges in a critical circular planar network
have disjoint boundary-boundary paths going through them. In the
process of getting to the main theorem it is shown that every crit-
ical circular planar graph with an interior vertex has at least three
boundary-boundary edges and spikes. As a corollary to the main theo-
rem it is shown that in a critical circular planar network every interior
vertex has three disjoint paths to the boundary.

1 Introduction

This paper uses the definitions of circular planar graphs and medial graphs
from [1]. The following additional definitions concerning medial graphs will
be used in this paper.

A boundary triangle is a triangle formed by two crossed geodesics and
a piece of the boundary. The sides which are bounded by half-geodesics are
called legs, and the side bounded by the boundary is called the base.

An interior triangle is a triangle formed by three geodesics, each of which
intersects the other two.

An empty boundary triangle is a boundary triangle which is not inter-
sected by any geodesics.

A geodesic that intersects both legs of a boundary triangle is called an
external geodesic and a geodesic that originates at the base of a boundary
triangle and intersects one leg is called an internal geodesic.

A boundary triangle that has no external geodesics is called closed and
a boundary triangle with at least one external geodesic is called open.
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Figure 1: Some definitions illustrated

The following definitions concerning graphs will be used in this paper.
Two edges are considered disjoint if they do not have a vertex in common.
A path of length n is a sequence of vertices and edges v1e1v2e2...en−1vn,

where ei is an edge connecting vi and vi+1.
Two paths P1 and P2 are disjoint if they have no vertex in common.
A boundary-boundary path is a path of with it’s first and last vertices

in the boundary.
A simple boundary-boundary path is a boundary-boundary path that

has no loops and visits the boundary only at the first and last vertices.
Boundary triangle T2 is a boundary subtriangle of boundary triangle T1

if T2 lies entirely inside T1. A boundary triangle is a boundary subtriangle
of itself.

Boundary triangle T2 is a proper boundary subtriangle of boundary tri-
angle T1 if T2 is a boundary subtriangle of T1 and T2 is smaller than T1.

A minimal boundary triangle is a boundary triangle which has no proper
boundary subtriangles.

Two boundary triangles are disjoint if they have no edge or vertex in
common.

2 Spikes and Boundary-Boundary Edges

Lemma 1 If a boundary triangle is closed then it has an empty subtriangle.

Proof If the boundary triangle is empty then the Lemma holds. Otherwise,
at least one of the legs, call it L, has a geodesic intersecting it. Call the
geodesic which intersects L closest to the base of the boundary triangle g. g

must terminate at the base because the boundary triangle is closed. Consider

2



the boundary triangle formed by L, g, and the base of the original boundary
triangle. This boundary triangle, call it t, is also closed because there are
no intersecting geodesics in the leg that is formed from L, so no geodesic
can intersect both legs. The same argument can now be applied recursively
and it must end with an empty boundary triangle because at each step the
boundary triangle in question is smaller and the graph is finite. Since each
boundary triangle is a subtriangle of the previous, the final empty boundary
triangle is a subtriangle of the original.

L2 L1

Closed Closed

g

t

Figure 2: Lemma 2

Lemma 2 If a minimal boundary triangle t is open then one of its exte-

rior geodesics creates two closed boundary triangles adjacent to the original

boundary triangle.

Proof First, note that since the boundary triangle is minimal it has no inte-
rior geodesics, for if it did then it would have a proper boundary subtriangle
and thus would not be minimal.

Let L1 and L2 be the legs of the minimal boundary triangle. Let g be the
external geodesic that crosses L1 closest to the base. The boundary triangle
formed by L1 and g is clearly closed, since the edge formed by L1 has no
intersecting geodesics, by construction, so there can be no external geodesics.
The boundary triangle formed by L2 and g could have geodesics intersecting
both legs. Assume it has an external geodesic. Since this boundary triangle
shares L2 with t, the geodesic enters t. It cannot terminate in t since t

has no interior geodesics. It also cannot leave through L1 because it would
either form a lens with g or intersect L1 closer to the base than g, which it
does not, by construction. So there can be no external geodesic and thus
both boundary triangles formed from g and t are closed.
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Theorem 1 If G is a critical circular planar graph with at least one interior

vertex then the sum of the number of spikes and the number of boundary-

boundary edges is at least three.

Proof This theorem does not require the graph to be connected, but all that
is required for the theorem to be true is one connected component with an
interior vertex, so in this proof let G refer to such a connected component.

An empty boundary triangle is either a spike or a a boundary-boundary
edge, so it only needs to be shown that the medial graph of a critical circular
planar graph, in other words a lensless medial graph, contains at least three
empty boundary triangles for the theorem to be true.

There are two cases to consider: (1) medial graphs which have an interior
triangle and (2) those that don’t.

