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1 Introduction

A graph with boundary is a triple Γ = (V, E, ∂V), where Γ is a finite graph
with V = the set of nodes, E = the set of edges where the conductivity γ
acts, and ∂V = the non-empty subset of V called the boundary nodes where
the current I is induced.
A circular planar graph is a graph with a boundary which is embedded in

a disc in the plane so that the boundary nodes lie on the circle which bounds
the disc, and the rest of Γ is in the interior of the disc. The boundary nodes
will be labeled in circular order around the boundary of the disc.
A pair of sequences of boundary nodes (P ;Q) = (p1, ..., pk; q1, ..., qk) of a

circular planar graph Γ such that the entire sequence (p1, ..., pk, q1, ...qk) is in
circular order is called a circular pair.
A circular pair (P ;Q) of boundary nodes is said to be connected through

a circular planar graph Γ if there are k disjoint paths α1, ..., αk in Γ such
that αi starts at pi, ends at q(k−i)+1, and passes through no other boundary
nodes. We say that α is a connection from P to Q.
A Y-∆ equivalence is a geometric transformation that replaces three edges

of a graph which form a Y connection with three edges forming a ∆ connec-
tion. Electrical equivalence of the graph is maintained.
A conductivity on any graph Γ is a function γ which assigns to each edge

e in E a positive real number γ(e). A resistor network (Γ, γ) consists of a
graph with boundary together with a conductivity function γ.
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The Kirchhoff matrix K = K(Γ, γ) of a network (Γ, γ) with n nodes
numbered v1, ..., vn is the n× n matrix constructed as follows.

1. If i 6= j then Ki,j = −Σγ(e), where the sum is taken over all edges
joining vi to vj. If there is no edge joining vi to vj then Ki,j = 0.

2. Ki,i = Σγ(e) where the sum is taken over all edges e with one endpoint
at vi and the other endpoint not vi.

Thus, all diagonal entries of K are non-negative, and all off-diagonal entries
are non-positive, and all row or column sums are 0.

The Λ Matrix For each voltage potential f defined at the boundary
nodes, there is a unique extention of f , to all the nodes of Γ which satisfies
Kirchhoff’s current law at each interior node of a resistor network. We will
call this unique extention u. In other words, if p is an interior node of (Γ, γ),
then

Σγ(e)(u(p)− u(q)) = 0

where the sum is taken over all edges e with one endpoint at p and the other
endpoint q 6= p. This function f then gives a current I = {I(p)|p ∈ ∂V} into
the network a the boundary nodes. The linear map which sends f to I is
called the Dirichlet-to-Neumann map and is represented by an n× n matrix
denoted Λ. Λ is called the network response.
All Λ matrices have the same properties as Kirchhoff matrices.

Diagonal entries are non-negative.

Off-diagonal entries are non-postive.

Row sums and column sums are 0.

Theorem. In addition, if Λ is the network response for a circular pla-
nar network, and (P ;Q) = (p1, ..., pk; q1, ..., qk) is a circular pair of boundary
nodes, then

(a) If (P ;Q) are not connected through Γ, then

detΛ(P ;Q) = 0

.
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(b) If (P ;Q) are connected through Γ, then

(−1)
k(k+1)

2 detΛ(P ;Q) > 0

.

Λ(P ;Q) here refers to the matrix formed by taking only the rows p1, ..., pk

and columns q1, ..., qk of Λ.
Order is important. For more information on the Λ matrix of a circular

planar graph, or any of the definitions above, please see [1].

The Medial Graph for a Circular Planar Network Suppose Γ =
(V,E,∂V) is a circular planar graph with n boundary nodes v1, ..., vn. Γ is
assumed to be embedded in the plane so that the boundary nodes occur in
clockwise order around the circle C. To construct the medial graph M(Γ)
first let me be the midpoint of each edge e in E. Next, place 2n points
t1, t2, ..., t2n on C so that

t1 < v1 < t2 < t3 < v2 < ... < t2n−1 < vn < t2n < t1

in the clockwise circular order around C.
The vertices ofM(Γ) consist of the points me for e ∈E, and the points ti

