
Recovering the Conductivity of a Resistor

Network from the Dirichlet-to-Neumann Map

when there is a limited set of possible Resistors

S H Shepard IV

14th August 1997

1 Introduction

Resistor networks are not usually to be found in computing systems or most
machinery, but they are still interesting for their mathematical properties
and other possible practical applications. This project, in particular, could
be easily applied to situations where the conductivities of the objects being
dealt with are known, and one wants to find an object whose conductivity
differs from its background. Examples of this type of problem are mine/ore
detection and medical imaging. In mine detection, the ground is assumed to
have a different conductivity (very low) compared to the mine. If a ring of
nodes are placed in the ground, then the ground becomes a resistor network
whose conductivity is being recovered. The problem of medical imaging
involves a way of taking internal pictures of the body with a less invasive
method than an X-ray. A band of nodes are placed around a person and
then a small current is directed through the subject’s body. The currents
and voltages at the nodes are known as are the conductivities of blood, bone,
muscle, etc. thereby allowing an internal “picture” of the body to be found
when the system is recovered. This project is far away from those dreams, but
the methods developed here could eventually be applied to more complicated
networks.

A resistor network consists of a set of nodes N and a corresponding set
of edges E that connects pairs of nodes in N . The set of nodes is divided
into two subsets: the boundary nodes ∂N and the interior nodes int N .

1

Two nodes are considered adjacent if there is an edge between the two of
them. A particular type of resistor network is a rectangular resistor network
which can be constructed on a lattice by choosing the nodes to be p = (i, j)
where a ≤ i ≤ b and c ≤ j ≤ d for a < b and c < d with the four corners
(a, c), (a, d), (b, c), and (b, d) removed. A node is a member of the boundary
of this network if it is adjacent to only one other node. If a node is adjacent
to four nodes, it is an element of the interior.

For each edge σ in E for a given resistor network, a function γ : E → R+,
with γ(σ) being called the conductance of σ, is defined. (Note that 1/γ(σ) is
the resistance of σ.) The function γ is called the conductivity of the network.
For any function f : N → R, a function Lγf : int N → R is defined to be

Lγf(p) =
∑

q∈N (p)

γ(pq)(f(q)− f(p))

where N (p) is the set of edges adjacent to p. A function f is γ-harmonic
if it satisfies Lγf(p) = 0 for all p ∈ int N . A γ-harmonic function follows
Kirchhoff’s Law. A voltage φ(r) at each boundary node r of the network will
determine a unique f(p) at each interior node p such that f is γ-harmonic.
This voltage function φ determines a current Iφ(r) at each boundary node r
where Iφ(r) =

∑

q∈N (r) γ(qr)(f(q)− f(r)) with q being r’s neighbors. There-
fore, there is a relationship between the voltage φ and the current Iφ on
the boundary with either function determining the voltage f at the interior
nodes. The Dirichlet to Neumann map Λγ maps φ, the boundary value func-
tion, to the current function Iφ. The name is derived from the fact that Iφ
is the solution to the Dirichlet problem with boundary values φ and φ is
the solution of the Neumann problem with conditions Iφ. It will be shown
that by taking measurements at the boundary, γ can be determined for a
particular network.

The Dirichlet to Neumann map Λγ can be constructed from the Kirchhoff
matrix of a network. The Kirchhoff matrix K is created in the following
manner: entry j, j is the sum of the conductivities of all the edges that have
node j as an end; entry i, j (where i 6= j) is the negative of the sum of
all conductivities for the edges with endpoints i and j. Thus the Kirchhoff
matrix is symmetrical. If the nodes are ordered such that the first bN are
the boundary nodes, then it is quite simple to calculate Λγ. The Λ matrix
is the Schur complement of the Kirchhoff matrix with respect to C, where C
is the matrix that consists of the the last rows and columns of the Kirchhoff
matrix which correspond to the interior nodes.

2

K =

(

A B
BT C

)

Λ = A−BC−1BT

Given a Λ matrix for a rectangular resistor network, the Curtis-Morrow
algorithm can be used to recover the conductivity. The algorithm is based
on the fact that by setting the voltages and the currents at the appropriate
boundary nodes equal to 0, one can use the Dirichlet to Neumann map to find
the voltages and currents for the rest of the boundary. Once the voltages and
currents are known on the boundary, the inverse problem can be solved to find
the interior voltages. As can be seen in figure 1, the Curtis-Morrow algorithm
starts in one corner by setting the voltage at P1 equal to 1, the voltage at
all other boundary nodes besides P1 and Q1 equal to 0, and the current at
exactly one of these other boundary nodes equal to 0. This forces all the
interior nodes below the first diagonal to be 0, and it allows one to solve for
the voltage at Q1. Using Kirchhoff’s law, the values of the conductors that
connect P1 and Q1 to the interior can be found. This process is continued
in the next step by setting P2 equal to 1, all the boundary nodes besides
P2, Q1, and Q2 equal to 0, and then setting the current at two of these
other nodes (not both in the same corner) equal to 0. Using the Dirichlet to
Neumann map, Q1 and Q2 can be recovered and then since all the interior
nodes below the second diagonal will have voltage equal to 0, the inverse
problem needs to be solved just to find the value for the three interior nodes
in the upper right hand corner. This process can be continued with Q3 and
so on for as a network as necessary.

