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Abstract. The following is a step by step algorhithm used to recover the ”un-
known” geometry of a circular planar graph. The bulk of this project is devoted
towards Theorem 4.1.10, which relates connections between two boundary
nodes in circular planar graph to the rank of a submatrix in the Dirichlet-
to-Neumann map denoted by Λ. Briefly, the Dirichlet-to-Neumann map is a
function which relates boundary information to the interior of a circular planar
resistor network. More information regarding the Dirichlet-to-Neumann map
can be found in [1]. A computer program writen in Mathematica 3.0 accompa-
nies this presentation in section 6, as well as a complete Mathematica ”package”
format including examples of Dirichlet-to-Neumann maps with graphic displays
of the resulting circular planar graph at the end of this paper. 1. Introduc-

tion. A graph with a boundary is a triple Γ = (V, E, ∂V), where Γ is a finite
graph with V = the set of nodes, E = the set of edges where the conductivity
γ acts, and ∂V = the non-empty subset of V called the boundary nodes where
the current I is induced. Γ is allowed to have multiple edges (i.e., more than
one edge between two nodes) or loops (i.e., an edge joining a node to itself).
Within the content of this paper, we will not be looking at loops, since in pre-
vious articles, it was noted that loops can be eliminated to produce electrically
equivalent graphs.

A circular planar graph is a graph with a boundary which is embedded in a disc
Din the plane so that the boundary nodes lie on the circle C which bounds D,
and the rest of Γ is in the interior of D. The boundary nodes will be labelled
v1 ,..., vn in the (clockwise) circular order around C . A pair of sequences of
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boundary nodes (A,B) = (a1, ..., ak , b1, ..., bk ) such that the entire sequence
(a1, ..., ak , b1, ..., bk ) is in circular order, will be called a circular pair. Note
that in section 5, we will want to seperate (or divide) the circular pair (A,B)
by a set of intervals denoted (ii ,ij ) such thati 6= j andi ¡ j . This notion will
be clear later on.

A circular pair (A,B) of boundary nodes is said to be connected through Γ if
there are k disjoint paths α1, ..., αk in Γ, such that αi starts at ai, ends at bi,
and passes through no other boundary nodes. We say that α is a connection
from A to B .

For each circular planar graph Γ, let π(Γ) be the set of all circular pairs (A,B)
of boundary nodes which are connected through Γ.

Recall there are two ways in which we can remove an edge from a graph Γ.
First, we can delete an edge. Second, we can contract an edge to a single node.
(An edge joining two boundary nodes is not allowed to be a contracted to a
single node.)

We say that removing an edge breaks the connection from A to B if there is a
connection from A to B through Γ, but there is not a connection from A to B
after the edge is removed. A graph Γ is called critical if the removal of any
edge breaks some connection in π(Γ). The final result of this paper is to produce
a critical graph including all interior nodes and edges by simply gathering all
necessary information at the boundary of the graph. Think of a ”fortune teller”
predicting the shape of an object concealled within a foggy crystal ball by simply
feeling the texture of its surface.

A graph Γ remains critical under Y - ∆ equivalence transformations. Briefly, a
Y - ∆ equivalence is a geometric transformation shown below which maintains
electrical equivalence since we replace three edges by three edges. For more in-
formation regarding the properties of Y - ∆ equivalences in Γ, please see [1]. Y
- ∆ equivalence transformation in Γ A conductivity on a graph Γ is a function γ
which assigns to each edge e ∈ E a positive real number γ(e). A resistor network
(Γ,γ) consists of a graph with a boundary together with a conductivity function
γ. This paper makes no attempt to recover conductivities from boundary mea-
surements. Therefore, we will not talk much about conductivities, except in the
examples which conclude this paper. However, it should be noted that there is
a linear map from boundary functions to boundary functions defined as follows.
For each voltage potential f = {f( vi )} defined at the boundary nodes, there is
a unique extension of f to all the nodes of Γ which satisfies Kirchoff’s current
law,

∑

q∈N(p)γ(pq)(f(q)−f(p)) = 0 where N(p) represents all neighboring nodes

to p and p ∈V, and q ∈ ∂V orV. This function then gives a current I = {I( vi

)} into the network at the boundary nodes. The linear map which sends f to I
is called the Dirichlet-to-Neumann map and is represented by an n ×n matrix
denoted by Λ.2. Medial Graphs. We will investigate the key formula of this
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paper, namely, R(A) = card(A) - black(A) - max(A,B), where max(A,B) is the
rank of a particular submatrix within the Λ matrix and (A,B) represents the
circular pairs as defined in section 1.