for i = 1, 2, ..., 2n. Two vertices me and mf are joined by an edge whenever
e and f have a common vertex and e and f are incident to the same face in
Γ. There is also one edge for each point tj as follows. The point t2i is joined
bly an edge to me where e is the edge of the form e = vir which comes first
after arcvit2i in clockwise order around vi. The point t2i−1 is joined by an
edge to mf where f is the edge of the form f = vis which comes first after
arc viT2i−1 in counter-clockwise order around vi.
The vertices ofM(Γ) of the form me of are 4-valent; the vertices of the

form ti are 1-valent. An edge uv of M(Γ) has a direct extension vw if the
edges uv and vw separate the other two edges incident on the vertex v. A
path u0u1...uk inM(Γ) is called a geodesic arc if each edge ui−1ui has edge
uiui+1 as a direct extention. A geodesic arc is called a geodesic if either

(1) u0 and uk are points on the circle C; or

(2) uk = u1 and uk−1uk has u0u1 as a direct extention.

Two geodesics form a lens if they intersect each other more than once.
If each geodesic inM(Γ) begins and ends on C and has no self-intersection,
and ifM(Γ) has no lenses, we will say thatM(Γ) is lensless.
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Theorem. Γ is a critical circular planar graph, if and only ifM(Γ) is
lensless.
Refer to [1].

The Key Lemma tells us how to find which endpoints belong to which
geodesics by telling us the number of re-entrant geodesics between any two
points a and b on the circle C. Points a and b divide C into two parts, D
and F .

R(D)=card(D)-Black(D)-Max(D,F )

where R(D)is the number of re-entrant geodesics inD, card(D) is the number
of boundary nodes in D, Black(D) is the number of black intervals in D, and
Max (D,F ) is the size of the biggest disjoint connection between D and F
(which can be found from Λ). Since a critical graph has a lensless medial
graph, when we know the endpoints of the geodesics in the medial graph, we
can find the medial graph, and from the medial graph we can find a graph
which is Y-∆ equivalent to the original graph. For more information on
recovering the medial graph, refer to [2].

2 Characterizing Networks that cannot be made

Circular Planar

Definition. Two networks are called Λ − equivalent if they have the
same Λ matrix. This is sometimes referred to as being electrically equivalent.

2.1 The Four Node Case

Theorem. A 4× 4 Kirchhoff matrix is either the Λ matrix for a circular
planar network, or it can be made so by one row switch and the identical
column switch.
In other words, a network with 4 boundary nodes is Λ -equivalent to a

circular planar network, or its boundary nodes can be renumbered so that it
is.
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Proof. Consider the Kirchhoff matrix

K =











a+ b+ c −a −b −c

−a a+ d+ e −d −e

−b −d b+ d+ f −f

−c −e −f c+ e+ f











Let K2,3 denote K with rows 2 and 3 switched, and columns 2 and 3
switched.

K2,3 =











a+ b+ c −b −a −c

−b b+ d+ f −d −f

−a −d a+ d+ e −e

−c −f −e c+ e+ f











Let K3,4 denote K with rows 3 and 4 switched and columns 3 and 4
switched.

K3,4 =











a+ b+ c −a −c −b

−a a+ d+ e −e −d

−c −e c+ e+ f −f

−b −d −f b+ d+ f











It is easy to check that K2,3 and K3,4 are also Kirchhoff matrices.
To prove that a Kirchhoff matrix is a Λ matrix of a circular planar net-

work, it suffices to show that the determinantal properties hold. Thus,

K is a Λ matrix ⇔ be− cd ≤ 0 and be− af ≤ 0

K2,3 is a Λ matrix ⇔ af − cd ≤ 0 and af − be ≤ 0

K3,4 is a Λ matrix ⇔ cd− be ≤ 0 and cd− af ≤ 0

When be = 0, K is a Λ matrix. When af = 0, K2,3 is a Λ matrix. When
cd = 0, K3,4 is a Λ matrix.
Table 1 examines all possible combinations of determinants (be− cd) and

(be− af) for the original K, when be > 0, cd > 0 and af > 0.
Note that

af − cd = (be− cd)− (be− af) af − be = −(be− af)

cd− af = (be− af)− (be− cd) cd− be = −(be− cd)

Thus, Table 1 demonstrates that for all possible values of the Kirkhoff
matrix K, a Λ matrix can be made by at most one row-row and column-
column switch. QED.
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be− cd be− af af − cd af − be cd− be cd− af Λmatrix
+ < + − − − + K2,3