2 Rational Recovery of Conductivity

The first step in investigating this problem is to implement the Curtis-
Morrow algorithm. The computer language of choice was Maple. Two pro-
grams needed to be designed in order to construct and test the algorithm:
one program to create the Λγ matrix and another to use the algorithm to re-
cover its conductivity. The first Maple program that was designed (Appendix
6.2 gamma.ms) automatically took advantage of Maple’s rational arithmetic
since the program did not designate the use of floating point calculations.
The Λ matrix that was saved therefore had fractional entries, and when it

3

Q1

Q2

Q3

P1P2P3

Figure 1: The Curtis-Morrow Algorithm

was recovered by the programmed algorithm, rational arithmetic was also
used. The results of this situation were that the conductivities of the net-
works were recovered exactly. In theory, the algorithm should recover the
conductivity exactly since with rational arithmetic all the operations should
be performed without error. This program, however, was the first time in
the REU program at Washington that rational arithmetic was used, and thus
was the first time that the recoveries of networks as large as 20 by 20 or 23 by
23 were done exactly. The program was therefore a great step in the ability
to recover a resistor network, but at first glance it made the original prob-
lem of recovering a resistor network when there are only a few possibilities
for conductors obsolete. If a network can be covered exactly without taking
advantage of this information, then knowing that there are only a couple of
different resistor values is not necessary or helpful. However, there are three
very important problems with using rational calculations.

2.1 Time

As the Maple help manual states, rational notation is anywhere from 50
to 100 times slower than floating point calculations. This fact made itself
evident in the construction of the Λ matrix. The first version of the program

4

that constructed the Λ matrix made the time consuming demand of inverting
a rather large matrix to take the Schur complement. This was changed in
later versions to solving a system of linear equations which took considerably
less time. Even with this advancement, the use of rational arithmetic was
considered too time consuming, especially when compared to floating point
calculations. Below is a table of how long the program took to run for
different networks when using rational arithmetic.

Network seconds minutes (approx)
18 by 18 1656.5 27 1/2
20 by 20 3157.9 52 1/2
23 by 23 11359.3 189 2/3

The exponential growth of the amount of time needed shows that if the
networks became much larger than the 20 by 20 or 23 by 23 used in these
experiments, the time needed to create the Λ matrix would become unrea-
sonable. If floating point numbers are used, the time required to calculate
the Λ matrix from a network would be reduced.

2.2 Memory

The amount of memory that is needed to store the file that contains the Λ
matrix is also a detriment. As the size of the resistor network (and hence the
Λ matrix grows) so also does the size of the entries of the Λ matrix. Here is
an example of a single entry from the Λ matrix for a 20 by 20 network which
had the simplest pattern of having all its resistors as 1:

2238377498378055289940751434011408471951373956784395\

41682938156911410309137591811/32084303784525017\

85512444316778336597328984128431322734573121175\

16165542409086640

This fraction has an 81 digit numerator and an 81 digit denominator,
and therefore is quite costly to store and manipulate. If there was a way
to insure the same results while using floating point notation with fewer
significant digits, then a considerable amount of energy could be conserved.

5

2.3 Error

The biggest problem that cannot be eliminated by using this method is the
problem of error, or in other words, accuracy. In this artificial environment
where we are able to use a program such as Maple to calculate a Λ matrix to
almost as many digits as we like, the problem of error is not as important, but
the hope for the program is that it can take any reasonable approximation of
a Λ matrix and still be able to recovery the conductivities. Even the slightest
error in the Λ matrix results in a matrix which can not be the Dirichlet to
Neumann map for any network. The program as it was designed at this
point could not recover the conductivity of a network unless the Λ matrix
was exactly correct. The aim of this project is to find a program that could
overcome this flaw, and to recover a network correctly with the minimum
accuracy possible for the Λ matrix.

3 Floating Point Calculations

The program as it was originally designed was easily augmented to use float-
ing point notation instead of rational arithmetic. Once this change was
made, the difference in the amount of error that occurred was dramatic. The
first experiments in recovery were done with Maple’s default of 10 signifi-
cant digits on a 10 by 10 rectangular network with all conductivities 1. The
errors became so prevalent that many of the values of the conductors were
found to be negative, and some values were found to be as large as several
hundred when they were supposed to be 1. Therefore, there are two things
to consider when using floating point arithmetic. The first is the number
of significant digits called upon in the calculations. Answers will vary sub-
stantially depending on how many significant digits are used (as one can
intuitively understand). One interesting occurrence was that more digits did
not guarantee more accurate results. Accuracy in this case was quantified as
the maximum error that the calculated result differed from the actual value
of the conductor. An example of this phenomenon is given below for the
case of a 10 by 10 rectangular network whose conductivity is all 1’s. The
recovery program used 30 significant digits to recover various Λ matrices of
this network that were constructed with anywhere from 5 to 20 significant
digits.

