Appendix A: Calculations of Algebraic Impossibility

To keep track of the values of determinant pairs, we will use the notation from the proof of the theorem in Section 3.3. The values of the determinants will be denoted using $a, b, c, d, e, f, g, h, j, k$ from the general Kirchhoff matrix in Section 2.2, as in Table 2.

It is worth noting that renumbering boundary nodes in either circular or reverse circular order does not change how the determinanant values interact, because the beginning node and direction of a numbering is arbitrary. This means, for example, that once we have shown

$$
\ominus \oplus+++
$$

to be an algebraically impossible combination of determinants, we also will know that

$$
+\ominus \oplus++ \text { and }++\ominus \oplus+\text { and }+++\ominus \oplus \text { and } \oplus+++\ominus
$$

are impossible combinations, as are

$$
+++\oplus \ominus \text { and }++\oplus \ominus+\text { and }+\oplus \ominus++ \text { and } \oplus \ominus+++ \text { and } \ominus+++\oplus .
$$

Therefore, when one combination is found to be impossible, all its renumberings in circular and reverse circular order will also be impossible, based on the proof of the original impossibility.

In some cases, only a segment of the combination is needed to prove the impossibility. When this occurs, all other combinations of determinants which contain this segment in either circular or reverse circular order will also be impossible, based on the proof of the impossibility of the original segment.

We will refer to a reordering as clean if the new Λ has two pairs of problematic determinants only if they are adjacent.

1	$\ominus \ominus \ominus \ominus \ominus$	There is a recoverable circular planar network with this Λ.
2	$\ominus \ominus \ominus \ominus+$	There is a recoverable annular planar network with this Λ. See Section 3.1.
3	$\ominus \ominus \ominus \ominus \oplus$	There is a recoverable annular planar network with this Λ. See Section 3.1.

4	$\ominus \ominus \ominus+\ominus$	There is a recoverable annular planar network with this Λ. See Section 3.1.
5	$\ominus \ominus \ominus++$	There is a recoverable annular planar network with this Λ. See Section 3.1.
6	$\ominus \ominus \ominus+\oplus$	There is a recoverable annular planar network with this Λ. See Section 3.1.
7	$\ominus \ominus \ominus \oplus \ominus$	There is a recoverable annular planar network with this Λ. See Section 3.1.
8	$\ominus \ominus \ominus \oplus+$	There is a recoverable annular planar network with this Λ. See Section 3.1.
9	$\ominus \ominus \ominus \oplus$	There is a recoverable annular planar network with this Λ. See Section 3.1.
10	$\ominus \ominus+\ominus \ominus$	There is a recoverable annular planar network with this Λ. See Section 3.1.
11	$\ominus \ominus+\ominus+$	Impossible. See Section 3.2.
12	$\ominus \ominus+\ominus \oplus$	Impossible. See Section 3.2.
13	$\theta \ominus++\ominus$	There is a recoverable annular planar network with this Λ. See Section 3.1.
14	$\ominus \ominus$	Reorder nodes 12543; Λ has one pair of problematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
15	$\ominus \ominus+$	Reorder nodes 12543; Λ has two adjacent pairs of problematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
16	$\ominus \ominus+$	There is a recoverable annular planar network with this Λ. See Section 3.1.
17	$\ominus \ominus+\oplus$	Reorder nodes 12543; network becomes Λ-equivalent to a circular planar network. See Section 2.2.
18	$\ominus \ominus+\oplus \oplus$	Reorder nodes 12543; Λ has one pair of problematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
19	$\ominus \ominus \oplus \ominus \ominus$	There is a recoverable annular planar network with this Λ. See Section 3.1.

20	$\ominus \ominus \oplus \ominus+$	Impossible. See Section 3.2.
21	$\ominus \ominus \oplus \ominus \oplus$	Impossible. See Section 3.2.
22	$\ominus \ominus \oplus+\ominus$	There is a recoverable annular planar network with this Λ. See Section 3.1.
23	$\ominus \ominus \oplus++$	Reorder nodes 12543; Λ has two adjacent pairs of prob- lematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a re- coverable annular planar network.
24	$\ominus \ominus \oplus+\oplus$	Reorder nodes 13254; Λ has two adjacent pairs of prob- lematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a re- coverable annular planar network.
25	$\ominus \ominus \oplus \oplus \ominus$	There is a recoverable annular planar network with this Λ. See Section 3.1.
27	$\ominus \ominus \oplus \oplus \oplus \oplus$	Reorder nodes 12543; Λ has one pair of problematic de- terminants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
For all intents and purposes, this combination is impos- sible. The important inequalities are:		
$c j-d h \leq 0 \quad$ (Index 2)		

