
DISTRUBUTED AND LUMPED NETWORKS WITH PIECEWISE

CONSTANT CONDUCTIVITIES

MARC PICKETT I

Abstract. The purpose of this project is to investigate approximations for the Dirichlet norm
for distributed networks piecewise constant conductivities. This paper follows the methods
developed by Duffin [2], and uses “distributed” and “lumped” are as defined by [2].

Contents

1. Piecewise Constant Conductivity 1

1.1. An upper network for piecewise constant conductivities 2

1.2. A lower network for piecewise constant conductivities 6

1.3. Calculations of piecewise constant conductivity 10

References 11

Appendix A. Files used 11

A.1. triangle.cxx 11

A.2. sample.triangle 18

1. Piecewise Constant Conductivity

Consider a distributed polygonal network (Ω) which has been triangulated where the conduc-
tivity (γT) of each triangle is constant. Also, let there be a function U on Ω. Let ∂Ω be the
boundary of Ω and ∂Ti be the boundary of each triangle. Define a function L(U) such that

(1.0.1) L(U(x, y)) = 0 = γ1
∂U1

∂n1
+ γ2

∂U2

∂n2
(x, y) ∈ (∂T1 ∩ ∂T2)

(1.0.2) L(U(x, y)) = 0 = ∇ (γTi∇U) (x, y) 6∈ (∂T1 ∩ ∂T2)
1

2 MARC PICKETT I

where T1 and T2 are two triangles of Ω, and n1 and n2 are the outward normals for T1 and T2,
respectively.

The Dirichlet inner product for two functions, U and V , is defined as

(1.0.3) Dγ (U, V) =

∫

Ω

γ∇U · ∇V

Dγ (U,U) is called the Dirichlet norm of U . Dγ (U,U) is “potentially definite” if Dγ (U,U) ≥ 0
and Dγ (U,U) = 0 iff U is constant [2] .

If Ω is a lumped network then the Dirichlet inner product for two functions U and V defined on
each node of Ω will be given by the quadratic form

(1.0.4) Q (U, V) =
∑

∀i,j

gij (vi − uj)

where i and j are nodes of the lumped network and vi and uj are the values of U and V at those
nodes.

1.1. An upper network for piecewise constant conductivities. Assume U is the solution
of the Dirichlet problem, U is piecewise linear on ∂Ω and V is a linear function which is equal
to U on ∂Ω. (Where Ω is a triangulated distributed network) Let W = U − V .

(1.1.1) Dγ (V, V) = Dγ (U −W,U −W) =

∫

Ω

γ |U −W |2

(1.1.2) =

∫

Ω

γ |∇U |2 − 2

∫

Ω

γ∇U · ∇W +

∫

Ω

γ |∇W |2

It will be shown (Lemma 1) that

(1.1.3)

∫

Ω

γ∇U · ∇W =

∫

∂Ω

γW
∂U

∂n

which implies

(1.1.4) Dγ (U,W) =

∫

Ω

γ∇U · ∇W =

∫

∂Ω

γW
∂U

∂n
= 0

since W = 0 on ∂Ω. This reduces 1.1.2 to

DISTRUBUTED AND LUMPED NETWORKS WITH PIECEWISE CONSTANT CONDUCTIVITIES 3

(1.1.5) Dγ (V, V) = Dγ (U,U) +Dγ (W,W)

This implies

(1.1.6) Dγ (V, V) ≥ Dγ (U,U)

since the Dirichlet functional is positive definite.

Lemma 1. Let U be a γ-harmonic function and W be a continuos function on a triangulated

distributed network Ω with constant conductivities on each triangle.

(1.1.7)

∫

Ω

γ∇U · ∇W =

∫

∂Ω

γW
∂U

∂n

Proof. Consider the dirichlet inner product for a triangle (T1) which has constant conductivity
γ1 and two γ-harmonic functions, U1 and W1. The Dirichlet inner product for U1 and W1 on
this triangle is

(1.1.8) Dγ (U1,W1) =

∫

T1

γ1∇U1 · ∇W1

By Green’s theorem

(1.1.9) =

∫

∂T1

γ1W1
∂U1

∂n1

Assume another triangle has constant conductivity (γ2) and shares an edge (C) with the first
triangle. Also, assume that this triangle has two γ-harmonic functions U2 and W2 such that
boundary condition 1.0.1 is satisfied on the shared edge, C.

