
An Inverse Problem for General Electrical

Networks

Neil Burrell

June 18, 2003

Abstract

We examine an inverse problem for electrical networks consisting of
resistors, inductors and capacitors, and excited by periodic boundary
voltages. We show that for a particular class of admittances, a network
with that admittance can be constructed. Using these networks as
edges in a more complicated network, we prove that the solution to the
Dirichlet problem is unique, so long as the real part of the admittance
is positive. We then describe a process for recovering the admittances
of a rectangular network, and begin an investigation of a process for
recovering circular planar networks using determinants.

1 Introduction

In general, the problem that we are concerned with here is the problem of
recovering an electrical network, knowing only its response to periodic input.
In general, we consider a graph Γ = (V,E) with admittances γe(ω) defined
on edges e ∈ E. These admittances are functions of the frequency ω at
which the network is driven. For a two node network, if we apply a voltage
difference V (t) = V0e

iωt between the two nodes, the admittance γ is defined
as the relationship between voltage and current, I(t) = γ(ω) · V0e

iωt.
A resistor has admittance 1/R, where R is the resistance. This is because

I(t) = (1/R) ·V (t) for a resistor. A capacitor responds to an applied voltage
based on the relation I(t) = C · (dV/dt), where C is the capacitance. Using
the periodic form of our applied voltage,

I(t) = C
dV (t)

dt
= C

d

dt
V0e

iωt = iCω · V0e
iωt,
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we see that the admittance for a capacitor is iCω. Similarly for an inductor,
from the relationship I(t) = (1/L) ·

∫

V (t) dt, we see that the admittance is
1/(iLω), where L is the inductance.

We can combine these three components to get circuits whose admittances
are more complicated functions of ω. For example, the network in Figure 1
has admittance

γ(ω) =
1

R1

+
1

−iR2
1C(ω − i/(R1C))

+
1

Li(ω −R2i/L)

=
R2

1CLω2 −R2
1iω(R1C +R2C)−R2

1

R3
1CLω2 − iω(R2

1L+R3
1R2C) + iR3

1R2C
.

C R

L R

1

2

Figure 1: A simple electrical network of the type being considered

2 Uniqueness

Networks with two poles consisting of resistors, capacitors and inductors
don’t necessarily acquire a unique current through the network for every
periodic boundary voltage. Consider the general version of Ohm’s law, for
periodic boundary voltage, I(t) = γ(ω) · V (t). This relation holds for all ω
where γ(ω) is defined. γ can have poles in the complex plane and in some
cases these poles can lie on the real axis, corresponding to certain purely
periodic boundary voltages. But, away from the poles of γ, the current
through the network is uniquely determined by Ohm’s Law.

One simple example of a circuit where a unique current is not attained
is an LC circuit, where the admittance has poles at ω = 1/

√
LC and

ω = −1/
√
LC. In physical terms, this circuit has a resonance frequency

1/
√
LC and excitation by an applied voltage at that frequency will produce

an unbounded current response. But, away from the poles, this network has
a finite admittance. Similarly, the admittance for an inductor has a pole at
ω = 0, and the admittance for a capacitor has a pole at ∞.
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3 Simple Networks

Our results do not consider all possible RLC networks. Instead, they apply
to a limited class of networks that we will call simple.

Definition 1. A simple parallel network is a two-pole electrical network that

is made up of a parallel combination of specific types of serial elements. The

allowed types of serial elements are resistors, capacitors, inductors, or any

two of the above in series, or all three in series.

Figure 2 shows an example of a simple parallel network containing all of
the allowable types of elements.

Figure 2: A Simple Parallel Network

A similar construct is possible for series networks, defining a class of net-
works called simple series networks which are made up of series combinations
of 7 types of parallel elements: resistors, inductors, capacitors, or any two
of those in parallel, or all three in parallel. Figure 3 shows an example of a
simple series network containing all of the allowable elements. We will con-
sider only the case of the simple parallel network, because the simple series
network is its dual.
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Figure 3: A Simple Series Network

The admittance of a simple parallel network is the sum of the admittances
of each of its branches. By writing the admittance in its partial fraction
decomposition, we can identify terms that come from specific elements.