6

Digits Maximum Error
3 390.188493458717814626090491292
4 57.1094362645118533636400613614
5 29.2670223893732446601863358754
6 115.390147311184771163773406783
7 20.5653498016403983219337639852
8 41.3260755040822872749684988215
9 155.263009317946843818363150353
10 14.6017425969324195970204702193

As the table shows, an increased number of significant digits did not guar-
antee a smaller maximum error, eg. 8 digits was not better than 7. While
the definition used here to judge accuracy may not be the best, it is still an
interesting situation that the maximum error did not improve.

The second fact that one should consider about this situation could lead
the reader to not trust me about the first. While the table above was true for
one of the executions of my recovery program, it would be hard to duplicate
these exact results since the program does not always give the same output
for the same set of data: a variation occurs during the recovery process.
While I have not found any answers that satisfy my curiosity about this,
a couple of reasons for this error have been conjectured. One explanation
could be error that occurs during converting from decimal to binary and
back to decimal. A second possibility involves Maple’s software directly.
No information could be gathered on how Maple implements changing it’s
significant digits. It is quite possible that Maple has a built in function that
decides to round slightly differently each time it is called in order to not show
a bias in its calculations. Without further knowledge of the Maple software,
it is impossible to tell exactly how the program can use more significant
digits than a normal computer CPU can handle. All the operations that are
used in the program are simple operations except for the initial solving of a
linear system. While it is the case that this initial solution does have some
variance (at least on occasion), this variation can be removed and cannot
be solely responsible for these erratic results. The deviation that occurs is
almost strictly in the first digit, but usually not in magnitude. However, the
case usually appears to be that the more significant digits that are used, the
less error in the recovery, even with this variation. The following table will
illustrate some examples of this variation in the maximum error of a 10 by
10 network for different significant digits in the recovery.

7

Significant Digits Maximum Error
10 713.6573855

77.12020260
41.29722037
7.46661109

20 .2625554996 10−9

.4308085707 10−9

.3688829860 10−9

15 .00008426889572
.00005132124299
.000034367381474

5 27.464
274.00
167.67

This variation is a bothersome problem, especially with the discussion of
setting an epsilon. One approach to this problem is to run the program
several times using some criteria to decide which results are the best. A
variation on this approach could be to take a weighted average of the output
if a reason can be devised to properly motivate it. A second approach would
be to just trust the magnitude of the answers that are produced and use only
that information. The rest of the project was done with this problem kept
in the background in order to maintain the main thrust of the project.

4 Recovery with a Limited set of Resistors

4.1 Epsilon Method

The first step in using the fact that there are a known set of different possible
values for the conductors is to find a way to modify the Curtis-Morrow algo-
rithm to take advantage of this information. The first plan that I thought of
was to use some sub-procedure to compare the resistor value calculated by
the algorithm to members of the set of possible values. The question then
became what was the best way to do this comparison. The natural answer
was to create what I term an epsilon vector with an entry corresponding to
each member of the set. If the calculated conductor was within epsilon of a
corresponding member in the limited set, then the value for that conductor
would be chosen as that member in the set. This method for determining

8

what value in the set a conductor is raises several questions. Is this the best
method for determining which value is the true conductor? This was the
method that occurred intuitively to me, but no proof has been devised to
show it is the best one. Another method might implement a ratio test to
determine what value the conductor should be. What are the best choices
for epsilon? The values for epsilon were hard coded into the program with
the usual starting values being 1 and 9 if the conductors being recovered
had values 1 and 10 or 9 and 90 if the values were 1 and 100. The methods
used here make sure that the epsilon values do not overlap, but that is not
necessary as long as that scenario is considered properly. A bias toward one
value may be programmed in, but that will be discussed further in the next
section. The major problem with using the epsilon method is overcoming the
problem of having a network where the correct resistors cannot be recovered
by this method. This problem occurs when the calculated value of a smaller
conductor is larger than the value calculated for a larger conductor. In this
situation the epsilons can never be set in such a way that the correct recovery
is made. The only way this problem could be overcome is with a different
method.

4.2 Background vs. All

Another interesting consideration occurred during the experiments done with
this program. There are two different approaches that can be taken when
recovering the resistors with the epsilon method: only recovering a resistor
when it is within epsilon of one of the possible values (All) or setting the
value of the resistor to the most common conductivity when it is not within
epsilon of any value in the set (Background). The reason this question be-
comes of importance is because often some conductors will not be recovered
as any value because of the problem described in the previous paragraph
with the epsilon method. When the program is designed to use All, the
program fails when this incident occurs. The problem with the Background
approach is that when the calculated value does not fall into any range, the
value chosen for the conductor is not much better than a guess. Now, if
the added information is given that one conductor value occurs most often,
then this approach is not as haphazard. This same information could also
be gathered by creating a loop that keeps track of how many times each
conductor appears during the recovery, but while this method does not use
any added information it is less reliable. From my experience, All should be

9

Figure 2: 6 by 6 network with square

used if possible when there is a variety of resistor values or when one resistor
does not dominate. The Background approach is most helpful when there
are only a few resistors different from the majority that are in the network.