Then the Dirichlet inner product for the combined set of the two triangles (Ω1,2) is

(1.1.10) Dγ (U,W) =

∫

Ω1,2

γ∇U · ∇W =

∫

T1

γ1∇U1 · ∇W1 +

∫

T2

γ2∇U2 · ∇W2

By 1.1.9

(1.1.11) =

∫

∂T1

γ1W1
∂U1

∂n1
+

∫

∂T2

γ2W2
∂U2

∂n2

4 MARC PICKETT I

By 1.0.1 this integral along C is 0. This leaves only the integral for the boundary of the combined
region (∂Ω1,2). Or

(1.1.12) Dγ (U,W) =

∫

Ω1,2

γ∇U · ∇W =

∫

∂Ω1,2

γW
∂U

∂n

This process follows for any other triangles that are added onto the region.

¤

Let T1 be a triangle with constant conductivity γ, angles A, B, and C, and voltages u1, u2, and
u3 at their respective points. (See figure 1.1.) It has been shown that if V = U on the boundary
of T1, then D (V, V) ≥ D (U,U). Let U be piecewise linear on ∂T1. The Dirichlet norm for a
linear function V on T1 is

(figure 1.1)

A

B

C

u3

T1
u1

u2

(1.1.13) DγT (V, V) =

∫

T

γ |∇V |2 = γ |∇V |2AT

where AT is the area of the triangle.

To find the weights (gA, gB, and gC) for an upper network for T1 we will employ a method similar
to Duffin’s method for finding weights for an upper network with uniform conductivity [2] . Since
DT is a potentially definite quadratic form we can write

(1.1.14) DγT (V, V) = gC(u1 − u2)
2 + gB(u1 − u3)

2 + gA(u2 − u3)
2

To determine gA, gB, and gC we set u2 = u3 = 0 and 1.1.13 equal to 1.1.14 leaving

DISTRUBUTED AND LUMPED NETWORKS WITH PIECEWISE CONSTANT CONDUCTIVITIES 5

(1.1.15)

gCu
2
1+gBu

2
1 = γ |∇V |2AT = γ |∇U |2

(

h

2
h cotB +

h

2
h cotC

)

= γ
(u1

h

)2
(

h2

2
cotB +

h2

2
cotC

)

where h is the height of the triangle using the side opposite A as its base.

This is equivalent to

(1.1.16)
γ

2
(cotB + cotC) = gC + gB

By symmetry, we obtain

(1.1.17)
γ

2
(cotA+ cotC) = gA + gC

(1.1.18)
γ

2
(cotA+ cotB) = gA + gB

The solution for this set of equations is

(1.1.19) gi =
γ

2
cot i

where i is one of the edges of T1.

(figure 1.1)

co
mbined

 ed
ge

B

T1

T2

1

2

gc1

gc2

Suppose two triangles in Ω share an edge C. (See figure 1.1) Then, g along this edge in the
lumped network is the sum of gc of each of the two triangles.

6 MARC PICKETT I

From 1.1.6 the Dirichlet norm of V on this network is greater than or equal to the Dirichlet
norm of U on the lumped network Ω. This provides an upper network for Ω.

1.2. A lower network for piecewise constant conductivities. Now we will find a network
and function on this network whose Dirichlet norm is a lower bound for that of U on Ω. Let a,
b, and c be the edges of a triangle T1, and let va, vb, and vc be the potential at the midpoint of a,
b, and c, respectively. (See figure 1.2) Let V1 be a linear function on T1. Let wa be the current
which flows into edge a, and likewise for wb and wc. Then wa, wb, and wc can be expressed as
linear functions of va, vb, and vc. That is

(figure 1.2)

A

B

C

b

T1
1

2

3

c

a

(1.2.1) wa = gab (va − vb) + gac (va − vc)

The Dirichlet norm of V1 on T1 is

(1.2.2) DγT1
(V1, V1) = gab (va − vb)

2 + gac (va − vc)
2 + gbc (vb − vc)

2

To determine gab, gac, and gbc, let v1, v2, and v3 be the values of the function V1 on the vertices
of T1. Substituting 1.1.19 into 1.1.14 we obtain

(1.2.3) DγT1
(V1, V1) = γT1

(

(v1 − v2)
2 cotC + (v1 − v3)

2 cotB + (v2 − v3)
2 cotA

)