28	$\ominus+\ominus \ominus \ominus$	There is a recoverable annular planar network with this Λ. See Section 3.1.
29	$\ominus+\ominus \ominus+$	Impossible. See Section 3.2.
30	$\ominus+\ominus \ominus \oplus$	Impossible. See Section 3.2.
31	$\ominus+\ominus+\ominus$	Impossible. See Section 3.2.
32	$\ominus+\ominus++$	Impossible. It is only necessary to consider determinant pairs 1, 2 and 5. $\begin{aligned} & f j-g h \leq 0 \text { and } f j-e k \leq 0(\text { Index } 1) \\ & c j-b k>0 \text { and } d h>b k(\text { Index } 4) \\ & b f-c e>0 \text { and } a h>c e(\text { Index } 5) \end{aligned}$ Now, since $b f-c e>0$ and $c j-b k>0$ we know that $b, f, c, j \neq 0$. This means that $f j>0$ so $e, k \neq 0$ to make $f j-e k \leq 0$. So from determinant pair 5 , we know that $f>\frac{c e}{b}$. Substitution tells us that $0 \geq f j-e k>\frac{c e}{b} j-e k$ Since $e \neq 0$ this means that $0>c j-b k$ which is a contradiction. Therefore, the segment $+\oplus+$ can never occur.
33	$\ominus+\ominus+\oplus$	Impossible. See \#32.
34	$\ominus+\ominus \oplus \ominus$	Impossible. See Section 3.2.
35	$\ominus+\ominus \oplus+$	Impossible. See \#32.

36	$\ominus+\ominus \oplus \oplus$	Impossible. The important inequalities are: $\begin{aligned} & f j-e k \leq)(\text { Index } 1) \\ & c j-b k>0 \text { and } d h>b k(\text { Index } 2) \\ & c g-a k \leq 0(\text { Index } 3) \\ & a j \geq d e \text { and } b g-d e>0((\text { Index } 4) \\ & b f-a h>0(\text { Index } 5) \end{aligned}$ Determinants 2, 4 and 5 tell us that $c, j, g, b, f \neq 0$, and therefore the determinants 1 and 3 tell us that $e, k, a \neq 0$. So we can say that $j \geq \frac{d e}{a}$ and $j \leq \frac{e k}{f}$. This means that $\frac{d e}{a} \leq \frac{e k}{f}$ so $d \leq \frac{a k}{f}$. Substitution gives $\frac{a k}{f} h>d h>b k$ or $a h>b f$. But $a h<b f$ so this is a contradiction.
37	$\ominus++\ominus \ominus$	There is a recoverable annular planar network with this Λ. See Section 3.1.
38	$\ominus++\ominus+$	Impossible. See \#32.
39	$\ominus++\ominus \oplus$	Impossible. The important inequalities are: $\begin{aligned} & f j-g h \leq 0 \text { and } f j-e k \leq 0(\text { Index } 1) \\ & c j-b k>0 \text { and } d h \geq b k(\text { Index 2) } \\ & c g-d f>0 \text { and } a k \geq d f(\text { Index 3) } \\ & b f-a h>0(\text { Index } 5) \end{aligned}$ The first inequalities from determinant pairs 2,3 and 5 tell us that $c, j, g, b, f \neq 0$. This in turn tells us, using the determinants of index 1 , thath $k \neq 0$. Therefore, we can say that $b \leq \frac{d h}{k}$ and $b>\frac{a h}{f}$ so $\frac{a h}{f}<\frac{d h}{k}$. Since $h \neq 0, a k<d f$ which is a contradiction. Therefore, the combination $\ominus++$? \oplus is algebraically impossible.

40	$\ominus+++\ominus$	Reorder nodes 14325; Λ has one pair of problematic de- terminants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
41	$\ominus++++$	Impossible. See \#32.
42	$\ominus+++\oplus$	Impossible. See \#39.
43	$\ominus++\oplus \ominus$	Reorder nodes 14325; Λ has two adjacent pairs of prob- lematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a re- coverable annular planar network.
44	$\ominus++\oplus+$	Impossible. See \#32.
45	$\ominus++\oplus \oplus$	Impossible. See \#39.

