Appendix A: Calculations of Algebraic Impossibility

To keep track of the values of determinant pairs, we will use the notation from the proof of the theorem in Section 3.3. The values of the determinants will be denoted using a, b, c, d, e, f, g, h, j, k from the general Kirchhoff matrix in Section 2.2, as in Table 2.

It is worth noting that renumbering boundary nodes in either circular or reverse circular order does not change how the determinant values interact, because the beginning node and direction of a numbering is arbitrary. This means, for example, that once we have shown

 $\ominus \oplus + + +$

to be an algebraically impossible combination of determinants, we also will know that

 $+ \ominus \oplus + + \text{ and } + + \ominus \oplus + \text{ and } + + + \ominus \oplus \text{ and } \oplus + + + \ominus$

are impossible combinations, as are

 $+++\oplus \ominus$ and $++\oplus \ominus +$ and $+\oplus \ominus ++$ and $\oplus \ominus +++$ and $\ominus +++\oplus$.

Therefore, when one combination is found to be impossible, all its renumberings in circular and reverse circular order will also be impossible, based on the proof of the original impossibility.

In some cases, only a segment of the combination is needed to prove the impossibility. When this occurs, all other combinations of determinants which contain this segment in either circular or reverse circular order will also be impossible, based on the proof of the impossibility of the original segment.

We will refer to a reordering as *clean* if the new Λ has two pairs of problematic determinants only if they are adjacent.

1	$\Theta \Theta \Theta \Theta \Theta$	There is a recoverable circular planar network with this Λ .
2	$\Theta \Theta \Theta \Theta +$	There is a recoverable annular planar network with this Λ . See Section 3.1.
3	$\ominus \ominus \ominus \ominus \oplus$	There is a recoverable annular planar network with this Λ . See Section 3.1.

4	$\ominus \ominus \ominus + \ominus$	There is a recoverable annular planar network with
5		this Λ . See Section 3.1.
5	$\ominus \ominus \ominus + +$	There is a recoverable annular planar network with this Λ . See Section 3.1.
6	$\Theta \Theta \Theta + \Theta$	There is a recoverable annular planar network with
0	000+0	this Λ . See Section 3.1.
7	$\Theta \Theta \Theta \Theta \Theta$	There is a recoverable annular planar network with
'	00000	this Λ . See Section 3.1.
8	$\Theta \Theta \Theta \oplus +$	There is a recoverable annular planar network with
		this Λ . See Section 3.1.
9	$\ominus \ominus \ominus \oplus \oplus \oplus$	There is a recoverable annular planar network with
		this Λ . See Section 3.1.
10	$\Theta \Theta + \Theta \Theta$	There is a recoverable annular planar network with
		this Λ . See Section 3.1.
11	$\ominus \ominus + \ominus +$	Impossible. See Section 3.2.
12	$\ominus \ominus + \ominus \oplus$	Impossible. See Section 3.2.
13	$\ominus \ominus + + \ominus$	There is a recoverable annular planar network with
		this Λ . See Section 3.1.
14	$\ominus \ominus + + +$	Reorder nodes 12543 ; Λ has one pair of problematic de-
		terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
		annular planar network.
15	$\ominus \ominus + + \oplus$	Reorder nodes 12543 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
16	$\ominus \ominus + \oplus \ominus$	There is a recoverable annular planar network with
		this Λ. See Section 3.1.
17	$\ominus \ominus + \oplus +$	Reorder nodes 12543 ; network becomes Λ -equivalent to
10		a circular planar network. See Section 2.2.
18	$\ominus \ominus + \oplus \oplus$	Reorder nodes 12543; Λ has one pair of problematic de-
		terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
10		annular planar network.
19	$\ominus \ominus \oplus \ominus \ominus$	There is a recoverable annular planar network with
		this Λ . See Section 3.1.

20	$\ominus \ominus \oplus \ominus +$	Impossible. See Section 3.2.
21	$\ominus \ominus \oplus \ominus \oplus$	Impossible. See Section 3.2.
22	$\Theta \ominus \oplus + \Theta$	There is a recoverable annular planar network with
		this Λ . See Section 3.1.
23	$\ominus \ominus \oplus + +$	Reorder nodes 12543 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network .
24	$\ominus \ominus \oplus + \oplus$	Reorder nodes 13254 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
25	$\ominus \ominus \oplus \oplus \ominus \ominus$	There is a recoverable annular planar network with
		this Λ . See Section 3.1.
26	$\ominus \ominus \oplus \oplus +$	Reorder nodes 12543 ; Λ has one pair of problematic de-
		terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
		annular planar network.
27	$\ominus \ominus \oplus \oplus \oplus \oplus$	For all intents and purposes, this combination is impos -
		sible. The important inequalities are:
		$cj - dh \le 0 \pmod{2}$
		$aj \ge de \pmod{4}$
		$ce \ge ah$ (Index 5)
		Now, we can treat the last as a strict inequality, because
		if both determinants of index 3 are equal, and both deter-
		minants of index 5 are equal, this combination could be
		treated as $\#17$. Symmetry says that making the deter-
		minants of index 5 strictly not equal has the same effect
		as restricting the determinants of index 3. So $ce > ah$.
		Then $c \neq 0$ so $e > \frac{ah}{c}$ and
		ah
		$0 \le aj - de < aj - d\frac{ah}{c} = a(cj - dh)$
		but $cj - dh \leq 0$ and $a \geq 0$ and this is a contradiction.

28	$\ominus + \ominus \ominus \ominus$	There is a recoverable annular planar network with
		this Λ . See Section 3.1.
29	$\ominus + \ominus \ominus +$	Impossible. See Section 3.2.
30	$\ominus + \ominus \ominus \oplus$	Impossible. See Section 3.2.
31	$\Theta + \Theta + \Theta$	Impossible. See Section 3.2.
32	$\ominus + \ominus + +$	Impossible. It is only necessary to consider determinant
		pairs $1, 2$ and 5 .
		$fj - gh \le 0$ and $fj - ek \le 0$ (Index 1)
		cj - bk > 0 and $dh > bk$ (Index 4)
		bf - ce > 0 and $ah > ce$ (Index 5)
		Now, since $bf - ce > 0$ and $cj - bk > 0$ we know that $b, f, c, j \neq 0$. This means that $fj > 0$ so $e, k \neq 0$ to make $fj - ek \leq 0$. So from determinant pair 5, we know that $f > \frac{ce}{b}$. Substitution tells us that
		$0 \ge fj - ek > \frac{ce}{b}j - ek$
		. Since $e \neq 0$ this means that
		0 > cj - bk
		which is a contradiction. Therefore, the segment $+ \oplus +$
		can never occur.
33	$\ominus + \ominus + \oplus$	Impossible. See #32.
34	$\ominus + \ominus \oplus \ominus$	Impossible. See Section 3.2.
35	$\ominus + \ominus \oplus +$	Impossible. See #32.