+ = + 0 − − 0 K2,3, K3,4

+ > + + + − − K3,4

+ > 0 + 0 − − K3,4

+ > − + + − − K3,4

0 < + − − 0 + K2,3

0 0 K
0 − K
− < + − − + + K2,3

− 0 K
− − K

Table 1: All Possible Combinations of Off-Diagonal Determinants in the
4 Boundary Node Case

2.2 The Five Node Case

Given the general Kirchhoff matrix,

K =















∑

−a −b −c −d

−a
∑

−e −f −g

−b −e
∑

−h −j

−c −f −h
∑

−k

−d −g −j −k
∑















for the ordering 12345 of a network with five boundary nodes, Table 2 dis-
plays all the possible circular planar orderings. Listed with them are the
determinants that must be ≤ 0 in order for the reordered network to be
Λ-equivalent to a circular planar network. The different combinations of de-
terminant pairs are labelled 0, 1 or 2 in the shorthand column. For example,
for det 1

0 refers to the pair (fj-gh) and (fj-ek),

1 refers to the pair (gh-fj) and (gh-ek),

2 refers to the pair (ek-fj) and (ek-gh).
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embedding det det det det det shorthand

sequence 1 2 3 4 5 det.sequence

12345 fj − gh cj − bk cg − df bg − aj bf − ce 00000
fj − ek cj − dh cg − ak bg − de bf − ah

12354 gh− fj dh− cj df − cg bg − aj bf − ce 12100
gh− ek dh− bk df − ak bg − de bf − ah

12435 ek − fj bk − cj cg − df bg − aj ce− bf 21001
ek − gh bk − dh cg − ak bg − de ce− ah

12453 gh− fj dh− cj cg − df de− bg ce− bf 12021
gh− ek dh− bk cg − ak de− aj ce− ah

12534 ek − fj bk − cj df − cg de− bg bf − ce 21120
ek − gh bk − dh df − ak de− aj bf − ah

12543 fj − gh cj − bk df − cg de− bg ce− bf 00121
fj − ek cj − dh df − ak de− aj ce− ah

13245 gh− fj cj − bk cg − df aj − bg ah− bf 10012
gh− ek cj − dh cg − ak aj − de ah− ce

13254 fj − gh dh− cj df − cg aj − bg ah− bf 02112
fj − ek dh− bk df − ak aj − de ah− ce

13425 ek − fj cj − bk ak − cg aj − bg ce− bf 20211
ek − gh cj − dh ak − df aj − de ce− ah

13524 ek − fj dh− cj ak − cg de− bg ah− bf 22222
ek − gh dh− bk ak − df de− aj ah− ce

14235 gh− fj bk − cj ak − cg bg − aj ah− bf 11202
gh− ek bk − dh ak − df bg − de ah− ce

14325 fj − gh bk − cj ak − cg aj − bg bf − ce 01210
fj − ek bk − dh ak − df aj − de bf − ah

Table 2: Determinant Combinations for all possible Re-embeddings
Note that this particular labelling of a determinant pair refers to the original
position of the excluded node, not its new location in the reordering.
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Lemma. At least three determinants must change in sign when the bound-
ary nodes of a network with five boundary nodes are reordered. Moreover,
determinants must change in specific ways in relation to each other.

Proof. Follows directly from Table 2. See shorthand column.

Theorem. There exist some 5 × 5 Kirchhoff matrices whose rows and
columns cannot be reordered so that they are the Λ matrices of circular planar
networks.

Proof. The total number of unique circular orderings of 5 points is

5!

5× 2
= 12

with 5! being the number of possible linear arrangements of five nodes, di-
vided by 5 because the starting node is irrelevent and divided by two because
the direction of the ordering is also irrelevent. Now, each pair of determi-
nants has three possible combinations, only one of which is guarenteed to
have both determinants ≤ 0 at any one time (see proof of previous Theo-
rem). Therefore, the total number of determinant combinations is 3d where
d is the number of determinant pairs, 5 in this case. Not all of these 35 = 243
combinations are algebraically possible, as will be demonstrated further on.
However, since 243À 12 orderings, some algebraically possible combinations
of determinants will not have an ordering which produces them.
Consider the counterexample:

K =















105 −2 −100 −1 −2
−2 6 −2 −1 −1
−100 −2 105 −2 −1
−1 −1 −2 5 −1
−2 −1 −1 −1 5















Three pairs of determinants are > 0, and therefore should not be changed,
but both values of each of the other two pairs are > 0. Since all reorderings
change the signs of at least three determinant pairs, no ordering will make
K into a Λ for a circular planar graph. QED.
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Table 3 shows all the possible combinations of determinantal values from
the general 5× 5 Kirchhoff matrix that can be re-ordered so as to be the Λ
matrix of a circular planar network, as well as the corresponding re-orderings.
To help understand the symbols used, the second row of the table says

that
(fj − gh) ≤ 0 and (fj − ek) ≤ 0
(cg − df) ≥ (cg − ak) and (cg − df) ≥ 0
(bg − aj) ≤ (bg − de) and (bg − de) ≥ 0
Any network whose Λ matrix determinants do not fit into this table is

necessarily noncircular or nonplanar.

3 Five Nodes on the Annulus

Consider a 5 × 5 Λ matrix whose determinants do not match any of
the combinations in Table 3. The network such a Λ represents cannot be
reordered so as to be Λ equivalent to a circular planar graph. Therefore,
either the circular nature of the boundary, or the planarity of the network
must change. Let us examine networks which can be embedded in an annular
planar region.

Definition. An annular planar graph is a graph with boundary which
is embedded in an annulus so that the boundary nodes lie on either of the
two circles which bound the annulus.
A list of boundary nodes v1, ..., vk are said to be in numerical circular

order if v1...vk embedded in a circular boundary would be in circular order.
Nodes on either circle bounding the annulus should be in numerical circular
order.

Definition. For a five node annular planar network, two pairs of
boundary nodes (p1, p2) and (q1, q2) are called connected if there exist disjoint
paths from p1to q2 and from p2 to q1when (p1, p2)(q1, q2) are in numerical
circular order.
It should be noted that this connectivity exists when

(−1)
(2)(3)

2 detΛ((p1, p2), (q1, q2)) > 0

Two pairs of nodes are called cross-connected if there exist disjoint paths
from p1 to q1 and from p2 to q2 when (p1, p2)(q1, q2) are in numerical circular
order.
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fj − gh cj − bk cg − df bg − aj bf − ce switch needed
fj − ek cj − dh cg − ak bg − de bf − ah to make a planarΛ

− − − − − none
− − − − −
− − ++ +/− ++ 12543
− − +/− ++ +/−
− +/− ++ ++ +/− 13254
− ++ +/− +/− ++
− ++ +/− ++ − 14325
− +/− ++ +/− −
+/− − +/− ++ ++ 13425
++ − ++ +/− +/−
+/− +/− +/− +/− +/− 13524
++ ++ ++ ++ ++
+/− ++ − − ++ 12435
++ +/− − − +/−
+/− ++ ++ +/− − 12534
++ +/− +/− ++ −
++ − − ++ +/− 13245
+/− − − +/− ++
++ +/− − +/− ++ 12453
+/− ++ − ++ +/−
++ +/− ++ − − 12354
+/− ++ +/− − −
++ ++ +/− − +/− 14235
+/− +/− ++ − ++

Table 3: Determinantal Relations that Suggest Re-embedding
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This connectivity exists when

(−1)
(2)(3)

2 detΛ((p1, p2), (q1, q2)) < 0

because the wrong sign in the determinant indicates that a disjoint connec-
tion exists and is numerically dominant between pairs not in circular order.
Nothing is indicated about the existence of connections in numerical circular
order, except that if they exist, they are weaker than the cross-connection.

Definition. A graph is said to be critical if contracting or breaking
any edge breaks a connection or a cross-connection indicated by Λ.
Note that Y-∆ transformations can only be performed on portions of the

graph that are isomorphic to a portion of a circular planar graph.
For clarity, let us consider a determinant pair to be problematic if at least

one of the two determinants is positive.

3.1 Two Pairs of Problematic Determinants: Adjacent
Pairs

Definition. Let the index of a pair of 2 × 2 determinants in a five
boundary node network be equal to the position of the node excluded from
the two determinants.
Two pairs of determinants, index i and j are called adjacent if i and j

are next to each other in circular ordering.