		Determinants from pairs $2,3,4$ and 5 tell us that $c, j, g, b, f \neq 0$ which tells us that in the inequalities of index $1, g, h, e, k \neq 0$. This in turn tells us that since $b k>0, d \neq 0$. Then $d e>0$ so $a \neq 0$. With this knowledge, we can say that $f \geq \frac{a k}{d}$. Substitution gives $\frac{a k}{d} j-e k \leq f j-e k \leq 0$ so $a j-d e \leq 0$. But $a j-d e \geq 0$ so $a j=d e$. This means that $b g-a j>0$ so $b>\frac{a j}{g}$ and $\frac{a j}{g} f-a h>b f-a h>0$ or $f j-g h>0$. But this is a contradiction.
55	$\ominus \oplus \ominus \ominus \ominus$	There is a recoverable annular planar network with this Λ. See Section 3.1.
56	$\ominus \oplus \ominus \ominus+$	Impossible. See Section 3.2.
57	$\ominus \oplus \ominus \ominus \oplus$	Impossible. See Section 3.2.
58	$\ominus \oplus \ominus+\ominus$	Impossible. See Section 3.2.
59	$\ominus \oplus \ominus++$	Impossible. See \#39.
60	$\ominus \oplus \ominus+\oplus$	Impossible. See \#39.
61	$\ominus \oplus \ominus \oplus \ominus$	Impossible. See Section 3.2.
62	$\ominus \oplus \ominus \oplus+$	Impossible. See \#39.
63	$\ominus \oplus \ominus \oplus \oplus$	Impossible. The important determinants are: $\begin{aligned} & f j-g h \leq 0(\text { Index } 1) \\ & c j-d h>0(\text { Index } 2) \\ & c g-d f \leq 0 \text { and } c g-a k \leq 0(\text { Index } 3) \\ & b g-d e>0(\text { Index } 4) \\ & b f-a h>0(\text { Index } 5) \end{aligned}$

		Determinants from index 2, 4 and 5 tell us that $c, j, b, g, f \neq 0$. Thus, determinants of index 3 tell us that $d, f, a, k \neq 0$, and $c \leq \frac{d f}{g}$. Substitution gives $\frac{d f}{g} j-d h \geq c j-d h>0$ so $f j-g h>0$ which is a contradiction.
64	$\ominus \oplus+\ominus \ominus$	There is a recoverable annular planar network with this Λ. See Section 3.1.
65	$\ominus \oplus+\ominus+$	Impossible. See \#32.
66	$\ominus \oplus+\ominus \oplus$	Impossible. See \#39.
67	$\ominus \oplus++\ominus$	Reorder nodes 14325; Λ has two adjacent pairs of problematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
68	$\ominus \oplus+++$	Impossible. See \#39.
69	$\ominus \oplus++\oplus$	Reorder nodes 13254; network becomes Λ-equivalent to a circular planar network. See Section 2.2.
70	$\ominus \oplus+\oplus \ominus$	Reorder nodes 12534; Λ has two adjacent pairs of problematic determinants. All other re-orderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
71	$\ominus \oplus+\oplus+$	Reorder nodes 12543; Λ has one pair of problematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
72	$\ominus \oplus+\oplus \oplus$	Reorder nodes 12543; Λ has two adjacent pairs of problematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
73	$\ominus \oplus \oplus \ominus \ominus$	There is a recoverable annular planar network with this Λ. See Section 3.1.
74	$\ominus \oplus \oplus \ominus+$	Impossible. See \#36.
75	$\ominus \oplus \oplus \ominus \oplus$	Impossible. See \#63.

76	$\ominus \oplus \oplus+\ominus$	Reorder nodes 14325; Λ has one pair of problematic de- terminants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
77	$\ominus \oplus \oplus++$	Impossible. See \#39.
78	$\ominus \oplus \oplus+\oplus$	Reorder nodes 14325; Λ has two adjacent pairs of prob- lematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a re- coverable annular planar network.
79	$\ominus \oplus \oplus \oplus \ominus$	Impossible. See \#27.
80	$\ominus \oplus \oplus \oplus+$	Impossible. See \#54.
81	$\ominus \oplus \oplus \oplus \oplus$	For all intents and purposes, this combination is impos- sible. The important inequalities are:
$\quad f j-e k \leq 0$ (Index 1)		
$c j-d h>0$ (Index 2$)$		
$d f \geq a k$ (Index 3$)$		
$a j \geq d e($ Index 4$)$		