36	$\ominus + \ominus \oplus \oplus$	Impossible. The important inequalities are:
		$fj - ek \leq $ (Index 1)
		cj - bk > 0 and $dh > bk$ (Index 2)
		$cg - ak \leq 0 $ (Index 3)
		$aj \ge de \text{ and } bg - de > 0 \ ((\text{Index } 4))$
		bf - ah > 0 (Index 5)
		Determinants 2, 4 and 5 tell us that $c, j, g, b, f \neq 0$, and therefore the determinants 1 and 3 tell us that $e, k, a \neq 0$. So we can say that $j \geq \frac{de}{a}$ and $j \leq \frac{ek}{f}$. This means that $\frac{de}{a} \leq \frac{ek}{f}$ so $d \leq \frac{ak}{f}$. Substitution gives
		$\frac{ak}{f}h > dh > bk$
		or $ah > bf$. But $ah < bf$ so this is a contradiction.
37	$\ominus + + \ominus \ominus$	There is a recoverable annular planar network with
- 20		this Λ . See Section 3.1.
38	$\Theta + + \Theta +$	Impossible. See #32.
39	$\ominus + + \ominus \oplus$	Impossible. The important inequalities are:
		$fj - gh \le 0$ and $fj - ek \le 0$ (Index 1)
		$cj - bk > 0$ and $dh \ge bk$ (Index 2)
		$cg - df > 0$ and $ak \ge df$ (Index 3)
		bf - ah > 0 (Index 5)
		The first inequalities from determinant pairs 2,3 and 5 tell us that $c, j, g, b, f \neq 0$. This in turn tells us, using the determinants of index 1, that $h, k \neq 0$. Therefore, we can say that $b \leq \frac{dh}{k}$ and $b > \frac{ah}{f}$ so $\frac{ah}{f} < \frac{dh}{k}$. Since $h \neq 0$, $ak < df$ which is a contradiction. Therefore, the combination $\ominus + + ? \oplus$ is algebraically impossible.

 $26 \square \square \square \square \square \square$ **Impossible** The important inequalitie

	40	\ominus + + + \ominus	Reorder nodes 14325 ; Λ has one pair of problematic de-
			terminants. All other reorderings are clean. Therefore, the reordered network is Λ -equivalent to a recoverable
			annular planar network.
_	41	\ominus + + + +	Impossible. See #32.
_	42	$\Theta + + + \Theta$	Impossible. See #39.
_	43	$\Theta + + \oplus \Theta$	Reorder nodes 14325 ; Λ has two adjacent pairs of prob-
			lematic determinants. All other reorderings are clean.
			Therefore, the reordered network is Λ -equivalent to a re-
			coverable annular planar network.
_	44	$\ominus + + \oplus +$	Impossible. See #32.
	45	$\ominus + + \oplus \oplus$	Impossible. See #39.
_	46	$\ominus + \oplus \ominus \ominus$	There is a recoverable annular planar network with
			this Λ . See Section 3.1.
_	47	$\ominus + \oplus \ominus +$	Impossible. See #32.
_	48	$\ominus + \oplus \ominus \oplus$	Impossible. See #39.
	49	$\ominus + \oplus + \ominus$	Reorder nodes 14325; network becomes Λ -equivalent to
			a circular planar network. See Section 2.2.
	50	$\ominus + \oplus + +$	Impossible. See #32.
	51	$\ominus + \oplus + \oplus$	Reorder nodes 13254 ; Λ has two adjacent pairs of prob-
			lematic determinants. All other reorderings are clean.
			Therefore, the reordered network is Λ -equivalent to a re-
_			coverable annular planar network.
	52	$\ominus + \oplus \oplus \ominus$	Reorder nodes 14325 ; Λ has one pair of problematic de-
			terminants. All other reorderings are clean. Therefore,
			the reordered network is Λ -equivalent to a recoverable
_	50		annular planar network.
_	53	$\ominus + \oplus \oplus +$	Impossible. See #32.
	54	$\ominus + \oplus \oplus \oplus$	Impossible. The important inequalities are:
			$fj - gh \leq 0$ and $fj - ek \leq 0$ (Index 1)
			cj - bk > 0 and $dh > bk$ (Index 2)
			$df \ge ak $ (Index 3)
			$aj \ge de \text{ and } bg - de > 0 \text{ (Index 4)}$
			bf - ah > 0 (Index 5)
		l	

		Determinants from pairs 2, 3, 4 and 5 tell us that $c, j, g, b, f \neq 0$ which tells us that in the inequalities of index 1, $g, h, e, k \neq 0$. This in turn tells us that since $bk > 0, d \neq 0$. Then $de > 0$ so $a \neq 0$. With this knowledge, we can say that $f \geq \frac{ak}{d}$. Substitution gives
		$\frac{ak}{d}j - ek \le fj - ek \le 0$
		so $aj - de \leq 0$. But $aj - de \geq 0$ so $aj = de$. This means that $bg - aj > 0$ so $b > \frac{aj}{g}$ and
		$\frac{aj}{g}f - ah > bf - ah > 0$
		or $fj - gh > 0$. But this is a contradiction.
5.		There is a recoverable annular planar network with
		this Λ . See Section 3.1.
50	$i \ominus \oplus \ominus \ominus +$	Impossible. See Section 3.2.
5'	$' \ominus \oplus \ominus \ominus \oplus$	Impossible. See Section 3.2.
58	$\Theta \oplus \Theta + \Theta$	Impossible. See Section 3.2.
59	$\Theta \ominus \oplus \ominus + +$	Impossible. See #39.
60	$) \ominus \oplus \ominus + \oplus$	Impossible. See #39.
6	$\Theta \oplus \Theta \oplus \Theta$	Impossible. See Section 3.2.
65		Impossible. See #39.
6	$3 \ominus \oplus \ominus \oplus \oplus \oplus$	Impossible. The important determinants are:
		$fj - gh \le 0 $ (Index 1)
		cj - dh > 0 (Index 2)
		$cg - df \le 0$ and $cg - ak \le 0$ (Index 3)
		bg - de > 0 (Index 4)
		bf - ah > 0 (Index 5)