4.3 Experiments

A variety of experiments were performed using the programs listed in the
appendix of this paper (or with slight modifications). The dimension of the
network, the placement of the resistors, the number of digits used in the
recovery and construction of the Λ matrix were a few of the aspects that
were varied during these experiments. Some examples of the networks that
were studied appear in these figures (with bolder lines being resistors different
from the background): a 6 by 6 network with a 3 by 3 square of different
resistors, a 14 by 14 network with an internal diamond of different resistors,
and a 10 by 10 network with a solid 3 by 3 square of different resistors in the
upper left-hand corner.

All these problems could be recovered for a large enough number of signif-
icant digits and the appropriate epsilons, but all of them also had significant
digits for which a correct solution could not be found for the conductivity.

10

Figure 3: 14 by 14 network with diamond shape

Figure 4: 10 by 10 network with left corner square

11

The problem that should be looked at which might give the most insight
into this problem of finding how many significant digits are necessary for
a correct recovery uses a network whose resistors are all the same. The
example used for this project was a 10 by 10 network which had all its con-
ductivity set as 1. It is therefore predetermined that the conductivity will be
recovered correctly (especially if the Background approach is used), thus the
program was modified to store the value that was originally calculated for
each conductor before being compared to the set of conductors (Appendix
6.3 gammacal.ms). What is being learned from this experiment is how great
the error can be from the calculated value to the true value of the conductor.
This will demonstrate the minimum number of significant digits needed in
the recovery to determine the values of the conductors correctly. The table
in the beginning of section 3 illustrates some of the data that was collected,
here is a table for larger values:

Digits Maximum Error
11 7.4027146948
13 .0024201940211
14 .0006050122631
15 .00008805239372

The pattern of having one more digit of accuracy for one more significant
digit continues in this experiment. This experiment shows that for a 10 by
10 network, if conductors with values of either 100 or 1 are being recovered,
then at least 10 significant digits need to be used in the recovery to be able
to recover the network correctly. If the values are 10 or 1, then that figure
becomes 12 significant digits. This program, therefore, would not be practical
in real world applications since the values of the Λ matrix would have to be
correct to more significant digits than most tools could measure.

5 Conclusion

While the programs created for this project have improved on the ability
to recover the conductivity of a rectangular resistor network, there are a lot
more questions that are left unanswered in this field. The program given in
this paper could be improved in many ways. The Curtis-Morrow algorithm
is only used from two opposite corners. If the algorithm was applied to all
four corners of the network, the accuracy would most likely improve. There
may also be a suitable way to average the values the program produces that

12

would cut down on the error. The program could also calculate each step
from both directions, but that modification has not yet been implemented.
One major obstacle to solving this problem, which is a major problem in
numerical analysis in general, is working with terms that differ substantially
in magnitude. When finding the voltages on the boundary, the values can
quickly grow to 1011, 1012, or greater while interior voltages exist that are as
small as 10−9. Unless a large number of significants are used which will also
take up a large amount of memory, there is no way to overcome this problem.
This project also did not fully look at the case when there are more than two
possible resistor values. While the programs were designed for this case, not
enough was discovered in the two resistors case to move on to more. This
problem still has many directions from which it can be tackled, especially as
new methods in computer science and numerical analysis are discovered.

6 Appendix

6.1 sqrgen.ms

This program creates the Lambda matrix for a square rectangular network.
Input for N the size of one side of the network and at the end of the program
the file name under which you want to store the matrix. The file will store
the size of the network, the conductivities, and the Lambda matrix. The
Digits command sets the number of significant digits. If one would rather use
rational arithmetic, then change all occurrences of a decimal with an integer.
The numbering of the nodes of this network starts with 1 in the upper right
side corner and then continues clockwise around the boundary. The interior
picks up this numbering in the upper left corner and then continues right and
then down. This program will be for a 3 by 3 network of all 1’s with a cross
of 10’s in the middle, but it can be easily edited for any rectangular network
by appending the set ‘conduct‘ and the vector of edges ‘edge[i]‘ (an edge is
denoted by a coordinate [i, j] where i and j are the two nodes the edge goes
between- order does not matter).

with(linalg):

Digits:=10:

N:=3:

edges:={}:

TN:=N*(N+4):

13

for i from 1 by 1 to N do

edges:=edges union {[i, (i+4)*N]};

edges:=edges union { [N+i, TN+1-i]};

edges:=edges union {[2*N +i, TN - i*N +1]}

od:

for j from 4*N+1 by 1 to TN do

edges:=edges union {[j-N, j]}

od:

Nd:=N*(N-1):

for i from 1 to N do

for j from 2 to N do

edges:=edges union {[(3+i)*N+j-1, (3+i)*N+j]}

od:

od:

k:=matrix(TN, TN, 0):

conduct:={1.0, 10.0}:

edge[10.0]:={[14, 17], [16, 17], [17, 18], [17, 20]}:

edge[1.0]:=edges minus edge[10.0]:

for i in conduct do

for p in edge[i] do

k[p[1], p[1]]:=k[p[1], p[1]] + i;

k[p[2], p[2]]:=k[p[2], p[2]] + i;

k[p[1], p[2]]:= -i;

k[p[2], p[1]]:= -i

od:

od:

c:=submatrix(k, 4*N+1..TN, 4*N+1..TN):

b:=submatrix(k, 1..4*N, 4*N+1..TN):

a:=submatrix(k, 1..4*N, 1..4*N):

x:=linsolve(c, transpose(b)):

Lambda:=add (a, -multiply(b, x)):

save(N, conduct, Lambda, ‘lamb2a.m‘):

6.2 gamma.ms

This program uses the Curtis-Morrow algorithm to recover conductivity from
the Lambda matrix of a rectangular network. The file ‘lamb.m‘ needs to be

14

included with this file storing N = the size of the network, conduct = set
of possible conductors, and Lambda = the lambda matrix. The algorithm
will automatically use rational arithmetic if that is how the matrix was con-
structed. If not, the Digits command determines how many significant digits
are used in the recovery. The two matrices that are produced contain the
values for the horizontal and vertical conductors with the coordinate system
starting in the top right corner of the network and continuing left and down.

with(linalg):

read(‘lamb.m‘):

Digits:=40:

bN:=4*N:

gammav:=matrix(N+1, N, 0):

gammah:=matrix(N, N+1, 0):

mu:=matrix(N, N, 0):

This will find the top right corner

j:=4*N: k:=1: i:=3*N:

gammav[1, 1]:= Lambda[j, j] - Lambda[i, j]*Lambda[j,k]/Lambda[i, k]:

gammah[1, 1]:= Lambda[k, k] - Lambda[i,k]*Lambda[k,j]/Lambda[i,j]:

This part will do the steps of the network

for i from 2 to N do

c:=4*N+1-i:

A1:=submatrix(Lambda, 2*N+1..2*N+i, 1..i):

d1:=-subvector(Lambda, 2*N+1..2*N+i, c):

alpha1:=vector(bN, 0):

alpha:=linsolve(A1, d1):

for j from 1 to i do

alpha1[j]:= alpha[j]

od:

alpha1[c]:=1:

gammav[1, i]:= dotprod(row(Lambda, c), alpha1):

gammah[i, 1]:= dotprod(row(Lambda, i), alpha1)/alpha1[i]:

This solves the Dirichlet problem to find the interior voltages

for j from 1 to i-1 do

mu[j, 1]:= alpha1[j] - dotprod(row(Lambda, j), alpha1)/gammah[j, 1]

od:

if i>2 then

for h from 2 to i-1 do

15

mu[1, h]:= -dotprod(row(Lambda, 4*N+1-h), alpha1)/gammav[1, h]

od

fi:

if i>3 then

for k from 2 to i-2 do

mu[2, k]:= ((gammav[1, k]+gammav[2,k]+gammah[1, k]+gammah[1, k+1])*

mu[1, k]-gammah[1,k]*mu[1,k-1] -gammah[1, k+1]*mu[1, k+1])/gammav[2,k]

od

fi:

if i>4 then

for p from 3 to i-2 do

for q from 2 to i-p do

mu[p,q]:=((gammav[p,q]+gammav[p-1,q]+gammah[p-1,q]+gammah[p-1

,q+1])*mu[p-1,q]-gammav[p-1,q]*mu[p-2,q]-gammah[p-1,q]*mu[p-1,q-1]-

gammah[p-1,q+1]*mu[p-1,q+1])/gammav[p,q]

od

od

fi:

Now, we will find new gamma’s

gammah[1,i]:=-gammav[1,i]/mu[1,i-1]:

gammav[i,1]:=-alpha1[i]*gammah[i,1]/mu[i-1,1]:

if i>2 then

a:= 2:

b:= i-1:

gammav[a, b]:=-(gammah[a-1,b+1]+gammav[a-1,b]+gammah[a-1,b])+ga

mmah[a-1,b]*mu[a-1,b-1]/mu[a-1,b]:

gammah[a, b]:=-gammav[a,b]*mu[a-1,b]/mu[a,b-1]:

if i>3 then

for count from 1 to i-3 do

a:=a+1:

b:=b-1:

gammav[a, b]:=-(gammah[a-1,b+1]+gammav[a-1,b]+gammah[a-1,b])+(

gammah[a-1,b]*mu[a-1,b-1]+ gammav[a-1,b]*mu[a-2,b])/mu[a-1,b]:

gammah[a,b]:=-gammav[a,b]*mu[a-1,b]/mu[a,b-1]

od

fi

fi

od:

16

This will find the bottom left corner

j:=2*N: k:=2*N+1: i:=N:

gammav[N+1, N]:= Lambda[j, j] - Lambda[i, j]*Lambda[j,k]/Lambda[i, k]:

gammah[N, N+1]:= Lambda[k, k] - Lambda[i,k]*Lambda[k,j]/Lambda[i,j]:

for i from 2 to N do

c:=2*N+1-i:

mu:=matrix(N, N, 0):