Definition 2. A simple admittance is an admittance of the form

γ(ω) =a1ω + a0 +

[

1

b1(ω − ωb1)
+ · · ·+ 1

bl(ω − ωbl)

]

+

[

c1 +
1

d1(ω − ωd1
)
+ · · ·+ cm +

1

dm(ω − ωdm)

]

+

[

1

e1(ω − ωe1)
+

1

e1(ω + ωe1)
+ · · ·+ 1

en(ω − ωen)
+

1

en(ω + ωen)

]

+

[

1

f1(ω − ωf1
)
+

1

f ′1(ω − ω′f1
)
+ · · ·+ 1

fp(ω − ωfp)
+

1

f ′p(ω − ω′fp)

]

where

• Re(a1) = 0, Im(a1) > 0

• Re(a0) > 0, Im(a0) = 0

• Re(bi) = 0, Im(bi) > 0,
Re(ωbi) = 0, Im(ωbi) ≥ 0, for all 1 ≤ i ≤ l

• Re(di) = 0, Im(di) < 0,
Re(ωdi) = 0, Im(ωdi) > 0,
ci = 1/(diωdi), for all 1 ≤ i ≤ m

• Re(ei) = 0, Im(ei) > 0,
Re(ωei) 6= 0, Im(ωei) = 0, for all 1 ≤ i ≤ n
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• f ′i = −fi, ω
′
fi
= −ωfi,

Re(fi) > 0, Im(fi) > 0,
Re(ωfi) ≥ 0, Im(ωfi) > 0, for all 1 ≤ i ≤ p

Note that this admittance is the partial fraction expansion of a rational
function of ω that has l + m + n + p poles, all of which are simple and lie
in the upper-half plane or along the real axis. Now, we can state the main
theorem of the paper on recoverability of simple parallel networks.

Theorem 1. Given a simple admittance γ(ω), we can construct a simple

parallel network with that admittance.

4 Recovery

4.1 Components

Each of the elements allowed in a simple parallel network has an admittance
of one of the types allowed in a simple admittance. Table 1 lists all of the
components, and the admittances to which they correspond. As can be seen,
the admittances of the six types of components correspond to the types of
terms that appear in the definition of a simple admittance. It is this fact
that allows us to recover a simple parallel network from a simple admittance.

4.2 From Admittance to Network

Assume that we are given a simple admittance γ(ω). Then, we construct a
simple parallel network in the following way. First, if a1 6= 0, then there
is a branch in the network consisting solely of a capacitor with capaci-
tance C = Im(a1). If a0 6= 0, then there is a branch consisting solely of
a resistor, with resistance R = 1/a0. If there are any terms of the form
1/ [b(ω − ωb)], then there is a branch consisting of an inductor and a resistor
in series, with inductance L = Im(b) and resistance R = −bωb. Any terms
of the form c + 1/ [d(ω − ωd)] tell us that there is a branch containing only
a resistor and capacitor in series, with resistance R = dωd and capacitance
C = − Im(d)/R2. Similarly, terms of the form 1/ [e(ω − ωe)] + 1/ [e(ω + ωe)]
correspond to branches with an inductor and capacitor in series, with induc-
tance L = 1

2
Im(e) and capacitance 1/(Lω2

e). Finally, any terms of the most
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complicated form 1/ [f(ω − ωf )] + 1/
[

f ′(ω − ω′f )
]

correspond to branches
with all three of the components in series, and with values determined by

L =
ifωf

ωf − ω′f
, R = iL ·

ωf + ω′f
2

, C =
−4

Lωfω′f

A network constructed using this process for each of the terms in the given
simple admittance will have that given admittance. This proves Theorem 1.

5 More Complicated Networks

Now that we have an understanding of a basic type of two pole network,
we can use networks of that type as elements to build more complicated
networks. Consider a connected graph with boundary Γ = (V, VB, E), where
VB is the set of boundary nodes. Define functions γij(ω) on E such that
γij(ω) is the admittance of edge ij ∈ E. We also require that γ be a simple
admittance for every edge.