		Determinants from index 2, 4 and 5 tell us that $c, j, b, g, f \neq 0$. Thus, determinants of index 3 tell us
		that $d, f, a, k \neq 0$, and $c \leq \frac{df}{g}$. Substitution gives
		$\frac{df}{g}j - dh \ge cj - dh > 0$
		so $fj - gh > 0$ which is a contradiction.
64	$\ominus \oplus + \ominus \ominus$	There is a recoverable annular planar network with
		this Λ . See Section 3.1.
65	$\ominus \oplus + \ominus +$	Impossible. See #32.
66	$\ominus \oplus + \ominus \oplus$	Impossible. See #39.
67	$\ominus \oplus + + \ominus$	Reorder nodes 14325; A has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
68	$\ominus \oplus + + +$	Impossible. See #39.
69	$\ominus \oplus + + \oplus$	Reorder nodes 13254; network becomes Λ -equivalent to
		a circular planar network. See Section 2.2.
70	$\ominus \oplus + \oplus \ominus$	Reorder nodes 12534 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other re-orderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
71	$\ominus \oplus + \oplus +$	Reorder nodes 12543 ; Λ has one pair of problematic de-
		terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
		annular planar network.
72	$\ominus \oplus + \oplus \oplus$	Reorder nodes 12543 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
73	$\ominus \oplus \oplus \ominus \ominus$	There is a recoverable annular planar network with
		this Λ . See Section 3.1.
74	$\ominus \oplus \oplus \ominus +$	Impossible. See #36.
75	$\ominus \oplus \oplus \ominus \oplus$	Impossible. See #63.

76	$\ominus \oplus \oplus + \ominus$	Reorder nodes 14325 ; A has one pair of problematic de-
		terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
		annular planar network.
77	$\ominus \oplus \oplus + +$	Impossible. See #39.
78	$\ominus \oplus \oplus + \oplus$	Reorder nodes 14325 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
79	$\ominus \oplus \oplus \oplus \ominus$	Impossible. See #27.
80	$\ominus \oplus \oplus \oplus +$	Impossible. See #54.
81	$\ominus \oplus \oplus \oplus \oplus \oplus$	For all intents and purposes, this combination is impos -
		sible. The important inequalities are:
		$fj - ek \le 0 \pmod{1}$
		cj - dh > 0 (Index 2)
		$df \ge ak $ (Index 3)
		$aj \ge de $ (Index 4)
		If both determinants of index 3 are equal, and both determinants of index 4 are equal, then this combination could be treated as #69. So let $df > ak$. Symmetry makes this the same as making the inequality of index 4 strict. Then $f \neq 0$ and determinant 2 tells us that $j \neq 0$. Since $fj > 0$, $e \neq 0$ as well. Thus we can say that $\frac{ak}{f} < d$ and $\frac{aj}{e} \geq d$ so $\frac{ak}{f} < \frac{aj}{e}$ Therefore,
		$0 < \frac{aj}{e} - \frac{ak}{f} = \frac{a}{ef}(fj - ek)$
_		but $fj - ek \leq 0$ so this is a contradiction.

82	$+ \ominus \ominus \ominus \ominus$	There is a recoverable annular planar network with this Λ . See Section 3.1.
83	+000+	There is a recoverable annular planar network with
00	10001	this Λ . See Section 3.1.
84	$+ \ominus \ominus \ominus \oplus$	There is a recoverable annular planar network with
01		this Λ . See Section 3.1.
85	$+ \ominus \ominus + \ominus$	Impossible. See Section 3.2.
86	$+ \ominus \ominus + +$	Reorder nodes 13245 ; Λ has one pair of problematic de-
		terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
		annular planar network.
87	$+ \ominus \ominus + \oplus$	Reorder nodes 13245; network becomes Λ -equivalent to
		a circular planar network. See Section 2.2.
88	$+ \ominus \ominus \oplus \ominus$	Impossible. See Section 3.2.
89	$+ \ominus \ominus \oplus +$	Reorder nodes 13245 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
90	$+ \ominus \ominus \oplus \oplus$	Reorder nodes 13245 ; Λ has one pair of problematic de-
		terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
01		annular planar network.
91	$+ \ominus + \ominus \ominus$	Impossible. See Section 3.2.
92	$+ \ominus + \ominus +$	Impossible. See #32.
93	$+ \ominus + \ominus \oplus$	Impossible. See #32.
$\frac{94}{95}$	$+ \ominus + + \ominus$	Impossible. See #32.
$\frac{95}{96}$	$+ \ominus + + +$	Impossible.See #32.Impossible.See #32.
$\frac{90}{97}$	$\begin{array}{c} + \ominus + + \oplus \\ + \ominus + \oplus \ominus \end{array}$	Impossible.See #32.Impossible.See #32.
$\frac{97}{98}$	$+\oplus+\oplus\oplus$ $+\oplus+\oplus+$	Impossible. See #32.
$\frac{98}{99}$	$+ \ominus + \oplus +$ $+ \ominus + \oplus \oplus$	Impossible.See $\#32$.Impossible.See $\#32$.
$\frac{99}{100}$	$+ \ominus + \ominus \ominus \ominus$	Impossible. See #52. Impossible. See Section 3.2.
$\frac{100}{101}$	$+ \Theta \oplus \Theta +$	Impossible. See #39.
101		