82	$+\ominus \ominus \ominus \ominus$	There is a recoverable annular planar network with this Λ. See Section 3.1.
83	$+\ominus \ominus \ominus+$	There is a recoverable annular planar network with this Λ. See Section 3.1.
84	$+\ominus \ominus \ominus \oplus$	There is a recoverable annular planar network with this Λ. See Section 3.1.
85	$+\ominus \ominus+\ominus$	Impossible. See Section 3.2.
86	$+\ominus \ominus++$	Reorder nodes 13245; Λ has one pair of problematic de- terminants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
87	$+\ominus \ominus+\oplus$	Reorder nodes 13245; network becomes Λ-equivalent to a circular planar network. See Section 2.2.
88	$+\ominus \ominus \oplus \ominus$	Impossible. See Section 3.2.
89	$+\ominus \ominus \oplus+$	Reorder nodes 13245; Λ has two adjacent pairs of prob- lematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a re- coverable annular planar network.
90	$+\ominus \ominus \oplus \oplus$	Reorder nodes 13245; Λ has one pair of problematic de- terminants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable
annular planar network.		

102	$+\ominus \oplus \ominus \oplus$	Impossible. See \#39.
103	$+\ominus \oplus+\ominus$	Impossible. See \#32.
104	$+\ominus \oplus++$	Impossible. See \#39.
105	$+\ominus \oplus+\oplus$	Reorder nodes 13245; Λ has one pair of problematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
106	$+\ominus \oplus \oplus \ominus$	Impossible. See \#36.
107	$+\ominus \oplus \oplus+$	Impossible. See \#39.
108	$+\ominus \oplus \oplus \oplus$	Impossible. See \#54.
109	$++\ominus \ominus \ominus$	There is a recoverable annular planar network with this Λ. See Section 3.1.
110	$++\ominus \ominus+$	Reorder nodes 12435; Λ has one pair of problematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
111	$++\ominus \ominus \oplus$	Reorder nodes 12435; Λ has two adjacent pairs of problematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
112	$++\ominus+\ominus$	Impossible. See \#32.
113	$++\ominus++$	Impossible. See \#32.
114	$++\ominus+\oplus$	Impossible. See \#32.
115	$++\ominus \oplus \ominus$	Impossible. See \#39.
116	$++\ominus \oplus+$	Impossible. See \#39.
117	$++\ominus \oplus \oplus$	Impossible. See \#39.
118	$+++\ominus \ominus$	Reorder nodes 12354; Λ has one pair of problematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
119	$+++\ominus+$	Impossible. See \#32.
120	$+++\ominus \oplus$	Impossible. See \#42.
121	$++++\theta$	Impossible. See \#32.

122	$+++++$	Impossible. The important inequalities are: $\begin{aligned} & c j-b k>0(\text { Index } 2) \\ & a k>d f(\text { Index } 3) \\ & d e>a j(\text { Index } 4) \\ & b f-c e>0(\text { Index } 5) \end{aligned}$ Now, note that $c, j, a, k, d, e, b, f \neq 0$ from these inequalities, so we can say that $f<\frac{a k}{d}$ and substitution gives $f j-e k<\frac{a k}{d} j-e k=\frac{k}{d}(a j-d e)<0$ since $d e>a j$. So $f j-e k<0$ and $f<\frac{e k}{j}$. Another substitution gives $0<b f-c e<b \frac{e k}{j}-c e=\frac{e}{j}(b k-c j)<0$ because $c j-b k>0$. But then $0<b f-c e<0$, which is a contradiction.
123	$++++\oplus$	Impossible. See the proof used as an example in the proof of the theorem in Section 3.3. Since the only determanant pairs used in the proof were pairs 2,3 and 5 , that proof essentially proved that any combination ? ++ ? \oplus is algebraically impossible.
124	$+++\oplus \ominus$	Impossible. See \#39.
125	$+++\oplus+$	Impossible. See \#123.
126	$+++\oplus \oplus$	Impossible. See \#123.
127	$++\oplus \ominus \ominus$	Reorder nodes 12354; Λ has two adjacent pairs of problematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
128	$++\oplus \ominus+$	Impossible. See \#39.
129	$++\oplus \ominus \oplus$	Reorder nodes 14235; network becomes Λ-equivalent to a circular planar network. See Section 2.2.