Voltages are applied to the network at the boundary nodes, and the in-
terior nodes obey Kirchhoff’s Law, which says that the net flow of current
into a node is 0. In terms of admittances and voltages, Kirchhoff’s Law at a
node p is

∑

q

γpq(ω) [vp(ω)− vq(ω)] = 0

where the sum is over all nodes q that are neighbors of p. A problem of this
type, where boundary voltages are specified at all of the boundary nodes
and all of the interior nodes obey Kirchhoff’s Law, is known as the Dirichlet
Problem for an electrical network.

5.1 Uniqueness for the Dirichlet Problem

The Dirichlet problem does not have a unique solution for a network with
simple admittances. Consider the network of Figure 4(a). It is a network,
where each edge is a (very) simple parallel network, and so has a simple
admittance. But, as shown in Figures 4(b) and 4(c), there are two different
interior voltages that give the same boundary voltages. Without a unique
solution to the Dirichlet problem, the inverse problem that we are interested
in does not make sense. As a result, we impose an additional condition on
the admittances: that they have positive real parts.
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This requirement of positivity for the real parts corresponds to the phys-
ical requirement that every simple parallel network in the larger network
contain at least one resistor. This correspondence is due to the fact that the
admittances for components that contain resistors have positive real parts,
while the admittances for all other types of components are purely imagi-
nary. Since the admittance of a simple parallel network is the sum of the
admittances of the individual components, the admittance of a network with
at least one resistor in it has positive real part.
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Figure 4: A network without a unique solution to the Dirichlet problem. The
bold numbers represent periodic voltages, in this case, of angular frequency
ω = 1. Both of the sets of voltages satisfy Kirchhoff’s law on the interior,
and have zero boundary voltages.

Theorem 2. Let Γ = (V, VB, E) be a connected graph with boundary. Let

{γij} be defined on the edges of Γ such that the admittance of edge ij is given
by γij(ω). Suppose that the admittances are all simple and have positive real

parts for all ω in some set W . Then the Dirichlet problem has a unique

solution for frequencies ω ∈ W .

Proof. This proof is very similar to those in [4] and [1]. Consider the matrix
K = (kij), called the Kirchhoff matrix, defined as follows.

kij =

{

−γij(ω) , if i 6= j
∑

l γil(ω) , if i = j
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where the sum is over all vertices l that are adjacent to i. Note that the
entries of K are functions of ω and by definition K is symmetric, and has
row sums 0. K represents the map from voltages at the nodes of the networks
to the currents out of each node. That is, if veiωt is a vector of voltages at
all n nodes, then (Kv)eiωt is the vector of currents out of each node.

K has a natural block decomposition based on boundary and interior
nodes. If we order the nodes of Γ so that the boundary nodes are the first m
nodes, and the remaining nodes are interior nodes (for a total of n nodes),
then K has the block structure

K =

(

A B
BT C

)

where K is an n × n matrix, and A is an m ×m matrix. Using this block
structure of K, the Dirichlet problem has a natural formulation. Given an
m×1 vector of boundary voltages v∂e

iωt, find an (n−m)×1 vector of interior
voltages, vinte

iωt such that the following equation is satisfied:

Kv =

(

A B
BT C

)(

v∂

vint

)

eiωt =

(

f∂
0

)

eiωt

for some m× 1 vector f∂.
If the matrix C is non-singular, then the Dirichlet problem has the unique

solution vint = −C−1BTv∂. To show that C is non-singular, we first show
that the nullspace of K contains only constant vectors of functions. Consider
a vector x such that Kx = 0. Then, x̄TKx = 0. Thus,

x̄TKx =
∑

i,j

x̄i(ω)kij(ω)xj(ω)

=
∑

i6=j

x̄i(ω)kij(ω)xj(ω) +
n
∑

i=1

kii(ω)|xi(ω)|2

=
∑

i<j

kij(ω)
[

x̄i(ω)xj(ω) + x̄j(ω)xi(ω)
]