102	$+ \ominus \oplus \ominus \oplus$	Impossible. See $#39$.
103	$+ \ominus \oplus + \ominus$	Impossible. See #32.
104	$+ \ominus \oplus + +$	Impossible. See #39.
105	$+ \ominus \oplus + \oplus$	Reorder nodes 13245 ; Λ has one pair of problematic de-
		terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
_		annular planar network.
106	$+ \ominus \oplus \oplus \ominus$	Impossible. See #36.
107	$+ \ominus \oplus \oplus +$	Impossible. See #39.
108	$+ \ominus \oplus \oplus \oplus$	Impossible. See #54.
109	$++\ominus\ominus\ominus$	There is a recoverable annular planar network with
		this Λ . See Section 3.1.
110	$++\ominus\ominus+$	Reorder nodes 12435 ; Λ has one pair of problematic de-
		terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
		annular planar network.
111	$++\ominus\ominus\oplus$	Reorder nodes 12435 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
112	$++\ominus+\ominus$	Impossible. See #32.
113	$++\ominus++$	Impossible. See #32.
114	$++\ominus+\oplus$	Impossible. See #32.
115	$++\ominus\oplus\ominus$	Impossible. See #39.
116	$++\ominus\oplus+$	Impossible. See #39.
117	$++\ominus\oplus\oplus$	Impossible. See #39.
118	$+++\ominus$	Reorder nodes 12354; Λ has one pair of problematic de-
		terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
		annular planar network.
119	$+++ \ominus +$	Impossible. See #32.
120	$+++\ominus\oplus$	Impossible. See #42.
121	$++++\ominus$	Impossible. See #32.

122	+++++	Impossible. The important inequalities are:
		cj - bk > 0 (Index 2)
		ak > df (Index 3)
		de > aj (Index 4)
		bf - ce > 0 (Index 5)
		Now, note that $c, j, a, k, d, e, b, f \neq 0$ from these inequalities, so we can say that $f < \frac{ak}{d}$ and substitution gives
		$fj - ek < \frac{ak}{d}j - ek = \frac{k}{d}(aj - de) < 0$
		since $de > aj$. So $fj - ek < 0$ and $f < \frac{ek}{j}$. Another substitution gives
		$0 < bf - ce < b\frac{ek}{j} - ce = \frac{e}{j}(bk - cj) < 0$
		because $cj - bk > 0$. But then $0 < bf - ce < 0$, which is
		a contradiction.
123	$++++\oplus$	Impossible. See the proof used as an example in the
		proof of the theorem in Section 3.3. Since the only deter-
		manant pairs used in the proof were pairs 2, 3 and 5, that
		proof essentially proved that any combination $? ++ ? \oplus$ is algebraically impossible.
124	$+++\oplus \ominus$	Impossible. See #39.
125	$+++\oplus+$	Impossible. See $\#123$.
126	$+++\oplus \oplus$	Impossible. See #123.
127	$++\oplus\ominus\ominus$	Reorder nodes 12354 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
100		coverable annular planar network.
128	$++\oplus \ominus +$	Impossible. See #39. Reorder nodes 14225: notwork becomes A equivalent to
129	$++\oplus\ominus\oplus$	Reorder nodes 14235 ; network becomes Λ-equivalent to a circular planar network . See Section 2.2.
		a circular plattar network. Dee Dection 2.2.

130	$++\oplus+\ominus$	Impossible. See $#32$.
131	$++\oplus++$	Impossible. See #123.
132	$++\oplus+\oplus$	Reorder nodes 14235 ; Λ has one pair of problematic de-
		terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
		annular planar network.
133	$++\oplus\oplus\ominus$	Impossible. See #39.
134	$++\oplus\oplus+$	Impossible. See #123.
135	$++\oplus\oplus\oplus$	Impossible. See #123
136	$+\oplus\ominus\ominus\ominus$	There is a recoverable annular planar network with
		this Λ . See Section 3.1.
137	$+\oplus\ominus\ominus+$	Reorder nodes 12435 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
138	$+\oplus\ominus\ominus\oplus$	Reorder nodes 12453; A has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
139	$+\oplus\ominus+\ominus$	Impossible. See #32.
140	$+\oplus \ominus + +$	Impossible. See #39.
141	$+\oplus \ominus +\oplus$	Reorder nodes 12453 ; A has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
142	$+\oplus\oplus\oplus\oplus$	Impossible. See #39.
143	$+\oplus\ominus\oplus+$	Reorder nodes 12453 ; network becomes Λ -equivalent to
		a circular planar network. See Section 2.2.
144	$+\oplus\ominus\oplus\oplus$	Reorder nodes 13245 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
145	$+\oplus+\ominus\ominus$	Reorder nodes 12354 ; network becomes Λ -equivalent to
		a circular planar network. See Section 2.2.

146	$+\oplus+\ominus+$	Impossible. See $#32$.
147	$+\oplus+\ominus\oplus$	Reorder nodes 12354 ; Λ has one pair of problematic de-
		terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
		annular planar network.
148	$+\oplus ++\ominus$	Impossible. See #32.
149	$+\oplus +++$	Impossible. See #123.
150	$+\oplus ++\oplus$	Reorder nodes 13254 ; Λ has one pair of problematic de-
		terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
		annular planar network.
151	$+\oplus+\oplus\ominus$	Reorder nodes 12534 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
152	$+ \oplus + \oplus +$	Reorder nodes 12435 ; Λ has one pair of problematic de-
		terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
		annular planar network.
153	$+\oplus+\oplus\oplus$	Reorder nodes 12354 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
154	$+\oplus\oplus\ominus\ominus$	Reorder nodes 12354 ; Λ has one pair of problematic de-
		terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
		annular planar network.
155	$+\oplus\oplus\ominus+$	Impossible. See #39.
156	$+\oplus\oplus\ominus\oplus$	Reorder nodes 12354 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
157	$+\oplus\oplus+\ominus$	Impossible. See #32.
158	$+\oplus\oplus++$	Impossible. See #123.