A medial graphM is a circular planar graph such that its boundary nodes are
1-valent and its interior nodes are 4-valent.

4-valent geodesic interior node 1-valent geodesic boundary node

C

The name ”medial” comes from
the following construction that for each circular planar graph, Γ produces a
corresponding medial graph M(Γ).

Suppose Γ = (V, E, ∂V) is a circular planar graph with n boundary nodes. Γ is
assumed to be embedded in the closed unit disk Dso that the boundary nodes
v1 ,..., vn occur in clockwise order around a circle C = ∂Dand the rest of Γ is
in the interior of D. The medial graph M(Γ) depends on the embedding. First,
for each edge e of Γ, let me be its midpoint. Next, place 2n boundary points t1
,...,t2n on C so thatt1 ¡ v1 ¡ t2 ¡ t3 ¡ v2 ¡ ... ¡ t2n−1 ¡ vn ¡ t2n ¡ t1 in the clockwise
circular order around C.

(1) The vertices of M(Γ) consist of the points me for e ∈ E, and the points ti
for i = 1,...,2n.

(2) The edges in M(Γ) are as follows. Two vertices me and mf are joined by an
edge whenever e and f have a common vertex and e and f are incident to the
same face in Γ. There is also one edge for each point tj as follows. The point
t2i is joined by an edge to me where e is the edge of the form e = vi r which
comes first after the arc vi t2i in clockwise order around vi . The point t2i−1 is
joined by an edge to mf where f is the edge of the form f = vis which comes
first after the arc vi t2i−1 in clockwise order around vi .

The vertices of the form me of M(Γ) are 4-valent; the vertices of the form ti are
1-valent.

An edge uv of a medial graph M has a direct extension vw if the edges uv and
vw separate any other two edges incident to the vertex v . A path u0u1...uk in M
is called a geodesic arc if each edge ui−1ui has edge uiui+1 as a direct extension.
A geodesic arc u0u1...uk is called a geodesic if either

(1) u0 and uk are points on the circle C .

or

(2) uk = u0 and uk−1uk has u0u1 as a direct extension. If each geodesic in M
begins and ends on C , has no self-intersection, and ifM has no lenses, we will say
that M is lensless. For our purposes, we will only be looking at lensless graphs.
For more information on lenses and various Lemmas associated to electrical
equivalency of medial graphs with lenses, please see [2], section 4.1.2.

A triangle in M is a triple {f,g,h} of geodesics which intersect to form a triangle
with no other intersections within the configuration.
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Suppose {f,g,h} form a triangle. A motion of {f,g,h} consists of interchanging
the configuration as shown below.

A motion of f,g,h in the Medial Graph

f

g

h

f

g

h

Lemma 4.1.1. Two circular planar graphs
are Y-∆ equivalent if and only if their medial graphs are equivalent under mo-
tions.

Proof . Each Y-∆ transformation of Γ corresponds to a motion on M(Γ). Con-
versely, a motion on M(Γ) corresponds to a Y-∆ transformation of Γ. 3.

Z-Sequences.We begin this section with the study of the Z-sequence for a
particular medial graph, M(Γ). And although we do not directly compute the
Z-sequence within the computer algorithm, we mention it solely to provide a
more detailed presentation of medial graphs.

Let Mbe a medial graph. Then Mwill have ngeodesics each of which inter-
sect C twice. The ngeodesics intersect C in 2ndistinct boundary points. These
2npoints are labelled t1, ...t2n, so thatt1 ¡ t2 ¡ t3 ¡ ... ¡ t2n−1 ¡ t2n ¡ t1 are in
circular order around C . The geodesics will be labelled as follows. Let g1 be the
geodesic which begins at t1 . The remaining geodesicsare labelled g2, g3, ..., gn

so that if i ¡ j , then the first point of intersection of gi with C occurs before
the first point of intersection of gj with C in clockwise order starting from t1 .
For each i = 1,2,...,2n let zi be the number associated with the geodesic which
intersects C at ti . In this way we obtain a sequence z (M)= z1, z2, ..., z2n , called
the Z-sequence for M . Each of the numbers from 1 to n occurs in Z-sequence
for M exactly twice.