+
n
∑

i=1

kii(ω)|xi(ω)|2

=
∑

i<j

kij(ω)
[

xi(ω)− xj(ω)
][

x̄j(ω)− x̄i(ω)
]

= −
∑

i<j

kij(ω)|xi(ω)− xj(ω)|2 = 0.
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Since we have assumed that Re
(

γij(ω)
)

> 0 for all ω ∈ W and for every edge
ij ∈ E, Re(kij

(

ω)
)

< 0 for i 6= j and for all ω ∈ W . Since the terms are all
non-positive, they must all be zero, so we conclude that |xi(ω)− xj(ω)|2 = 0
if node i is a neighbor of node j, for all ω ∈ W . Because Γ is a connected
graph, there exists a path between any two vertices. So, for every pair of
vertices i and j, xi ≡ xj on W . Thus, we conclude that x is a constant vector
of functions.

Now, assume that there is a vector y of functions for which Cy = 0 for
all ω ∈ W . Then, form the vector z = [0, . . . , 0, y1(ω), . . . , yn−m(ω)]. So,

ȳTCy = z̄TKz = 0

which implies that z is a constant vector of functions. But, z has entries which
are the zero function, so z is the constant vector of zero functions, which
implies that y is also the vector of zero functions. Since Cy = 0 ⇔ y = 0,
we conclude that C is non-singular for all ω ∈ W . Having shown that C is
non-singular, we have proved that the Dirichlet problem has a unique solution
for frequencies ω ∈W .

6 The Inverse Problem

Now that we have shown uniqueness for the solution of the Dirichlet problem,
we can define the Dirichlet-to-Neumann map, Λ = A−BC−1BT as the map
from boundary voltages to boundary currents. The inverse problem we are
interested in is, given the Dirichlet-to-Neumann map for a network with
admittances γ, find a network with those admittances. The solution to this
problem is not unique. Figure 5 shows two different networks that have the
same admittance,

γ(ω) =
ω − i/2

ω − i

Two different networks can have the same admittance only when an RC and
an RL branch are both present in one of the networks. This network will
then be equivalent to one with either the RL or the RC branch replaced by a
purely resistive branch, and the component values adjusted. This is the only
situation in which the poles of the admittance lie in the same place for two
different types of components (in this case on the positive imaginary axis),
and so this is the only way in which two different networks can have the same
admittance.
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11 2 1/2

Figure 5: Two networks with the same admittance.

Since the solution to the inverse problem is not unique, we can only
promise to construct a network that has the given Dirichlet-to-Neumann
map. So, we concern ourselves with the recovery of the admittances of a
network from its Dirichlet-to-Neumann map. If the admittances that we
recover are simple, then by Theorem 1 we can construct a network with
those admittances, whose elements are themselves simple parallel networks.

7 Recovering Rectangular Networks

We consider the process of recovering admittances for a rectangular network.
This process is almost identical to that described in [2], with the exception
of the proof of uniqueness, and the form of the voltages involved. Define
a rectangular network Γ as follows. The nodes are the lattice points p =
(i, j) for 0 ≤ i ≤ n + 1 and 0 ≤ j ≤ n + 1 with the four corner points
(0, 0), (0, n+1), (n+1, n+1) and (n+1, 0) excluded. The interior nodes are
the points p = (i, j) for 1 ≤ i ≤ n and 1 ≤ j ≤ n and all of the other points
are boundary nodes. Number the nodes clockwise around the boundary,
starting from the upper right, as shown in Figure 6. Denote the North, East,
South and West faces of the network by N, E, S, and W, respectively.

First, we have to show that a certain problem, involving both boundary
currents and boundary voltages has a unique solution. We will show that
the associated homogeneous problem has only the trivial solution. Consider
the following problem for a rectangular network: Set the boundary voltages
to be 0 on the N, W, and S faces. Also, require that the boundary current
be 0 on the W face.

Lemma 1. This problem has only one solution for the voltages on the E face:

they are all 0.