A1:=submatrix(Lambda, 1..i, 2*N+1..2*N+i):

d1:=-subvector(Lambda, 1..i, c):

alpha1:=vector(bN, 0):

alpha:=linsolve(A1, d1):

for j from 1 to i do

alpha1[2*N+j]:= alpha[j]

od:

alpha1[c]:=1:

gammav[N+1, N+1-i]:= dotprod(row(Lambda, c), alpha1):

gammah[N+1-i, N+1]:= dotprod(row(Lambda, 2*N+i), alpha1)/alpha1[2*N+i]:

This part solves the Dirichlet problem to find the interior voltages

for j from 1 to i-1 do

mu[N+1-j, N]:= alpha1[2*N+j] - dotprod(row(Lambda, 2*N+j), alpha1)/gam

mah[N+1-j, N+1]

od:

if i>2 then

for h from 2 to i-1 do

mu[N, N+1-h]:= -dotprod(row(Lambda, 2*N+1-h), alpha1)/gammav[N+1,

N+1-h]

od

fi:

if i>3 then

for k from 2 to i-2 do

mu[N-1, N+1-k]:= ((gammav[N+1, N+1-k]+gammav[N, N+1-k]+gammah[N

, N+1-k]+gammah[N, N+2-k])*mu[N, N+1-k]-gammah[N, N+2-k]*mu[N,N+2-

k] -gammah[N, N+1-k]*mu[N, N-k])/gammav[N,N+1-k]

od

fi:

if i>4 then

for p from 3 to i-2 do

for q from 2 to i-p do

17

mu[N+1-p,N+1-q]:=((gammav[N+3-p,N+1-q]+gammav[N+2-p,N+1-q]+g

ammah[N+2-p, N+1-q]+gammah[N+2-p, N+2-q])*mu[N+2-p, N+1-q]-gamm

av[N+3-p,N+1-q]*mu[N+3-p,N+1-q]-gammah[N+2-p, N+2-q]*mu[N+2-p, N+

2-q]-gammah[N+2-p, N+1-q]*mu[N+2-p, N-q])/gammav[N+2-p, N+1-q]

od

od

fi:

Now, we will find new gamma’s

gammah[N,N+2-i]:=-gammav[N+1,N+1-i]/mu[N,N+2-i]:

gammav[N+2-i,N]:=-alpha1[2*N+i]*gammah[N+1-i,N+1]/mu[N+2-i,N]:

if i>2 then

a:= N:

b:= N+2-i:

gammav[a, b]:=-(gammah[a,b]+gammav[a+1,b]+gammah[a,b+1])+gamma

h[a,b+1]*mu[a,b+1]/mu[a,b]:

gammah[a-1, b+1]:=-gammav[a,b]*mu[a,b]/mu[a-1,b+1]:

if i>3 then

for count from 1 to i-3 do

a:=a-1:

b:=b+1:

gammav[a, b]:=-(gammah[a,b]+gammav[a+1,b]+gammah[a,b+1])+(gam

mah[a,b+1]*mu[a,b+1]+ gammav[a+1,b]*mu[a+1,b])/mu[a,b]:

gammah[a-1,b+1]:=-gammav[a,b]*mu[a,b]/mu[a-1,b+1]

od

fi

fi

od:

#print(gammah, gammav):

Digits:=4:

h:=evalm(gammah*1.000):

v:=evalm(gammav*1.000):

print(h):

print(v):

6.3 gammacal.ms

This program is similar to gamma.ms, but instead uses a procedure to take
advantage of the limited set of possible conductors. This program was created

18

for a diamond pattern with a background of 1’s and the rest of the conductors
as 100. It can easily be modified for other cases. It also stores the calculated
value of the conductor at each step.

with(linalg):

read(‘lamb.m‘):

Digits:=20:

bN:=4*N:

gammav:=matrix(N+1, N, 0):

calv:=matrix(N+1, N, 0):

gammah:=matrix(N, N+1, 0):

calh:=matrix(N, N+1, 0):

mu:=matrix(N, N, 0):

ct:=0:

print(conduct):

epsilon[1.00]:=11.0:

epsilon[100.00]:=88.0:

getcon:=proc(cal) local num, ans, cond; global epsilon, conduct, ct;

ans:=1: cond:= conduct:

#print(cal):

for num in cond do

if abs(cal-num)<epsilon[num] then

ans:=num;

fi

od;

if ans=1 then ct:=ct+1 fi;

ans end:

This will find the top right corner

j:=4*N: k:=1: i:=3*N:

calv[1,1]:=Lambda[j, j] - Lambda[i, j]*Lambda[j,k]/Lambda[i, k]:

gammav[1,1]:=getcon(calv[1,1]):

calh[1,1]:=Lambda[k, k] - Lambda[i,k]*Lambda[k,j]/Lambda[i,j]:

gammah[1,1]:=getcon(calh[1,1]):