159	$+\oplus\oplus+\oplus$	Reorder nodes 13245 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
160	$+\oplus\oplus\oplus\ominus$	Impossible. See #54.
161	$+\oplus\oplus\oplus+$	Impossible. See #123.
162	$+\oplus\oplus\oplus\oplus$	Reorder nodes 13524 ; Λ has one pair of problematic de-
		terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
		annular planar network.
163	$\oplus \ominus \ominus \ominus \ominus$	There is a recoverable annular planar network with
		this A. See Section 3.1 .
164	$\oplus \ominus \ominus \ominus +$	There is a recoverable annular planar network with
		this A. See Section 3.1 .
165	$\oplus \ominus \ominus \ominus \oplus$	There is a recoverable annular planar network with
		this A. See Section 3.1 .
166	$\oplus \ominus \ominus + \ominus$	Impossible. See Section 3.2.
167	$\oplus \ominus \ominus + +$	Reorder nodes 13245 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network .
168	$\oplus \ominus \ominus + \oplus$	Reorder nodes 13245; A has one pair of problematic de-
		terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
		annular planar network.
169	$\oplus \ominus \ominus \oplus \ominus$	Impossible. See Section 3.2.
170	$\oplus \ominus \ominus \oplus +$	Reorder nodes 13425 ; A has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
171	$\oplus \ominus \ominus \oplus \oplus$	Impossible. See #27.
172	$\oplus \ominus + \ominus \ominus$	Impossible. See Section 3.2.
173	$\oplus \ominus + \ominus +$	Impossible. See #32.
174	$\oplus \ominus + \ominus \oplus$	Impossible. See #36.
175	$\oplus \ominus + + \ominus$	Impossible. See #39.

176	$\oplus \ominus + + +$	Impossible. See #39.
177	$\oplus \ominus + + \oplus$	Impossible. See #39.
178	$\oplus \ominus + \oplus \ominus$	Impossible. See #39.
179	$\oplus \ominus + \oplus +$	Reorder nodes 13425; A has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
180	$\oplus \ominus + \oplus \oplus$	Impossible. See #54.
181	$\oplus \ominus \oplus \ominus \ominus$	Impossible. See Section 3.2.
182	$\oplus \ominus \oplus \ominus +$	Impossible. See #39.
183	$\oplus \ominus \oplus \ominus \oplus$	Impossible. See #63.
184	$\oplus \ominus \oplus + \ominus$	Impossible. See #39.
185	$\oplus \ominus \oplus + +$	Reorder nodes 13425 ; network becomes Λ -equivalent to
		a circular planar network. See Section 2.2.
186	$\oplus \ominus \oplus + \oplus$	Reorder nodes 13245 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
187	$\oplus \ominus \oplus \oplus \ominus$	Impossible. See #63
188	$\oplus \ominus \oplus \oplus +$	Reorder nodes 12543 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
189	$\oplus \ominus \oplus \oplus \oplus$	Impossible. See #81.
190	$\oplus + \ominus \ominus \ominus$	There is a recoverable annular planar network with
		this Λ . See Section 3.1.
191	$\oplus + \ominus \ominus +$	Reorder nodes 12435; network becomes Λ -equivalent to
		a circular planar network. See Section 2.2.
192	$\oplus + \ominus \ominus \oplus$	Reorder nodes 12435 ; Λ has one pair of problematic de-
		terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
100		annular planar network.
193	$\oplus + \ominus + \ominus$	Impossible. See #32.
194	$\oplus + \ominus + +$	Impossible. See #32.
195	$\oplus + \ominus + \oplus$	Impossible. See #32.
196	$\oplus + \ominus \oplus \ominus$	Impossible. See #39.

197	$\oplus + \ominus \oplus +$	Reorder nodes 12435 ; A has one pair of problematic de- terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
		annular planar network.
198	$\oplus + \ominus \oplus \oplus$	Impossible. See #54.
199	$\oplus + + \ominus \ominus$	Reorder nodes 12354 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
200	$\oplus + + \ominus +$	Impossible. See #32.
201	$\oplus + + \ominus \oplus$	Impossible. See #39.
202	$\oplus + + + \ominus$	Impossible. See #39.
203	\oplus + + + +	Impossible. See #123.
204	$\oplus + + + \oplus$	Impossible. See #123.
205	$\oplus + + \oplus \ominus$	Reorder nodes 12534; network becomes Λ -equivalent to
		a circular planar network. See Section 2.2.
206	$\oplus + + \oplus +$	Reorder nodes 12534 ; Λ has one pair of problematic de-
		terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
		annular planar network.
207	$\oplus + + \oplus \oplus$	Impossible. See #123.
208	$\oplus + \oplus \ominus \ominus$	Reorder nodes 14235 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
209	$\oplus + \oplus \ominus +$	Reorder nodes 14235; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
010		coverable annular planar network.
210	$\oplus + \oplus \ominus \oplus$	Reorder nodes 12435 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
211	\oplus \downarrow \oplus \downarrow \bigcirc	coverable annular planar network . Reorder nodes 14325 ; A has one pair of problematic de-
411	$\oplus + \oplus + \ominus$	terminants. All other reorderings are clean. Therefore,
		the reordered network is A-equivalent to a recoverable
		annular planar network.

212	$\oplus + \oplus + +$	terminants. All other reorderings are clean. Therefore,
		the reordered network is Λ -equivalent to a recoverable
		annular planar network.
213	$\oplus + \oplus + \oplus$	Reorder nodes 14325 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other re-embeddings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
1 4		coverable annular planar network.
214	$\oplus + \oplus \oplus \ominus$	Reorder nodes 14325; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
-015		coverable annular planar network.
215	$\oplus + \oplus \oplus +$	Reorder nodes 12435 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
216		coverable annular planar network.
210	$\oplus + \oplus \oplus \oplus$	Reorder nodes 13524; Λ has one pair of problematic de- terminants. All other reorderings are clean. Therefore
		terminants. All other reorderings are clean. Therefore, the reordered network is Λ -equivalent to a recoverable
		_
217	$\oplus \oplus \ominus \ominus \ominus$	annular planar network.There is a recoverable annular planar network with
217	A A A A A A	this Λ . See Section 3.1.
218	$\oplus \oplus \ominus \ominus +$	Reorder nodes 12435 ; Λ has one pair of problematic de-
210		terminants. All other reorderings are clean. Therefore,
		the reordered network is A-equivalent to a recoverable
		annular planar network.
219	$\oplus \oplus \ominus \ominus \oplus$	Impossible. See #27.
220	$\oplus \oplus \ominus + \ominus$	Impossible. See #36.
221	$\oplus \oplus \ominus + +$	Impossible. See #39.
222	$\oplus \oplus \ominus + \oplus$	Impossible. See #54.
223	$\oplus \oplus \ominus \oplus \ominus$	Impossible. See #63.
224	$\oplus \oplus \ominus \oplus +$	Reorder nodes 12435 ; Λ has two adjacent pairs of prob-
		lematic determinants. All other reorderings are clean.
		Therefore, the reordered network is Λ -equivalent to a re-
		coverable annular planar network.
225	$\oplus\oplus\ominus\oplus\oplus\oplus$	Impossible. See #81.