Proof. Kirchhoff’s Law is a five point formula in the rectangular case. It in-
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Figure 6: A rectangular network with n nodes on a side

volves the voltages at one interior point and its four neighbors. The positivity
of the real parts of the admittances guarantees that all of the coefficients are
non-zero, and so the voltages at any four of the points uniquely determine
the voltage at the fifth point. Since no current flows into or out of the W
face, the voltage must be 0 along the entire first column of interior nodes.
Using Kirchhoff’s Law at the interior nodes and the values along the N and
S faces, we can work our way across the network from W to E, determining
that all of the voltages are 0. This process continues, until we reach the E
face, where all of the voltages must be 0.

Consider the mixed problem with 0 boundary voltages and currents on
the W face and 0 voltages on the S face. On the N face, set the voltage at
a4n−k+1 to be eiωt, and zero everywhere else on the N face. Let the voltages
on the E face be α1(ω), . . . , αn(ω).

Theorem 3. The mixed problem has a unique solution for α1(ω), . . . , αn(ω),
and αk+1, . . . , αn are all zero.

Proof. Consider the difference of two solutions to the mixed problem. This
difference satisfies the homogeneous problem of Lemma 1. Thus, the differ-
ence between any two solutions of the mixed problem is identically zero, and
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so the solution of the mixed problem is unique. αk+1, . . . , αn are all zero by
Kirchhoff’s Law, from the data specified.

The first step in recovering the admittances is the recovery of the admit-
tances for the edges on the corners, in this case, γa4n,q(ω) and γa1,q(ω). By
Theorem 3, there is a unique function α(ω), which solves the mixed problem
with zero boundary voltages, except for eiωt at a4n and α(ω)eiωt at a1 and
zero boundary currents on the W face. This function α can be computed as
−λ3n,4n(ω)/λ3n,1(ω). Using that boundary potential, the voltage at q is zero,
which allows us to calculate the admittances of a4nq and a1q, since we know
both the voltage drops by construction, and the currents into the network
from the Dirichlet-to-Neumann map. This process gives us the conductances

γa4n,q(ω) = λ4n,4n(ω)−
λ3n,4n(ω)

λ3n,1(ω)
λ4n,1(ω)

γa1,q(ω) = −
λ1,4n(ω)λ3n,1(ω)

λ3n,4n(ω)
+ λ1,1(ω)

To show that we can compute all of the admittances in the entire network,
assume that we know all of the admittances of all of the edges above the
staircase joining node a4n−k+1 to node ak. The admittances to be computed
are those marked with an × in Figure 7. Consider the mixed problem with

a a

a

a

4n-k+1 4n

1

k

Figure 7: Inductive step for computing admittances
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voltage and current 0 on the W face, voltage 0 on the S face, voltage 0 on the
N face, except at a4n−k+1 where it is eiωt. The solution for α1(ω), . . . , αk(ω)
is unique by Theorem 3. Using this boundary voltage and the admittances
that we have assumed to know, we can compute the voltages at all of the
nodes in the network. Now that we know all of those voltages, we can use
Kirchhoff’s Law to compute the admittance of each of the conductors in the
staircase. By induction, we can find the admittance of every conductor above
the main diagonal. By a similar process, we can recover the admittances of
all of the conductors below the main diagonal, and we have computed all of
the admittances in the network.

8 Connections and Determinants

In this section, we restate a result from the theory of resistor networks, that
appeared in [3]. While the same result is true, the conclusions that can
be drawn in the case of general electrical networks are more limited. The
conclusions drawn from this result are key to a method of recovery for circular
planar graphs mentioned in [3].

Suppose Γ = (V, VB, E) is a connected graph with boundary. Let I =
V − VB be the set of interior nodes. A path between two boundary nodes
p and q is a sequence of edges pr1, r1r2, . . . , rmq, where all of the rj are
distinct interior nodes. A connection between two sets of boundary nodes
P = (p1, . . . , pk) and Q = (q1, . . . , qk) is a set α = (α1, . . . , αk) of disjoint
paths. Let C(P ;Q) be the set of all possible connections from P to Q. For
every α in C(P ;Q), define the following three objects:

• τα, the permutation of the vertices (q1, . . . , qk) that results at the end-
points of (α1, . . . , αk);

• Eα, the set of edges present in the connection α;

• Jα, the set of interior nodes which are not endpoints of any of the edges
in Eα.

