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1 Introduction

In [1], several concepts were developed. Among these there are some that
represent countable objects, such as the number of 4-node Y-∆ equivalence
classes or the number of graphs in a given Y-∆ equivalence class. The goal
of this paper is to provide means for counting many such quantities, either
by algorithm or by recursive formula.

2 Preliminary Material

For a more complete exposition of the following material, see [1]. Much of
this section follows the form presented in [2] quite closely.

2.1 Graph with Boundary

Let a graph with boundary be a triple Γ = (V, ∂V,E), where (V,E) is a
finite graph with the set of nodes V and the set of edges E. Let ∂V be a
nonempty subset of V called the set of boundary nodes. The interior of Γ
consists of those nodes not contained in ∂V .

2.2 Circular Planar Graphs, Criticality, and Connectivity

A graph Γ is defined as circular planar if and only if Γ can be embedded
in a disc D in the plane such that the boundary nodes lie on ∂D and the
remainder of Γ is in the interior of D. The ∂V of such a graph will be labeled
v1, . . . , vn in the (clockwise) circular order around ∂D. A pair of sequences
of boundary nodes (P ;Q) = (p1, . . . , pk; q1, . . . , qk) such that the sequence
(p1, . . . , pk, qk, . . . , q1) is in circular order will be called a circular pair.
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A circular pair (P ;Q) = (p1, . . . , pl; q1, . . . , qk) of boundary nodes is said
to be connected through Γ if there are k disjoint paths α1, . . . , αk in Γ, such
that αi starts at pi, ends at qi, and passes through no other boundary nodes.
We say that α is a connection from P to Q. For each circular planar graph
Γ, let π(Γ) be the set of all circular pairs (P ;Q) of boundary nodes which
are connected through Γ.

An edge may be removed from a graph in two ways:

1. By deleting an edge

2. By contracting an edge to a single node, provided the edge does not
connect two boundary nodes.

Removing an edge is said to break the connection from P to Q if there
is a connection from P to Q through Γ before the edge is removed, but not
after the edge is removed. A graph Γ is called critical if the removal of any
edge breaks some connection in π(Γ).

2.3 Y-∆ Transformations

Let Γ be a circular planar graph with s is a trivalent interior node of Γ with
incident edges sp,sq, and sr. A Y-∆ transformation removes the vertex s,
and the three incident edges. These are replaced by new edges pq,qr, and
rp. A ∆-Y transformation is the opposite procedure, creating interior node s
and replacing edges pq,qr, and rp by edges sp,sq, and sr. Now let Γ1 and Γ2

be two circular planar graphs. Γ1 and Γ2 are said to be Y-∆ equivalent if Γ1

can be transformed to Γ2 by a sequence of Y-∆ and/or ∆-Y transformations.
The Y-∆ equivalence class of a graph Γ is defined to be the set of all graphs
that are Y-∆ equivalent to Γ.

2.4 Medial Graphs

Again, let Γ be a circular planar graph. We may associate to Γ a medial
graph M(Γ). Because Γ is circular planar, the boundary nodes v1, . . . , vn

occur in clockwise order around a circle C and the rest of Γ is in the interior
of C. For each edge e of Γ let me be its midpoint. Place 2n points t1, . . . , t2n

on C such that

t1 < v1 < t2 < t3 < v2 < . . . < t2n−1 < vn < t2n < t1

in clockwise circular order around C. The vertices of M(Γ) consists of the
points me for e ∈ E and the points ti for i = 1, . . . , 2n.
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Now we must define the edges of M(Γ). Two vertices me and mf are
joined by an edge whenever e and f have a common vertex and are incident
to the same face in Γ. There is also one edge for each point tj as follows.
The point t2i is joined by an edge to me where e is the edge in Γ of the form
e = vir which comes first after arc vit2i in clockwise order around vi. The
point t2i−1 is joined by an edge to mf where f is the edge in Γ of the form
f = vis which comes first after arc vit2i−1 in counter-clockwise order around
vi.