Consider a graph, Γ with nodes 1, 3, 4 and 5 on the outer circle of an
annulus, 2 on the innner circle, and one interior node p (See Figure 1).
Let its Kirchhoff matrix be

K =



















a+ b+ c+ d −a −b 0 −c −d

−a a+ e+ f −e 0 0 −f

−b −e b+ e+ g + h −g 0 −h

0 0 −g g + j 0 −j

−c 0 0 0 c+ k −k

−d −f −h −j −k Σp



















The determinants are as follows:

1 2 3 4 5

−fgk 1
Σp

−bjk 1
Σp

−cfj 1
Σp

(bfk − ahk) 1
Σp

(bfj − dej) 1
Σp

−ejk 1
Σp
−(chj + dgk) 1

Σp
− cg −ajk 1

Σp
(bfk − dek (bfj − dfg

−cfh) 1
Σp
− ce −ahj) 1

Σp
− ag
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Figure 1: Example of an Annular Planar Network

Determinant pairs 1, 2 and 3 are necessarily negative, but pairs 4 and 5
can be either positive or negative. If we make determinant pairs 4 and 5 posi-
tive, the result is a network which cannot be re-embedded to be Λ-equivalent
to a circular planar network. Moreover, the two pairs of problematic deter-
minants are adjacent.
Determinant 4 indicates that the cross-connections linking 1 to 3 and 2

to 5 exist and are stronger than any possible connection linking 1 to 5 and
2 to 3, or linking 1 to 2 and 3 to 5. Determinant 5 likewise indicates that
cross-connections linking 1 to 3 and 2 to 4 must exist. The simplest way to
achieve this is to link nodes 1 and 3 directly and give γ1,3 a large value.

Medial Graph for the Annular Planar Graph Consider the medial
graph, M(Γ) as shown in Figure 2. Two geodesics form a lens, but it is
a necessary lens because it contains the hole in the annulus. Two other
geodesics cross from one boundary circle to another. In order to recover the
medial graph from Λ, we need to make the annulus imitate the circular planar
case. To this end, mark the ten geodesic endpoints, two around each of the
boundary nodes. Now imagine cutting from the white half of the interior
circle to the white interval between geodesics 2 and 5. This gives the graph
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Figure 2: Medial Graph for Annular Planar Network from Fig. 1.

a new boundary which is topologically equivalent to a circular planar graph.
This cut has certain effects upon the connectivity of the graph, which are
important to note.

1. Nodes 1 and 3 are no longer directly connected. Therefore, since the
graph we are recovering is critical, any circular planar connection of
pairs which involve connecting 1 to 3 will now be broken.

2. Add two new nodes, A and B, and their four accompanying geodesic
endpoints, to the boundary, putting A between nodes 1 and 2, and
B between nodes 2 and 3 along the edges formed by the cut (See
Figure 3). These represent the two halves of the connection between
nodes 1 and 3, which means thatA is connected only to 1 and likewise,
B is connected only to 3.

3. All four determinants which were previously positive, were dependent
upon the ∂−∂ connection between nodes 1 and 3. The values of these
determinants may now be zero, or they may be negative. Nothing
should be assumed about these connections when they come up in the
process of finding the z-sequence of the pseudograph.
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A B

Cut Line

 2
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Figure 3: Creating the Boundary of the Pseudo-Medial Graph from the Orig-
inal Boundary

With these important changes in connectivity kept firmly in mind, find
the medial graphM(Γ′) of the pseudograph Γ′ =(1 A 2 B 3 4 5).
Paste the segments around A and B, which were formed by the cut, back

together. This will create a lens because both A and B were treated as
boundary spikes. The lens can be easily eliminated by switching the two
geodesic endpoints around B. When all geodesic endpoints are connected to
their partners without crossing the line of the cut, the true medial graph for
the Λ matrix has been realized.

Recoverability

Theorem. If two adjacent pairs of determinants of the Λ matrix have
incorrect signs, and the remaining three have the correct signs then there
exists a network recoverable from Λ which is embedded on an annulus with
one node on one circle and four nodes on the other circle.

The proof lies in the actual method of recovery, which is laid out below.