Windings and Unwindings in the Medial Graph

p

t1

t2

t1

t2

The tranformation above from left to right will be called
unwinding between t1 and t2 . The inverse of this transformation, defined if the
geodesics from t1 and t2 are different and do not intersect in a lensless graph,
will be called winding between t1 and t2 . After winding or unwinding, the
medial graph is still lensless and its Z-sequence changes by one transposition.

Lemma 4.1.6. Two lensless medial graphs M1 and M2 are equivalent under
motions if and only if the Z-sequence of M1 equals the Z-sequence of M2 .

Proof . Obviously, motions of a medial graph do not change its Z-sequence.

We show the other direction by an induction on the number of interior nodes
of the medial graphs. Clearly, the lemma is true if M1 or M2 have no interior
vertices. Now, suppose tghey have at least one. Then not all geodesics in M1

or M2 are parallel. WLOG we can assume that none of the geodesics of M1

or M2 terminate at two adjacent boundary nodes, that is there are no two
equal adjacent symbols in the Z-sequence of M1 or the Z-sequence of M2 .
Therefore, WLOG we can assume that the geodesics that go through boundary
nodes 1 and 2 intersect in an interior vertice pi in Mi , i = 1,2 . By a finite
sequence of motions all other geodesics can be moved out of the triangle 1,2,pi.

Therefore, WLOG the medial graphs look like the following figure near the
boundary vertices 1 and 2.

pi

1

2

1

2

The unwinding transformation above produces two
new lensless medial graphs with equal Z-sequences. By the inductive statement,
since these new medial graphs have fewer interior vertices, they are equivalent
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under motions, and therefore, so are the original graphs. 4. Connections

and Z-sequences. Key Identity. Let Γ be a circular planar graph. A path
βbetween boundary nodes aand bof Γ is either and edge (ab) or a sequence of
interior nodes p1, ..., pm such that(ap1), (p1p2), ..., (pm−1pm), (pmb) are edges of
Γ.

A disjoint connection α between two disjoint k-tuples of boundary nodes a1, ..., ak

and b1, ..., bk is a set of pairwise disjoint paths αi between the ai
′s and bi

′s .

The following theorem, proved in [1], shows that the existense of disjoint con-
nections between non-interlacing k-tuples of boundary nodes of Γ on C can be
read directly from a Dirichlet-to-Neumann map Λ.

Theorem 4.1.7. (see [1]) Let a1, ..., ak and b1, ..., bk be a disjoint pair of non-
interlacing boundary nodes of Γ. Then there is a disjoint connection between the
ai
′s and bi

′s if and only if det{Λ(ai, bj )} 6= 0. This states that the determinante
of the submatrix in Λ formed by the rows ai and the columns bj is not equal to
zero.

We now extend the notion of disjoint connections to medial graphs, M(Γ).

A face of medial graph M is a connected component of D- M . Due to the
valences of the nodes in M one can color the faces of M in black and white
so that no two faces with the same edge are of the same color (the so called
two-coloring). If M = M(Γ) then one can choose the two-coloring of M so that
a face is black if and only if it contains a node of Γ. Let us call this coloring
induced.

The boundary nodes of M split C in into 2n intervals, namely, i1, i2, ..., i2n . A
two-coloring of M induces a two-coloring of the intervals.

For the remainder of this section, let c and d be two points in two distinct
intervals ik and ij . Let C - {c,d} = A ∪ B where A and B are connected
disjoint geodesic arcs. Let I and J be two black intervals on the boundary such
that I ⊂ A and J ⊂ B . A path G between I and J is a sequence of black faces
F1, ..., Fm such that I ∈ F1 , J ∈ Fm , Fi ∩Fi+1 6= ∅, F2, ..., Fm−1 ∩ C = ∅ and
c and d are not in the closures of the Fi

′s .

Let ii and Ji be two disjoint k-tuples of the black intervals, such that ii ⊂ A
and Ji ⊂ B . A disjoint connection between the ii

′s and the Ji
′s is a sequence

of pairwise disjoint paths Gi between the ii
′s and the Ji

′s .

The definitions above are chosen so that the following lemma is true.

Lemma 4.1.8. Let Γ be a circular planar graph. Suppose M = M(Γ) is its
medial graph with the induced coloring. Let {ai } ∈ A and {bi } ∈ B be two
disjoint k-tuples of boundary nodes of Γ. Let ii and Ji be corresponding black
intervals. Then there is a disjoint connection between the ai

′s and the bi
′s if

and only if there is a disjoint connection between the ii
′s and the Ji

′s .
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