terminants. All other reorderings are clean. There the reordered network is Λ -equivalent to a recove annular planar network.227 $\oplus \oplus + \ominus \oplus$ Impossible. See #32.228 $\oplus \oplus + \ominus \oplus$ Impossible. See #32.229 $\oplus \oplus + + \ominus$ Impossible. See #39.230 $\oplus \oplus + + \oplus$ Impossible. See #123.231 $\oplus \oplus + + \oplus$ Impossible. See #123.232 $\oplus \oplus + + \oplus$ Reorder nodes 12354; Λ has two adjacent pairs of plematic determinants. All other reorderings are concertable annular planar network.233 $\oplus \oplus + \oplus +$ Reorder nodes 12543; Λ has two adjacent pairs of plematic determinants. All other reorderings are concertable annular planar network.234 $\oplus \oplus + \oplus +$ Reorder nodes 13524; Λ has one pair of problematic terminants. All other reorderings are clean. There the reordered network is Λ -equivalent to a recover annular planar network.235 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #27.236 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #54.237 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #123.238 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #27.236 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #123.240 $\oplus \oplus \oplus \oplus \oplus \oplus$ Reorder nodes 13524; Λ has one pair of problematic terminants. All other reorderings are clean. There the reordered network.239 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$ Reorder nodes 13524; Λ has one pair of problematic terminants. All other reorderings are clean. There240 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$ Reorder nodes 13524; Λ has one pair of problematic terminants. All other reorderings are clean. There	rable
annular planar network.227 $\oplus \oplus + \ominus +$ Impossible. See #32.228 $\oplus \oplus + \ominus \oplus$ Impossible. See #32.229 $\oplus \oplus + + \ominus$ Impossible. See #123.230 $\oplus \oplus + + \oplus$ Impossible. See #123.231 $\oplus \oplus + + \oplus$ Impossible. See #123.232 $\oplus \oplus + + \oplus$ Reorder nodes 12354; A has two adjacent pairs of plematic determinants. All other reorderings are converable annular planar network.233 $\oplus \oplus + \oplus + \oplus$ Reorder nodes 12543; A has two adjacent pairs of plematic determinants. All other reorderings are converable annular planar network.233 $\oplus \oplus + \oplus + \oplus$ Reorder nodes 12543; A has two adjacent pairs of plematic determinants. All other reorderings are converable annular planar network.234 $\oplus \oplus + \oplus + \oplus$ Reorder nodes 13524; A has one pair of problematic terminants. All other reorderings are clean. Therefore, the reordered network is Λ -equivalent to a recover annular planar network.235 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #27.236 $\oplus \oplus \oplus \oplus \oplus$ Impossible. See #41.237 $\oplus \oplus \oplus \oplus \oplus$ Impossible. See #123.238 $\oplus \oplus \oplus \oplus \oplus$ Impossible. See #123.240 $\oplus \oplus \oplus + \oplus$ Reorder nodes 13524; A has one pair of problematic termination for the problematic ter	prob- lean. a re- prob-
227 $\oplus \oplus + \ominus +$ Impossible.See #32. 228 $\oplus \oplus + \oplus \oplus \oplus$ Impossible.See #54. 229 $\oplus \oplus + + \oplus$ Impossible.See #123. 230 $\oplus \oplus + + \oplus$ Impossible.See #123. 231 $\oplus \oplus + + \oplus$ Impossible.See #123. 232 $\oplus \oplus + \oplus \oplus$ Reorder nodes 12354; A has two adjacent pairs of plenatic determinants.All other reorderings are of the theorem the reordered network is A-equivalent to coverable annular planar network. 233 $\oplus \oplus + \oplus + \oplus$ Reorder nodes 12543; A has two adjacent pairs of plenatic determinants.All other reorderings are of the theorem the reorder nodes 12543; A has two adjacent pairs of plenatic determinants. 233 $\oplus \oplus + \oplus + \oplus$ Reorder nodes 13524; A has one pair of problematic terminants.All other reorderings are clean. Therefore, the reordered network is A-equivalent to coverable annular planar network. 234 $\oplus \oplus + \oplus \oplus \oplus \oplus$ Impossible.See #27. 236 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus$ Impossible.See #27. 236 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible.See #123. 237 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus$ Impossible.See #54. 237 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus$ Impossible.See #123. 238 $\oplus \oplus \oplus + \oplus$ Impossible.See #123. 240 $\oplus \oplus \oplus + \oplus$ Reorder nodes 13524; A has one pair of problematic and	lean. a re- prob-
228 \oplus \oplus \oplus \oplus Impossible.See #54.229 \oplus \oplus \oplus $+$ $+$ Impossible.See #39.230 \oplus \oplus $+$ $+$ Impossible.See #123.231 \oplus \oplus $+$ $+$ Impossible.See #123.232 \oplus \oplus $+$ \oplus Reorder nodes 12354; Λ has two adjacent pairs of plematic determinants. All other reorderings are of the three thre	lean. a re- prob-
229 $\oplus \oplus + + \oplus$ Impossible. See #39.230 $\oplus \oplus + + \oplus$ Impossible. See #123.231 $\oplus \oplus + + \oplus$ Impossible. See #123.232 $\oplus \oplus + \oplus \oplus$ Reorder nodes 12354; A has two adjacent pairs of plematic determinants. All other reorderings are of the therefore, the reordered network is A-equivalent to coverable annular planar network.233 $\oplus \oplus + \oplus +$ Reorder nodes 12543; A has two adjacent pairs of plematic determinants. All other reorderings are of the therefore, the reordered network is A-equivalent to coverable annular planar network.234 $\oplus \oplus + \oplus \oplus$ Reorder nodes 13524; A has one pair of problematities the reordered network is A-equivalent to a recover annular planar network.235 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #27.236 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #54.237 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #123.238 $\oplus \oplus \oplus + \oplus$ Reorder nodes 13524; A has one pair of problematic the reordered network is Λ -equivalent to a recover annular planar network.235 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #27.236 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #123.239 $\oplus \oplus \oplus + \oplus$ Reorder nodes 13524; A has one pair of problematic the formular planar network.239 $\oplus \oplus + \oplus \oplus \oplus \oplus$ Reorder nodes 13524; A has one pair of problematic the formular planar network.239 $\oplus \oplus + \oplus \oplus \oplus \oplus \oplus \oplus \oplus \oplus$ Reorder nodes 13524; A has one pair of problematic the formular planar network.239 $\oplus \oplus + \oplus \oplus$	lean. a re- prob-