Re-number the nodes so that the determinants with incorrect signs have
index 4 and 5. Now we have a base structure for the network, with node 2
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on the inner circle of the annulus and a ∂ − ∂ connection between nodes 1
and 3.
Find the medial graph, as described above. Draw the graph from the me-

dial graph, and proceed to recover the conductivities using Λ. The graph will
be recoverable, because the pseodo-medial graph does not have any lenses,
so the circular planar pseudo-graph would be recoverable, and therefore the
graph is recoverable.

Example of Recovery. To start with, we want some Λ matrix with two
adjacent problematic determinant pairs. Let

Λ0 =















5 −2 −1 −1 −1
−2 12 −2 −1 −7
−1 −2 8 −4 −1
−1 −1 −4 7 −1
−1 −7 −1 −1 10















The determinant pairs are:

1 2 3 4 5
−27 0 6 5 −1
−1 −3 5 5 −7

The first step is to relabel the nodes without changing circular ordering
so that the problematic deterinants are index 4 and 5. Renumber node 1 as
2, and 2 as 3 and so on. The new

Λ =















10 −1 −7 −1 −1
−1 5 −2 −1 −1
−7 −2 12 −2 −1
−1 −1 −2 8 −4
−1 −1 −1 −4 7















The determinants are now as desired:

1 2 3 4 5
−1 −27 0 6 5
−7 −1 −3 5 5

Now we can assume a base structure on the annulus with a strong con-
nection between nodes 1 and 3, and node 2 on the inner circle of the annulus
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Figure 4: Base Structure for the Network
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Figure 5: Boundary Used to Find the Pseudo-Medial Graph
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(See Figure 4). Set up the pseudo-medial graph 1 A 2 B 3 4 5 as in Fig-
ure 5. The numbers in parentheses label the intervals on the boundary, which
alternate between black and white.
Using the Key Lemma

R(D)=card(D)-Black(D)-Max(D,F )

we can find R(D), the number of reentrant geodesics in D. Note that
Max(D,F ) can be found using Λ as in the circular planar case, by examining
the determinants as shown in the definitions at the beginning of Section 3.
Recall that a cross-connection does not necessarily indicate a connection,
and any connections involving a connection between nodes 1 and 3 are now
broken. Also, when calculating the largest disjoint connection between D
and F , it must be kept in mind that node A connects to node 1, and node
B connects to node 3.
To keep track of where the Key Lemma is being applied, the notation will

be (X-Y;Z) where X and Y are the two intervals chosen to split the graph
into sides D and F , and Z is an interval on the side D under consideration.

(8-12;1) 6− 3− 2 = 1

(A-12;1) 5− 3− 2 = 0 Label endpoint between intervals (8) and (A) as an
endpoint of geodesic 1

(8-5;1) 5− 3− 1 = 1

(8-6;1) 4− 2− 1 = 1

(8-1;A) 3− 2− 0 = 1 The endpoint between intervals (1) and (6) is the
other endpoint of geodesic 1.

(2-12;1) 7− 4− 1 = 2 Label endpoint between intervals (2) and (8) as an
endpoint of geodesic 2.

(2-5;1) 6− 4− 1 = 1 The endpoint between intervals (5) and (12) is the
other endpoint of geodesic 2, because the re-entrant
geodesic left is geodesic 1. This means that we can
label the endpoint between intervals (A) and (7) as an
endpoint of geodesic 3, the endpoint between intervals
(1) and (6) as an endpoint of geodesic 4, and the
endpoint between intervals (6) and (5) as an endpoint
of geodesic 5.

(A-4;1) 6− 4−? =? A connection may or may not exist between
(2 3) (5 1). All that Λ reveals is the cross-connection
(2 3) (1 5).
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(A-11;1) 7− 4− 2 = 1 A geodesic re-entered either between interals (12) and
(4) or between interals (4) and (11).

(7-11;1) 6− 3− 3 = 0 Label the endpoint between intervals (A) and (7) as
an endpoint of geodesic 3. This is the geodesic which
re-entered either between intervals (12) and (4) or be-
tween intervals (4) and (11). Note that the endpoint
which does not belong to geodesic 3 is not re-entrant.
Let us call it an endpoint of geodesic 6.

(1-3;5) 6− 4− 1 = 1

(1-11;5) 5− 3− 2 = 0

(3-6;5) 5− 3− 1 = 1

(3-5;12) 4− 3− 1 = 0 This means that the endpoint between intervals (3)
and (11) belongs to geodesic 5.