This part will do the steps of the network

for i from 2 to N do

c:=4*N+1-i:

A1:=submatrix(Lambda, 3*N+1-i..3*N, 1..i):

d1:=-subvector(Lambda, 3*N+1-i..3*N, c):

19

alpha1:=vector(bN, 0):

alpha:=linsolve(A1, d1):

for j from 1 to i do

alpha1[j]:= alpha[j]

od:

alpha1[c]:=1:

calv[1,i]:=dotprod(row(Lambda, c), alpha1):

gammav[1, i]:=getcon(calv[1,i]):

calh[i,1]:=dotprod(row(Lambda, i), alpha1)/alpha1[i]:

gammah[i, 1]:=getcon(calh[i,1]):

This is the unslick method where I find all the mu’s

for j from 1 to i-1 do

mu[j, 1]:= alpha1[j] - dotprod(row(Lambda, j), alpha1)/gammah[j, 1]

od:

if i>2 then

for h from 2 to i-1 do

mu[1, h]:= -dotprod(row(Lambda, 4*N+1-h), alpha1)/gammav[1, h]

od

fi:

if i>3 then

for k from 2 to i-2 do

mu[2, k]:= ((gammav[1, k]+gammav[2,k]+gammah[1, k]+gammah[1, k+1])*

mu[1, k]-gammah[1,k]*mu[1,k-1] -gammah[1, k+1]*mu[1, k+1])/gammav[2,k]

od

fi:

if i>4 then

for p from 3 to i-2 do

for q from 2 to i-p do

mu[p,q]:=((gammav[p,q]+gammav[p-1,q]+gammah[p-1,q]+gammah[p-1

,q+1])*mu[p-1,q]-gammav[p-1,q]*mu[p-2,q]-gammah[p-1,q]*mu[p-1,q-1]-

gammah[p-1,q+1]*mu[p-1,q+1])/gammav[p,q]

od

od

fi:

Now, we will find new gamma’s

calh[1,i]:=-gammav[1,i]/mu[1,i-1]:

gammah[1,i]:=getcon(calh[1,i]):

calv[i,1]:=-alpha1[i]*gammah[i,1]/mu[i-1,1]:

20

gammav[i,1]:=getcon(calv[i,1]):

if i>2 then

a:= 2:

b:= i-1:

calv[a,b]:=-(gammah[a-1,b+1]+gammav[a-1,b]+gammah[a-1,b])+gammah

[a-1,b]*mu[a-1,b-1]/mu[a-1,b]:

gammav[a, b]:=getcon(calv[a,b]):

calh[a,b]:=-gammav[a,b]*mu[a-1,b]/mu[a,b-1]:

gammah[a, b]:=getcon(calh[a,b]):

if i>3 then

for count from 1 to i-3 do

a:=a+1:

b:=b-1:

calv[a,b]:=-(gammah[a-1,b+1]+gammav[a-1,b]+gammah[a-1,b])+(gam

mah[a-1,b]*mu[a-1,b-1]+ gammav[a-1,b]*mu[a-2,b])/mu[a-1,b]:

gammav[a,b]:=getcon(calv[a,b]):

calh[a,b]:=-gammav[a,b]*mu[a-1,b]/mu[a,b-1]:

gammah[a,b]:=getcon(calh[a,b]):

od

fi

fi

od:

This will find the bottom left corner

j:=2*N: k:=2*N+1: i:=N:

calv[N+1, N]:=Lambda[j, j]-Lambda[i,j]*Lambda[j,k]/Lambda[i,k]:

gammav[N+1,N]:=getcon(calv[N+1,N]):

calh[N,N+1]:=Lambda[k, k]-Lambda[i,k]*Lambda[k,j]/Lambda[i,j]:

gammah[N,N+1]:=getcon(calh[N,N+1]):

for i from 2 to N do

c:=2*N+1-i:

A1:=submatrix(Lambda, N+1-i..N, 2*N+1..2*N+i):

d1:=-subvector(Lambda, N+1-i..N, c):

alpha1:=vector(bN, 0):

alpha:=linsolve(A1, d1):

for j from 1 to i do

alpha1[2*N+j]:= alpha[j]

od:

alpha1[c]:=1:

21

calv[N+1, N+1-i]:=dotprod(row(Lambda, c), alpha1):

gammav[N+1, N+1-i]:=getcon(calv[N+1,N+1-i]):

calh[N+1-i,N+1]:=dotprod(row(Lambda, 2*N+i), alpha1)/alpha1[2*N+i]:

gammah[N+1-i, N+1]:=getcon(calh[N+1-i,N+1]):