230 $\oplus \oplus + + +$ Impossible. See #123.231 $\oplus \oplus + + \oplus$ Impossible. See #123.232 $\oplus \oplus + \oplus \oplus$ Reorder nodes 12354; A has two adjacent pairs of plematic determinants. All other reorderings are of Therefore, the reordered network is A-equivalent to coverable annular planar network.233 $\oplus \oplus + \oplus +$ Reorder nodes 12543; A has two adjacent pairs of plematic determinants. All other reorderings are of Therefore, the reordered network is A-equivalent to coverable annular planar network.234 $\oplus \oplus + \oplus +$ Reorder nodes 13524; A has one pair of problemati terminants. All other reorderings are clean. There the reordered network is A-equivalent to a recover annular planar network.235 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #27.236 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #54.237 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #123.238 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #123.240 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus$ Reorder nodes 13524; A has one pair of problemati for the problemation of the planar network.	lean. a re- prob-
231 $\oplus \oplus + + \oplus$ Impossible. See #123.232 $\oplus \oplus + \oplus \oplus$ Reorder nodes 12354; A has two adjacent pairs of plematic determinants. All other reorderings are of the therefore, the reordered network is A-equivalent to coverable annular planar network.233 $\oplus \oplus + \oplus +$ Reorder nodes 12543; A has two adjacent pairs of plematic determinants. All other reorderings are of the therefore, the reordered network is A-equivalent to coverable annular planar network.234 $\oplus \oplus + \oplus +$ Reorder nodes 13524; A has one pair of problematic terminants. All other reorderings are clean. Therefore, the reordered network is A-equivalent to coverable annular planar network.234 $\oplus \oplus + \oplus \oplus$ Reorder nodes 13524; A has one pair of problematic terminants. All other reorderings are clean. Therefore, the reordered network is A-equivalent to a recover annular planar network.235 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #27.236 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #54.237 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #123.240 $\oplus \oplus \oplus + \oplus$ Reorder nodes 13524; A has one pair of problematic terminatic termination for the problematic terminatic termination for the problematic termination for the pr	lean. a re- prob-
232 $\oplus \oplus + \oplus \ominus$ Reorder nodes 12354; A has two adjacent pairs of plematic determinants. All other reorderings are of Therefore, the reordered network is A-equivalent to coverable annular planar network.233 $\oplus \oplus + \oplus +$ Reorder nodes 12543; A has two adjacent pairs of plematic determinants. All other reorderings are of Therefore, the reordered network is A-equivalent to coverable annular planar network.234 $\oplus \oplus + \oplus +$ Reorder nodes 13524; A has one pair of problematic terminants. All other reorderings are clean. Therefore, the reordered network is A-equivalent to a recover annular planar network.235 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #27.236 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #54.237 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #54.239 $\oplus \oplus \oplus + \oplus$ Reorder nodes 13524; A has one pair of problematic termination.240 $\oplus \oplus \oplus + \oplus$ Reorder nodes 13524; A has one pair of problematic termination.	lean. a re- prob-
1lematic determinants. All other reorderings are of Therefore, the reordered network is Λ -equivalent to coverable annular planar network.233 $\oplus \oplus + \oplus +$ Reorder nodes 12543; Λ has two adjacent pairs of plematic determinants. All other reorderings are of Therefore, the reordered network is Λ -equivalent to coverable annular planar network.234 $\oplus \oplus + \oplus \oplus$ Reorder nodes 13524; Λ has one pair of problematic terminants. All other reorderings are clean. There the reordered network is Λ -equivalent to a recover annular planar network.235 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #27.236 $\oplus \oplus \oplus \oplus +$ Impossible. See #54.237 $\oplus \oplus \oplus \oplus \oplus$ Impossible. See #54.239 $\oplus \oplus \oplus + \oplus$ Reorder nodes 13524; Λ has one pair of problematic terminants. All other reorderings are clean. There the reordered network is Λ -equivalent to a recover annular planar network.	lean. a re- prob-
Therefore, the reordered network is A-equivalent to coverable annular planar network.233 $\oplus \oplus + \oplus +$ Reorder nodes 12543; A has two adjacent pairs of p lematic determinants. All other reorderings are of Therefore, the reordered network is A-equivalent to coverable annular planar network.234 $\oplus \oplus + \oplus \oplus$ Reorder nodes 13524; A has one pair of problemati terminants. All other reorderings are clean. There the reordered network is A-equivalent to a recover annular planar network.235 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #27.236 $\oplus \oplus \oplus \oplus +$ Impossible. See #54.237 $\oplus \oplus \oplus \oplus \oplus$ Impossible. See #123.239 $\oplus \oplus \oplus + \oplus$ Reorder nodes 13524; A has one pair of problemati terminants. All other reorderings are clean. There the reordered network is A-equivalent to a recover annular planar network.	a re- prob-