The vertices me ofM(Γ) are 4-valent, and the vertices of the form ti are
1-valent. An edge uv ofM(Γ) has a direct extension vw if the edges uv and
vw separate the two other edges incident to the vertex v in M(Γ). A path
u0u1 . . . uk in M(Γ) is called a geodesic arc if each edge ui−1ui has edge
uiui+1 as a direct extension. A geodesic arc u0 . . . uk is called a geodesic
if either u0 and uk are points on the circle C or uk = u0 and uk−1uk has
u0u1 as a direct extension. M(Γ) is said to have a lens if two geodesics
in M(Γ) intersect each other more than once. M(Γ) is said to be lensless
is each geodesic in M(Γ) begins and ends on C, has no self-intersections,
and M(Γ) has no lenses. From [1] we know that a circular planar graph is
critical if and only if its medial graph is lensless.

A triangle inM(Γ) is a triple f, g, h of geodesics which intersect to form
a triangle with no other intersections within the configuration. It can be
seen through the use of illustrations that there are two ways of configuring
this triangle while maintaining the clockwise ordering of its vertices. A
motion consists of replacing one configuration by another. Suppose Γ1 and
Γ2 are two circular planar graphs. From [1] we know that Γ1 and Γ2 are Y-∆
equivalent if and only if their medial graphs are equivalent under motions.

2.5 Z-Sequences

Now suppose that Γ is a critical circular planar graph embedded in a disk
D. Then M(Γ) is lensless. In addition, M(Γ) will have n geodesics each
of which intersects C twice. The n geodesics intersect ∂D in 2n distinct
points. These points are labeled t1, . . . , t2n such that

t1 < v1 < t2 < t3 < v2 < . . . < t2n−1 < vn < t2n < t1

in clockwise circular order around ∂D. The geodesics are labeled as follows.
Let g1 be the geodesic which begins at t1. The remaining geodesics are
labeled g2, g3, . . . , gn so that if i < j, the first point of intersection of gi with
∂D occurs before the first point of intersection of gj with ∂D in clockwise
circular order starting from t1. For each i = 1, 2, . . . , 2n, let zi be the number
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associated with the geodesic which intersects C at ti. In this way we obtain
a sequence z = z1, z2, . . . , z2n which we define as the z-sequence for M(Γ).
From [1] we know that two critical circular planar graphs are Y-∆ equivalent
if and only if their z-sequences are the same. If i < j, and if the occurrences
of i and j appear in z in the order

. . . i . . . j . . . i . . . j . . .

we say that i and j interlace in z. Otherwise, we say the i and j do not
interlace in z.

3 The Counts

Now it can be seen that, using the above concepts, many countable objects
can be conceived of. The following are considered (for a given number of
boundary nodes n):

1. Number of Y-∆ Equivalent Graphs in a Given Class

2. Number of Possible Z-Sequences

3. Number of Meaningful Z-Sequences

4. Number of Y-∆ Equivalence Classes with One Connected Component
(1)

5. Number of Y-∆ Equivalence Classes with One Connected Component
(2)

6. Number of Critical Graphs

Then expression a(n) will be used to signify a count based on n nodes.

3.1 Number of Y-∆ Equivalent Graphs in a Given Class

Given a z-sequence z (and its corresponding Y-∆ equivalence class):

a(z) =
∑

x∈S

a(x)a(x)

The set S is constructed in the following way. Let K be the set of
all geodesics which interlace with g1. The first member of S,s1, is the z-
sequence formed by the arrangement of the indices of these geodesics as
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they appear in z, along with any others that appear between the 1’s. So
for the sequence z = 12344132, s1 is 234432. The other members of S are
constructed by permuting the second part of s1 (32 in the example above),
respecting interlace rules. The interlace rules are formed as follows. Any two
geodesics which do not interlace must maintain the same ordering as they
had in the second part of s1. So, in the above example, while s1 = 234432
is a valid z-sequence, s2 = 234423 is not, because 2 and 3 do not interlace
in the z.

The z-sequence s1 is formed in a similar fashion. Instead of using the
section of z between the 1’s for the first part, we use the section of z after
the second 1. For the second part of s1 we use the reverse of the second
part of s1. So for the sequence z = 12344132, s1 is 3223. All other si’s are
formed in the same way, using the reverse of the second part of si to form
their second part.