This is the unslick method where I find all the mu’s

for j from 1 to i-1 do

mu[N+1-j, N]:= alpha1[2*N+j] - dotprod(row(Lambda, 2*N+j), alpha1)/gam

mah[N+1-j, N+1]

od:

if i>2 then

for h from 2 to i-1 do

mu[N, N+1-h]:= -dotprod(row(Lambda, 2*N+1-h), alpha1)/gammav[N+1,

N+1-h]

od

fi:

if i>3 then

for k from 2 to i-2 do

mu[N-1, N+1-k]:= ((gammav[N+1, N+1-k]+gammav[N, N+1-k]+gammah[N

, N+1-k]+gammah[N, N+2-k])*mu[N, N+1-k]-gammah[N, N+2-k]*mu[N,N+2-

k] -gammah[N, N+1-k]*mu[N, N-k])/gammav[N,N+1-k]

od

fi:

if i>4 then

for p from 3 to i-2 do

for q from 2 to i-p do

mu[N+1-p,N+1-q]:=((gammav[N+3-p,N+1-q]+gammav[N+2-p,N+1-q]+g

ammah[N+2-p, N+1-q]+gammah[N+2-p, N+2-q])*mu[N+2-p, N+1-q]-gamm

av[N+3-p,N+1-q]*mu[N+3-p,N+1-q]-gammah[N+2-p, N+2-q]*mu[N+2-p, N+

2-q]-gammah[N+2-p, N+1-q]*mu[N+2-p, N-q])/gammav[N+2-p, N+1-q]

od

od

fi:

Now, we will find new gamma’s

calh[N,N+2-i]:=-gammav[N+1,N+1-i]/mu[N,N+2-i]:

gammah[N,N+2-i]:=getcon(calh[N,N+2-i]):

calv[N+2-i,N]:=-alpha1[2*N+i]*gammah[N+1-i,N+1]/mu[N+2-i,N]:

gammav[N+2-i,N]:=getcon(calv[N+2-i,N]):

if i>2 then

22

a:= N:

b:= N+2-i:

calv[a,b]:=-(gammah[a,b]+gammav[a+1,b]+gammah[a,b+1])+gammah[a,b

+1]*mu[a,b+1]/mu[a,b]:

gammav[a, b]:=getcon(calv[a,b]):

calh[a-1,b+1]:=-gammav[a,b]*mu[a,b]/mu[a-1,b+1]:

gammah[a-1, b+1]:=getcon(calh[a-1,b+1]):

if i>3 then

for count from 1 to i-3 do

a:=a-1:

b:=b+1:

calv[a,b]:=-(gammah[a,b]+gammav[a+1,b]+gammah[a,b+1])+(gammah[

a,b+1]*mu[a,b+1]+ gammav[a+1,b]*mu[a+1,b])/mu[a,b]:

gammav[a, b]:=getcon(calv[a,b]):

calh[a-1,b+1]:=-gammav[a,b]*mu[a,b]/mu[a-1,b+1]:

gammah[a-1,b+1]:=getcon(calh[a-1,b+1]):

od

fi

fi

od:

print(gammah, gammav):

checkv:=matrix(N+1, N, 1.00):

checkh:=matrix(N, N+1, 1.00):

checkh[3,8]:=100.00: checkh[4,7]:=100.00: checkh[4,9]:=100.00:

checkh[5, 6]:=100.00: checkh[5,10]:=100.00: checkh[6, 5]:=100.00:

checkh[6, 11]:=100.00: checkh[7, 4]:=100.00: checkh[7, 12]:=100.00:

checkh[8, 4]:=100.00: checkh[8,12]:=100.00: checkh[9, 5]:=100.00:

checkh[9, 11]:=100.00: checkh[10, 6]:=100.00: checkh[10,10]:=100.00:

checkh[11, 9]:=100.00: checkh[11,7]:=100.00: checkh[12, 8]:=100.00:

checkh[6,7]:=100.00: checkh[6,8]:=100.00: checkh[6,9]:=100.00:

checkh[9,7]:=100.00: checkh[9,8]:=100.00: checkh[9,9]:=100.00:

checkv[8,3]:=100.00: checkv[7,4]:=100.00: checkv[9,4]:=100.00:

checkv[6,5]:=100.00: checkv[10,5]:=100.00: checkv[5,6]:=100.00:

checkv[11,6]:=100.00: checkv[4,7]:=100.00: checkv[12,7]:=100.00:

checkv[4,8]:=100.00: checkv[12,8]:=100.00: checkv[5,9]:=100.00:

checkv[11,9]:=100.00: checkv[6,10]:=100.00: checkv[10,10]:=100.00:

checkv[9,11]:=100.00: checkv[7,11]:=100.00: checkv[8, 12]:=100.00:

checkv[7,6]:=100.00: checkv[8,6]:=100.00: checkv[9,6]:=100.00:

23

checkv[7,9]:=100.00: checkv[8,9]:=100.00: checkv[9,9]:=100.00:

errorh:=add(gammah, -checkh);

errorv:=add(gammav, -checkv);

ct;

Digits:=5:

h:=evalm(1.00*calh);

v:=evalm(1.00*calv);

References

1. E.B Curtis and J.A. Morrow, Determining the resistors in a network,
SIAM J. of Applied Math., 50 (1990), pp. 918-930.

2. Bruce W. Char et al., Maple V Library Reference Manual, Springer-
Verlag, 1992.

24