$233 \oplus \oplus + \oplus +$ Reorder nodes 12543; Λ has two adjacent pairs of plematic determinants. All other reorderings are of Therefore, the reordered network is Λ -equivalent to coverable annular planar network. $234 \oplus \oplus + \oplus \oplus$ Reorder nodes 13524; Λ has one pair of problematic terminants. All other reorderings are clean. Therefore, the reordered network is Λ -equivalent to a recover annular planar network. $235 \oplus \oplus \oplus \oplus \oplus$ Impossible. See #27. $236 \oplus \oplus \oplus \oplus +$ Impossible. See #54. $237 \oplus \oplus \oplus \oplus \oplus$ Impossible. See #123. $239 \oplus \oplus \oplus + \oplus$ Impossible. See #123. $240 \oplus \oplus \oplus + \oplus$ Reorder nodes 13524; Λ has one pair of problematic termination.	orob-
233 $\oplus \oplus + \oplus +$ Reorder nodes 12543; A has two adjacent pairs of plematic determinants. All other reorderings are contributed to coverable annular planar network.234 $\oplus \oplus + \oplus \oplus$ Reorder nodes 13524; A has one pair of problematic terminants. All other reorderings are clean. Therefore, the reordered network is A-equivalent to a recover annular planar network.235 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #27.236 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #54.237 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #123.239 $\oplus \oplus \oplus + \oplus$ Impossible. See #123.240 $\oplus \oplus \oplus + \oplus$ Reorder nodes 13524; A has one pair of problematic terminatic termination.	
234 $\oplus \oplus + \oplus \oplus$ $\oplus \oplus \oplus \oplus \oplus \oplus$ $\oplus \oplus $	
Therefore, the reordered network is Λ -equivalent to coverable annular planar network.234 $\oplus \oplus + \oplus \oplus$ Reorder nodes 13524; Λ has one pair of problemati terminants. All other reorderings are clean. There the reordered network is Λ -equivalent to a recover 	ean
234 $\oplus \oplus + \oplus \oplus$ Reorder nodes 13524; Λ has one pair of problemati terminants. All other reorderings are clean. There the reordered network is Λ -equivalent to a recover annular planar network. 235 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #27. 236 $\oplus \oplus \oplus \oplus \oplus +$ Impossible. See #54. 237 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #481. 238 $\oplus \oplus \oplus \oplus \oplus \oplus +$ Impossible. See #123. 240 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus$ Reorder nodes 13524; Λ has one pair of problemation	can.
234 $\oplus \oplus + \oplus \oplus$ Reorder nodes 13524; Λ has one pair of problemati terminants. All other reorderings are clean. There the reordered network is Λ -equivalent to a recover annular planar network.235 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #27.236 $\oplus \oplus \oplus \oplus +$ Impossible. See #54.237 $\oplus \oplus \oplus \oplus \oplus$ Impossible. See #81.238 $\oplus \oplus \oplus + \oplus$ Impossible. See #123.240 $\oplus \oplus \oplus + \oplus$ Reorder nodes 13524; Λ has one pair of problematic	a re-
terminants. All other reorderings are clean. There the reordered network is Λ -equivalent to a recove annular planar network.235 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #27.236 $\oplus \oplus \oplus \oplus \oplus +$ Impossible. See #54.237 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #81.238 $\oplus \oplus \oplus \oplus + \oplus$ Impossible. See #123.240 $\oplus \oplus \oplus + \oplus$ Reorder nodes 13524; Λ has one pair of problematic	
the reordered network is Λ -equivalent to a recover annular planar network.235 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #27.236 $\oplus \oplus \oplus \oplus \oplus +$ Impossible. See #54.237 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible. See #81.238 $\oplus \oplus \oplus + \oplus$ Impossible. See #54.239 $\oplus \oplus \oplus + +$ Impossible. See #123.240 $\oplus \oplus + \oplus$ Reorder nodes 13524; Λ has one pair of problemation	e de-
annular planar network. $235 \oplus \oplus \oplus \oplus \oplus$ Impossible. See #27. $236 \oplus \oplus \oplus \oplus +$ Impossible. See #54. $237 \oplus \oplus \oplus \oplus \oplus$ Impossible. See #81. $238 \oplus \oplus \oplus + \oplus$ Impossible. See #454. $239 \oplus \oplus \oplus + +$ Impossible. See #123. $240 \oplus \oplus \oplus + \oplus$ Reorder nodes 13524; A has one pair of problemation of the problemation	fore,
235 $\oplus \oplus \oplus \oplus \oplus \oplus$ Impossible.See #27.236 $\oplus \oplus \oplus \oplus +$ Impossible.See #54.237 $\oplus \oplus \oplus \oplus \oplus \oplus \oplus$ Impossible.See #81.238 $\oplus \oplus \oplus + \oplus$ Impossible.See #54.239 $\oplus \oplus \oplus + +$ Impossible.See #123.240 $\oplus \oplus \oplus + \oplus$ Reorder nodes 13524; A has one pair of problemation	able
$236 \oplus \oplus \oplus \oplus +$ Impossible. See #54. $237 \oplus \oplus \oplus \oplus \oplus$ Impossible. See #81. $238 \oplus \oplus \oplus + \oplus$ Impossible. See #54. $239 \oplus \oplus \oplus + +$ Impossible. See #123. $240 \oplus \oplus \oplus + \oplus$ Reorder nodes 13524; A has one pair of problemation	
$237 \oplus \oplus \oplus \oplus \oplus$ Impossible.See #81. $238 \oplus \oplus \oplus + \oplus$ Impossible.See #54. $239 \oplus \oplus \oplus + +$ Impossible.See #123. $240 \oplus \oplus \oplus + \oplus$ Reorder nodes 13524; Λ has one pair of problemation	
238 $\oplus \oplus \oplus + \ominus$ Impossible.See #54.239 $\oplus \oplus \oplus + +$ Impossible.See #123.240 $\oplus \oplus \oplus + \oplus$ Reorder nodes 13524; A has one pair of problemation	
$239 \oplus \oplus \oplus + +$ Impossible.See #123. $240 \oplus \oplus \oplus + \oplus$ Reorder nodes 13524; A has one pair of problemation	
240 $\oplus \oplus \oplus \oplus \oplus \oplus$ Reorder nodes 13524 ; Λ has one pair of problemation	
terminants. All other reorderings are clean. There	e de-
	fore,
the reordered network is Λ -equivalent to a recover	able
annular planar network.	
241 $\oplus \oplus \oplus \oplus \oplus \ominus$ Impossible. See #81.	
242 $\oplus \oplus \oplus \oplus +$ Reorder nodes 13524 ; Λ has one pair of problemati	
terminants. All other reorderings are clean. There	e de-
the reordered network is Λ -equivalent to a recover	
annular planar network.	fore,
243 $\oplus \oplus \oplus \oplus \oplus$ Reorder nodes 13524 ; network becomes Λ -equivale	fore,
a circular planar network. See Section 2.2.	fore, able