1. Consider a medial graph which does have an interior triangle. Three
disjoint boundary triangles are created by the three geodesics which
form the triangle. Find a minimal boundary subtriangle for each of
these three boundary triangles. In Figure 3 it is assumed that the three
original disjoint boundary triangles are minimal for simplicity, but this
is not necessary. If all three are closed then by Lemma 1 each has an
empty boundary subtriangle, and thus each is an empty boundary
triangle, so the theorem holds (See figure 3 (a)). Now assume that one
of them, call it t1, is open, so it has at least one external geodesic.

By Lemma 2 there exists a geodesic g1 which creates a closed boundary
triangle on each side of t1. Notice that g1 can intersect at most one
of the other minimal boundary triangles since the medial graph is
lensless. Call one of the unintersected boundary triangles t2. If t2 is
closed then there are three disjoint closed boundary triangles and thus
three empty boundary triangles, by Lemma 1 (See fig 3 (b)).

If t2 is open then by Lemma 2 there exists a geodesic g2 which which
forms a closed boundary triangle on each side of t2. Since the graph is
lensless at least one of these closed boundary triangles is disjoint from
the boundary triangles formed by g1, so again there are three disjoint
closed boundary triangles and thus three empty boundary triangles,
by Lemma 1. (See figure 3 (c)).

2. If there are no interior triangles then every boundary triangle is closed,
for if there was an open boundary triangle then the legs of the trian-
gle and one of its external geodesics would form an interior triangle.
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Figure 3: Three cases for Theorem 1, case 1, with closed triangles outlined

Consequently, all that is needed for the theorem to be true is three
disjoint boundary triangles.

If there is an interior vertex then the medial graph has an interior
polygon with at least four edges (three edges is handles in case 1). Let
a, b, c, and d be the geodesics which form four consecutive edges in
this polygon. Since there are no interior triangles, a does not intersect
c and b does not intersect d, so the four geodesics must be configured
as in Figure 4, where d follows one of the two paths indicated. Three
disjoint triangles, t1, t2, and t3 are formed, so the theorem is true.
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Figure 4: Theorem 1, case 2
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3 Disjoint Paths

Theorem 2 If G is a critical circular planar graph and e1 and e2 are dis-

joint edges in G then there exist two disjoint simple boundary-boundary paths

P1 and P2 which contain e1 and e2, respectively.

Proof This proof relies on the fact that removal of boundary-boundary
edges and promotion of spikes in a critical graph maintains criticality, which
is proved in [1].

If G has no interior nodes then e1 and e2 are themselves disjoint simple
boundary-boundary paths, so there is nothing to prove. Assume there is at
least one interior vertex.

Let G′ be G with all boundary-boundary edges (excepting e1 and e2)
removed. Claim: The theorem holds for G if and only if the theorem holds
for G′. If the paths exist in G then, since they are simple, they could not have
used one of the deleted edges, so the same paths still work. If the paths exist
in G′ then since adding boundary-boundary edges doesn’t change anything,
the same paths work in G′. Furthermore, note that G′ is also critical.

By Theorem 1 the sum of boundary-boundary edges and spikes is at
least three, and G′ has no boundary-boundary edges which are not e1 or e2,
so there must be at least one spike which is neither e1 nor e2. Let G′′ be G′

with such a spike promoted. Claim: The theorem holds for G′′ if and only if
the theorem holds for G′. Assume the paths exist in G′. There are 3 cases
(see Figure 5).

1. Neither path uses the spike’s internal vertex. In this case the same
paths will satisfy the theorem in G′′.

2. One of the paths uses the spike. In this case the path minus the deleted
spike will work.

3. Neither path uses the spike but one of the paths uses the internal
vertex of the spike. In this case one of the paths visits the boundary
twice in G′′, so if only half of the path is used then the theorem holds.

Now assume the paths exist in G′′. If neither path uses the vertex that
used to be a spike then both paths are still valid in G′′. If one of the paths
does use the vertex then it must end there since the vertex is on the boundary
and the path is simple. A new path in G′ that satisfies the theorem can be
formed by simply appending the spike to the path.
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Case 1 Case 2 Case 3
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Figure 5: Maintaining two disjoint paths under spike promotion

The graph can be reduced in this manner until e1 and e2 are boundary-
boundary edges, and since an iff relationship holds at each step it follows
that the theorem holds for the original graph G.

Corollary 1 An interior vertex in a critical circular planar network has at

least three disjoint path to the boundary.

Proof If all vertices in the neighborhood of the vertex are in the boundary
then the theorem holds since there must be at least three vertices in the
neighborhood. Assume one of the edges connected to the vertex does not go
to the boundary. This edge, call it e, must have a simple boundary-boundary
path through it (which can be proved by simply deleting some of the text in
the proof of Theorem 2). Consider the two edges in this path on each side of
e. By Theorem 2 these edges must have disjoint boundary-boundary paths.
Now by taking the union of one of these paths, part of the other path, and
e, the desired three disjoint boundary-boundary paths are constructed (see
Figure 6).
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Figure 6: (a) P, e, and two disjoint boundary-boundary paths and (b) three
disjoint boundary paths
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