3.2 Number of Possible Z-Sequences

a(n) =
n∏

k=1

(2k − 1)

This count is the result of the following method of generating z-sequences.
Start with the 1 node case:

zn=1 = 11

To generate the 2 node case, insert a new geodesic:

zn=2 = 0011

Propogate this new geodesic through the sequence:

zn=2 = 0011

zn=2 = 0101

zn=2 = 0110

Renumber the geodesics:

zn=2 = 1122

zn=2 = 1212

5



zn=2 = 1221

Repeat the process, remembering to propogate a geodesic through all

possible z-sequences:

zn=2 = 1122 :

zn=3 = 001122

zn=3 = 010122

zn=3 = 011022

zn=3 = 011202

zn=3 = 011220

zn=2 = 1212 :

zn=3 = 001212

zn=3 = 010212

zn=3 = 012012

zn=3 = 012102

zn=3 = 012120

zn=2 = 1221 :

zn=3 = 001221

zn=3 = 010221

zn=3 = 012021

zn=3 = 012201

zn=3 = 012210

Continue on until the n-node case is reached.
By this means of generating sequences, the validity of the count becomes

apparent. There are always 2n − 1 steps to the geodesic propogation, per-
formed on a(n − 1) sequences, with a(1)=1. So the count is correct by
induction.
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3.3 Number of Meaningful Z-Sequences

This count did not lend itself well to an explicit formula. The following
method can be used to determine whether or not a z-sequence is meaningful,
given a z-sequence z.

1. Find the connected components of a medial graph with z as its z-
sequence.

2. The z-sequence is not meaningful if and only if two geodesics z2i−1 and
z2i do not belong to same connected component for i = 1, 2, . . . , n.

The idea is that a z-sequence becomes meaningless when a boundary
cell is connected to the circle of the circular planar graph at two or more
distinct intervals. This algorithm tests for such boundary cells. Boundary
cell intervals only occur between odd and even indices in the z-sequence, not
between even and odd. So z1z2 would represent a boundary cell interval,
while z2z3 would not.

The count can be determined by applying this test to each possible
z-sequence, all of which can be generated by the method in the previous
section.

3.4 Number of Y-∆ Equivalence Classes with One Connected
Component (1)

This quantity can be obtained by using the previous method, counting only
those z-sequences with one connected component.

3.5 Number of Y-∆ Equivalence Classes with One Connected
Component (2)

Let P = {(x, y) : x+ y < n;x, y ∈ N}. Then

a(n) = (2n− 3)a(n− 1) +D(n)

where
D(n) =

∑

(x,y)∈P

(2x− 1)a(x)(2y − 1)a(y)a(n− x− y)

This count can be justified in the following way. The term (2n−3)a(n−
1) represents those classes which can be formed by taking all connected
graphs (not in the same Y-∆ equivalence class) with n− 1 boundary nodes
and introducing one new geodesic into their medial graphs in all possible
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ways (without repetition). The term D(n), called the n-node detritus, is
similar. Given (x, y) ∈ P , x is the number of geodesics in a connected medial
graph where the new geodesic will enter. y is the number of geodesics in a
connected medial graph where the new geodesic will leave. There are n−x−
y−1 remaining geodesics which are distributed in space between the entrance
graph and the exit graph. There are (2x−1)a(x) means for the new geodesic
to enter, and (2y−1)a(y) ways for it to leave. The a(n−x−y) term accounts
for the remaining geodesics, which will can be configured in a(n−x−y) ways
to form (n−x−y)-geodesic connected medial graphs with the new geodesic.
In this way the n-node detritus accounts for those connected medial graphs
not built upon (n−)1-node connected medial graphs. Remember that Y-∆
transformations do not come into play here, as the medial graphs constructed
are representatives of a certain Y-∆ equivalence class.

3.6 Number of Critical Graphs

Let Z be the set of all n-node meaningful z-sequences. Then

a(n) =
∑

z∈Z

y(z)

where y(z) is the number of Y-∆ equivalent graphs in the class defined by z,
which can be counted using the method above. The set Z can be restricted
to those n-node meaningful z-sequences which represent medial graphs with
one connected component if desired.
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