130	$++\oplus+\ominus$	Impossible. See \#32.
131	$++\oplus++$	Impossible. See \#123.
132	$++\oplus+\oplus$	Reorder nodes 14235; Λ has one pair of problematic de- terminants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
133	$++\oplus \oplus \ominus$	Impossible. See \#39.
134	$++\oplus \oplus+$	Impossible. See \#123.
135	$++\oplus \oplus \oplus$	Impossible. See \#123

146	$+\oplus+\ominus+$	Impossible. See \#32.
147	$+\oplus+\ominus \oplus$	Reorder nodes 12354; Λ has one pair of problematic de- terminants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
148	$+\oplus++\ominus$	Impossible. See \#32.
149	$+\oplus+++$	Impossible. See \#123.
150	$+\oplus++\oplus$	Reorder nodes 13254; Λ has one pair of problematic de- terminants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
151	$+\oplus+\oplus \ominus$	Reorder nodes 12534; Λ has two adjacent pairs of prob- lematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a re- coverable annular planar network.
152	$+\oplus+\oplus+$	Reorder nodes 12435; Λ has one pair of problematic de- terminants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
153	$+\oplus+\oplus \oplus$	Reorder nodes 12354; Λ has two adjacent pairs of prob- lematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a re- coverable annular planar network.
154	$+\oplus \oplus \ominus \ominus$	Reorder nodes 12354; Λ has one pair of problematic de- terminants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
157	$+\oplus \oplus+\ominus$	$+\oplus \oplus \ominus+$
Impossible. See \#39.		

159	$+\oplus \oplus+\oplus$	Reorder nodes 13245; Λ has two adjacent pairs of prob- lematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a re- coverable annular planar network.
160	$+\oplus \oplus \oplus \ominus$	Impossible. See \#54.
161	$+\oplus \oplus \oplus+$	Impossible. See \#123.
162	$+\oplus \oplus \oplus \oplus$	Reorder nodes 13524; Λ has one pair of problematic de- terminants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
163	$\oplus \ominus \ominus \ominus \ominus$	There is a recoverable annular planar network with this $\Lambda . S e e ~ S e c t i o n ~ 3.1 . ~$
164	$\oplus \ominus \ominus \ominus+$	There is a recoverable annular planar network with this $\Lambda . ~ S e e ~ S e c t i o n ~ 3.1 . ~$
165	$\oplus \ominus \ominus \ominus \oplus$	There is a recoverable annular planar network with this $\Lambda . S e e ~ S e c t i o n ~ 3.1 . ~$
166	$\oplus \ominus \ominus+\ominus$	Impossible. See Section 3.2.
167	$\oplus \ominus \ominus++$	Reorder nodes 13245; Λ has two adjacent pairs of prob- lematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a re- coverable annular planar network.
168	$\oplus \ominus \ominus+\oplus$	Reorder nodes 13245; Λ has one pair of problematic de- terminants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable
annular planar network.		

176	$\oplus \ominus+++$	Impossible. See \#39.
177	$\oplus \ominus++\oplus$	Impossible. See $\# 39$.
178	$\oplus \ominus+\oplus \ominus$	Impossible. See $\# 39$.
179	$\oplus \ominus+\oplus+$	Reorder nodes 13425; Λ has two adjacent pairs of prob- lematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a re- coverable annular planar network.
180	$\oplus \ominus+\oplus \oplus$	Impossible. See \#54.
181	$\oplus \ominus \oplus \ominus \ominus$	Impossible. See Section 3.2.
182	$\oplus \ominus \oplus \ominus+$	Impossible. See \#39.
183	$\oplus \ominus \oplus \ominus \oplus$	Impossible. See $\# 63$.
184	$\oplus \ominus \oplus+\ominus$	Impossible. See \#39.
185	$\oplus \ominus \oplus++$	Reorder nodes 13425; network becomes Λ-equivalent to a circular planar network. See Section 2.2.
186	$\oplus \ominus \oplus+\oplus$	Reorder nodes 13245; Λ has two adjacent pairs of prob- lematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a re- coverable annular planar network.
187	$\oplus \ominus \oplus \oplus \ominus$	Impossible. See \#63
188	$\oplus \ominus \oplus \oplus+$	Reorder nodes 12543; Λ has two adjacent pairs of prob- lematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a re- coverable annular planar network.
189	$\oplus \ominus \oplus \oplus \oplus$	Impossible. See \#81.
190	$\oplus+\ominus \ominus \ominus$	There is a recoverable annular planar network with this $\Lambda . ~ S e e ~ S e c t i o n ~$.1.