(1-10;12) 7− 4− 2 = 1 Note the connection between nodes 3 and B. The re-
entrant geodesic is geodesic 5, so we can say that the
endpoint between intervals (3) and (10) belongs to a
new geodesic, 7.

(10-6;12) 6− 3− 2 = 1

(10-5;12) 5− 3− 2 = 0 As expected, geodesic 5 is no longer re-entrant.

(B-5;12) 6− 4−? =? This is the other place where connectivity is unknown,
because any connection that exists between (3 4) and
(1 2) was masked by the cross-connection.

(B-11;3) 3− 2− 1 = 0 This proves that the endpoint between intervals (B)
and (10) does not belong to geodesic 7. It must belong
to 4 or 6.

(9-11;3) 4− 2− 1 = 1

(3-9;B) 3− 2− 0 = 1

(10-9;B) 2− 1− 1 = 0 The endpoint between intervals (B) and (9) belongs
to geodesic 7.

(12-B;3) 5− 3− 2 = 0 This proves that the endpoint between intervals (B)
and (10) does not belong to geodesic 6. It must belong
to geodesic 4.
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Figure 6: Recovered Pseudo-Medial Graph and Actual Medial Graph

(9-6;A) 6− 3−? =? Note that despite the inconclusive answer here, we
know that geodesics 1, 2, 4, 5, and 7 have been found,
and geodesic 3 is pinned down to one of two end-
points, while the other endpoint is known, so the end-
point between intervals (9) and (2) must belong to
geodesic 6.

(2-4;3) 6− 4− 1 = 1 This re-entrant geodesic is geodesic 7, so geodesic 6
does not re-enter. Therefore, the endpoint between
intervals (4) and (12) belongs to geodesic 6, which
leaves the endpoint between intervals (4) and (11) for
geodesic 3.

The pseudo-medial graph having been recovered, as shown in Figure 6,
we can paste the original cut back together and recover the graph (Figure 7).
Using Λ, we can recover the conductivities.

3.2 Two Pairs of Problematic Determinants: General
Case

Theorem. Given a 5 × 5 Λ matrix, if two pairs of determinants are
problematic, then they must be adjacent.
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Proof. In any combination of 5 determinant pairs with exactly two
problematic pairs, they must either be adjacent or separated by one non-
positive determinant pair. In the latter case, the network can be renumbered
so that the problematic pairs of determinants have index 3 and 5.
Now, referring to the general Kirchhoff matrix in Section 2.2, this means

that at least one of the following statements is true:

Case 1: cg − df > 0 and bf − ce > 0

Case 2: cg − df > 0 and bf − ah > 0

Case 3: cg − ak > 0 and bf − ce > 0

Case 4: cg − ak > 0 and bf − ah > 0

All determinants of index 1, 2 and 4 are nonpositive, by assumption.
Recall that a, b, c, d, e, f, g, h, j, k are all nonnegative, by definition of Λ. We
will proceed by cases to show that a determinant assumed to be nonpositive
is necessarily positive.

Case 1: cg−df > 0 and bf − ce > 0 Now, since cg−df > 0, g 6= 0 so c > df

g

Substituting this into bf − ce > 0 gives

bf −

(

de

g

)

f > 0
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We know that since bf − ce > 0, f 6= 0 so we can divide both sides by
f :

bg − de > 0

But bg-de is a determinant of index 4, so this is a contradiction.

Case 2: cg − df > 0 and bf − ah > 0 Since its index is 4, bg − aj ≤ 0 so
b ≤ aj

g
Substituting this into bf − ah > 0 gives

a

(

jf

g

)

− ah > 0

Now, since g 6= 0 and b 6= 0 in order to make the assumed equations
positive, then bg > 0 so a 6= 0 if bg − aj ≤ 0 Therefore, we can divide
both sides of our inequality by a:

fj − gh > 0

But fj − gh is a determinant of index 1, so this is a contradiction.

Case 3: cg − ak > 0 and bf − ce > 0 Since its index is 4, bg − aj ≤ 0 so
g ≤ aj

b
Substituting this into cg − ak > 0 gives

a
(

cj

b

)

− ak > 0

As before, we know that a 6= 0 so we can divide both sides by a:

cj − bk > 0

But cj − bk is a determinant of index 2, so this is a contradiction.