Theorem 4. Let (Γ, γ) be a connected electrical network, with admittances
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γ = {γe(ω)}. Let P and Q be disjoint sets of k boundary nodes. Then,

detΛ(P ;Q) · detK(I, I) =

(−1)k
∑

τ∈Sk

sgn(τ)











∑

α∈C(P ;Q)
τα=τ

[

detK(Jα, Jα) ·
∏

e∈Eα

γe(ω)

]











Proof. The proof of Lemma 4.1 in [3] is also valid in the case of admittances.

In the case of planar networks, there is only one permutation τ possible
in the above formula (the identity permutation) and so we get the following
formula for the sub-determinant of Λ corresponding to the sets of vertices P
and Q:

det Λ(P ;Q) =
(−1)k

detK(I; I)







∑

α∈C(P ;Q)

[

detK(Jα, Jα) ·
∏

e∈Eα

γe(ω)

]







.

In the case of resistor networks, since all of the admittances are positive real
numbers, the only way that the determinant corresponding to two sets of
vertices can be zero is if there is no connection between them. This is not
true if we relax the conditions on the admittances. Specifically, if we allow
the admittances to be complex numbers, then there are sets of vertices in
some graphs that have zero determinants, even though there is a connection
between them. Even if we limit the complex numbers to have positive real
parts, there are still cases where connections exist, but the corresponding
determinant is 0. An example is shown in Figure 8. It is a planar graph with
complex resistances. The determinant of the connection from node 1 to node
4 is

det Λ(1; 4) =
−1

detK(I; I)







∑

α∈C(1;4)

[

detK(Jα, Jα) ·
∏

e∈Eα

γe(ω)

]







=
−1

detK(I; I)

[

γ5γ7(γ1 + γ2 + γ3) + γ1γ2(γ4 + γ5 + γ6 + γ7)
]

.

This determinant is zero for many choices of γ1, . . . , γ7. For example, if

γ1 = 1 + 2i, γ2 = 1/2 + 2i, γ3 = 251
1

2
− 5i, γ4 = 250

γ5 = 2− i, γ6 = 250, γ7 = 4− i
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Figure 8: A graph with a connection whose corresponding determinant is 0
for certain admittances.

then det Λ(1; 4) = 0. This counterexample shows that it is not true for
complex-valued admittances with a positive real part that the determinant
corresponding to a connection is never zero. If we consider the case of simple
admittances, the above example shows us that the determinant corresponding
to a connection can have zeroes for real values of ω. On the other hand, it
is not known if that determinant function can be identically zero if there is
a connection.

9 Further Work

As mentioned, it may be true that the determinant in Λ corresponding to
two sets of vertices can only be identically zero as a function of ω if there is
no connection between them, with some appropriate conditions on the ad-
mittances. Another unanswered question lies in the recoverability of critical
circular planar networks. The above conjecture, if it were true, would pro-
vide a major step towards the possibility of applying the recovery process of
[3] to critical circular planar networks. Also, there are other classes of RLC
electrical networks that could be investigated, whose admittances might have
similar properties. For example, a network that was a combination of sim-
ple parallel and simple serial networks might be recovered by some recursive
process for decomposing its admittance.
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Component Admittance Values

C a1ω C = Im(a1)

R a0 R = 1/a0

RL 1
b(ω−ωb)

L = Im(b),

R = −bωb

RC c+ 1
d(ω−ωd)

C = − Im(d)/R2,

R = dωd

LC 1
e(ω−ωe)

+ 1
e(ω+ωe)

L = 1
2
Im(e),

C = 1/(Lω2
e)

RL C 1
f(ω−ωf )

+ 1
f ′(ω−ω′

f
)

L =
ifωf

ωf−ω′

f

,

R = iL
ωf+ω′

f

2
,

C = −4
Lωfω

′

f

Table 1: The components of a simple parallel network, their admittances,
and the component values in terms of the admittances.
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