197	$\oplus+\ominus \oplus+$	Reorder nodes 12435; Λ has one pair of problematic de- terminants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
198	$\oplus+\ominus \oplus \oplus$	Impossible. See \#54.
199	$\oplus++\ominus \ominus$	Reorder nodes 12354; Λ has two adjacent pairs of prob- lematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a re- coverable annular planar network.
200	$\oplus++\ominus+$	Impossible. See \#32.
201	$\oplus++\ominus \oplus$	Impossible. See \#39.
202	$\oplus+++\ominus$	Impossible. See \#39.
203	$\oplus++++$	Impossible. See \#123.
204	$\oplus+++\oplus$	Impossible. See \#123.
205	$\oplus++\oplus \ominus$	Reorder nodes 12534; network becomes Λ-equivalent to a circular planar network. See Section 2.2.
206	$\oplus++\oplus+$	Reorder nodes 12534; Λ has one pair of problematic de- terminants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
207	$\oplus++\oplus \oplus$	Impossible. See \#123.
208	$\oplus+\oplus \ominus \ominus$	Reorder nodes 14235; Λ has two adjacent pairs of prob- lematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a re- coverable annular planar network.
211	$\oplus+\oplus+\ominus$	Reorder nodes 14325; Λ has one pair of problematic de- terminants. All other reorderings are clean. Therefore,
the reordered network is Λ-equivalent to a recoverable		
annular planar network.		

212	$\oplus+\oplus++$	Reorder nodes 13425; Λ has one pair of problematic de- terminants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
213	$\oplus+\oplus+\oplus$	Reorder nodes 14325; Λ has two adjacent pairs of prob- lematic determinants. All other re-embeddings are clean. Therefore, the reordered network is Λ-equivalent to a re- coverable annular planar network.
214	$\oplus+\oplus \oplus \ominus$	Reorder nodes 14325; Λ has two adjacent pairs of prob- lematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a re- coverable annular planar network.
215	$\oplus+\oplus \oplus+$	Reorder nodes 12435; Λ has two adjacent pairs of prob- lematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a re- coverable annular planar network.
216	$\oplus+\oplus \oplus \oplus$	Reorder nodes 13524; Λ has one pair of problematic de- terminants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
217	$\oplus \oplus \ominus \ominus \ominus$	There is a recoverable annular planar network with this $\Lambda . ~ S e e ~ S e c t i o n ~ 3.1 . ~$

226	$\oplus \oplus+\ominus \ominus$	Reorder nodes 12354; Λ has one pair of problematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
227	$\oplus \oplus+\ominus+$	Impossible. See \#32.
228	$\oplus \oplus+\ominus \oplus$	Impossible. See \#54.
229	$\oplus \oplus++\ominus$	Impossible. See \#39.
230	$\oplus \oplus+++$	Impossible. See \#123.
231	$\oplus \oplus++\oplus$	Impossible. See \#123.
232	$\oplus \oplus+\oplus \ominus$	Reorder nodes 12354; Λ has two adjacent pairs of problematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
233	$\oplus \oplus+\oplus+$	Reorder nodes 12543; Λ has two adjacent pairs of problematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
234	$\oplus \oplus+\oplus \oplus$	Reorder nodes 13524; Λ has one pair of problematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
235	$\oplus \oplus \oplus \ominus \ominus$	Impossible. See \#27.
236	$\oplus \oplus \oplus \ominus+$	Impossible. See \#54.
237	$\oplus \oplus \oplus \ominus \oplus$	Impossible. See \#81.
238	$\oplus \oplus \oplus+\ominus$	Impossible. See \#54.
239	$\oplus \oplus \oplus++$	Impossible. See \#123.
240	$\oplus \oplus \oplus+\oplus$	Reorder nodes 13524; Λ has one pair of problematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
241	$\oplus \oplus \oplus \oplus \ominus$	Impossible. See \#81.
242	$\oplus \oplus \oplus \oplus+$	Reorder nodes 13524; Λ has one pair of problematic determinants. All other reorderings are clean. Therefore, the reordered network is Λ-equivalent to a recoverable annular planar network.
243	$\oplus \oplus \oplus \oplus \oplus$	Reorder nodes 13524; network becomes Λ-equivalent to a circular planar network. See Section 2.2.