Case 4: cg− ak > 0 and bf − ah > 0 Since its index is 1, fj− gh ≤ 0 Now,
since g 6= 0 and b 6= 0 then bg > 0. But bg − aj ≤ 0 because it is a
determinant with index 4. So j 6= 0. Therefore, we can divide both
sides of the inequalty fj − gh ≤ 0 by j, getting f ≤ gh

j
. Substituting

this into bf − ah > 0 gives

(

bg

j

)

h− ah > 0
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Now we know that j 6= 0, and f 6= 0 since bf − ah > 0, so fj > 0.
However, fj− gh ≤ 0 so h 6= 0 as well. This means we can divide both
sides of our inequality by h:

bg − aj > 0

But bg − aj is a determinant of index 2, so this is a contradiction.

Therefore, since all cases possible where two problematic pairs of deter-
minants are separated by a ‘good’ determinant lead to contradictions, two
pairs of problematic determinants must be adjacent. QED.

3.3 Sweeping Generality for the Five Node Case

Theorem. A 5 × 5 Kirchhoff matrix which is not the Λ matrix for a
circular planar network, and cannot be made so by reordering the boundary
nodes, is the Λ matrix for a five node network on the annulus.

Proof. As stated above, there are 35 = 243 possible combinations of five
determinant pairs with

ª Both determinants in the pair less than or equal to 0; not problematic,
or

+ The first determinant greater than 0 and greater than the second deter-
minant, or

⊕ The second determinant greater than 0 and greater than or equal to the
first determinant.

However, not all 243 of these combinations are algebraically possible.
Note that in order to avoid testing the same determinant combinations twice
for impossibility, we assume strict inequality for the + relationship. For
actual re-embeddings, two equal determinants can be treated as being either
+ or ⊕. It has already been shown that the combination

ª+ª+ª

is not algebraically possible, and causes a contradiction between the terms
of the determinants. Therefore, in order to examine each of the 243 possible
determinantal combinations and determine which actually could belong to a
Kirchhoff matrix, follow these steps:
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1. If the combination of determinants in question belongs to the list of
combinations which indicate that reordering would make the network
Λ-equivalent to a circular planar network, then note this and move
along. These combinations are not only possible, but they work out
very pleasantly.

2. If the combination of determinants in question does not belong to the
reordering list, then examine how all 12 reorderings affect the combina-
tion. If any reordering results in only two, non-adjacent, problematic
determinant pairs, then the original combination of determinant pairs
is not algebraically possible. This can be shown by algebraic manipu-
lations of the inequality statements.

For example,
+ + + +⊕

reordered 13254 has determinants

+ª⊕ªª

which indicate an algebraic impossibility. The original determinant
combination, applied to the general 5 × 5 Kirchhoff matrix in Section
2.2, gives the following statements:

fj − gh > 0 cj − bk > 0 cg − df > 0 bg − aj > 0 ce ≥ ah

ek > gh dh > bk ak > df de > aj bf − ah > 0

This tells us that f, j, c, g, and b are all non-zero, and consequently
e, k, d, h, and a are also non-zero. So b < dh

k
since bk < dh. Therefore,

bf − ah <
dh

k
f − ah =

h

k
(df − ak)

Since df < ak, we know bf − ah < 0. But bf − ah > 0 so this
combination is impossible.

In the same way, any other combination which gives two nonadjacent
problematic determinants when reordered can be shown to be alge-
braically impossible.
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3. The only two cases in which no reordering of the determinant combina-
tion gives fewer than 3 problematic determinants are the combinations

+ + +++

and
ª+ª⊕⊕

which can be shown to be impossible by algebraic manipulations of the
determinant inequalities. The proofs of these algebraic impossibilities
are left to the reader, and the appendix.

4. If reorderings of the determinant combination do not produce combina-
tions containing only two problematic determinants, which are nonad-
jacent, but do produce combinations containing only one problematic
determinant or two problematic determinants which are adjacent, then
one of these reorderings can be embedded in the annulus, following the
recovery directions above.

Therefore, all the possible combinations of determinants in a 5×5 Kirch-
hoff matrix belong to the Λ matrix of a network which can be embedded
either as a circular planar network or as an annuluar planar network. For
reference, all necessary calculations are presented in Appendix A. QED.
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