Side a joins vertices 2 and 3 so va is the average of v2 and v3. That is, va =
1
2
(v2 + v3), and

similar for vb and vc. Or 2 (va − vb) = (v2 − v1), and so on. This implies

DISTRUBUTED AND LUMPED NETWORKS WITH PIECEWISE CONSTANT CONDUCTIVITIES 7

(1.2.4) DγT1
(V1, V1) = 2γT1

cotC (va − vb)
2 + 2γT1

cotB (va − vc)
2 + 2γT1

cotA (vb − vc)
2

Setting 1.2.2 equal to 1.2.4 we obtain

(1.2.5) gab = 2γT1
cotC

(1.2.6) gac = 2γT1
cotB

(1.2.7) gbc = 2γT1
cotA

(figure 1.2)

A

b

B

C

T1

c

a

b

A

B

C

T1

d
c

a

This network is equivalent to a network with a 4th node d inserted in the middle of the triangle
such that each of the midpoints of a, b, and c are connected to d. (See figure 1.2) The transfor-
mation from the original 3 node network to the 4 node network is called a ∆-Y transformation.
This new network has conductivities γad, γbd, and γcd where

(1.2.8) γad = gacgab

(

1

gab
+
1

gac
+
1

gbc

)

= 2γT1

tanA+ tanB + tanC

tanB tanC
= 2γT1

tanA

This comes from the trigonometric identity (Lemma 2)

(1.2.9)
tanA+ tanB + tanC

tanA tanB tanC
= 1 ∀(A,B,C)|A+B + C = π

Likewise we obtain

8 MARC PICKETT I

(1.2.10) γbd = 2γT1
tanB

(1.2.11) γcd = 2γT1
tanC

Consider another triangle T2 with conductivity γT2
which has an adjacent edge with T1. (See

figure 1.2) Call the angles opposite the combined edge D1 and D2. The conductivity for this
combined edge (1, 2) is

(figure 1.2)

D1

T1

T2com
bined edge

d

D2

1

2

(1.2.12) γ1,2 =
1

1
γ1d
+ 1

γ2d

=
1

1
2

γT1

tanD1

+ 1
2

γT2

tanD2

=
1

γT1

2
cotD1 +

γT2

2
cotD2

A network with these conductivities provides a lower network for Ω. Lemma 3 and arguments
similar to those on Duffin’s page 806 [2] may be used to show that the Dirichlet norm of V on
this network is less than or equal to that of U on Ω.

Lemma 2.

(1.2.13)
tanA+ tanB + tanC

tanA tanB tanC
= 1 ∀(A,B,C)|A+B + C = π

Proof. (By J. Morrow) Let A+B + C = π then

(1.2.14) 0 = tanπ = tan (A+B + C) =
tanA+ tan (B + C)

1− tanA tan (A+B)

which implies

DISTRUBUTED AND LUMPED NETWORKS WITH PIECEWISE CONSTANT CONDUCTIVITIES 9

(1.2.15) tanA+ tan (B + C) = 0 = tanA+
tanB + tanC

1− tanB tanC

which implies

(1.2.16) tanA+ tanB + tanC − tanA tanB tanC = 0

The result follows.

¤

Lemma 3. Let W be a piecewise constant vector field with a continuous normal component

across edges such that divW = 0. Let U be the solution to the Dirichlet problem on a triangulated

region. Then

(1.2.17) Dγ (U) ≥

(∫

∂Ω
UWn

)2

∫

Ω
γ |W |2

Proof. Using Schwarz’ inequality we get

(1.2.18)

(
∫

Ω

γ
1

2W · γ
1

2∇U

)2

≤

(
∫

Ω

γ |W |2
)(

∫

Ω

γ |∇U |2
)

Which implies

(1.2.19)

(∫

Ω
γW · ∇U

)2

∫

Ω
γ |W |2

≤

∫

Ω

γ |∇U |2

From lemma 4, we have

(1.2.20)

∫

Ω

γW · ∇U =

∫

∂Ω

γUWn

Combining the above two equations we get the result. Since

(1.2.21) Dγ (U,U) =

∫

Ω

γ |∇U |2

¤

10 MARC PICKETT I

Lemma 4. Let W be a piecewise constant vector field with a continuous normal component

across edges such that div W = 0. Let U be the solution to the Dirichlet problem. Then

(1.2.22)

∫

Ω

γW · ∇U =

∫

∂Ω

γUWn

Proof. Let T1 be a triangle of Ω with conductivity γ1. Then by Green’s theorem

(1.2.23)

∫

T1

γ1W · ∇U =

∫

∂T1

γ1UWn1

Consider another Triangle T2 which has conductivity γ2 and shares an edge C with T1. Let Ω12
be the region of T1 and T2. Then

(1.2.24)

∫

Ω12

γW · ∇U =

∫

T1

γ1W · ∇U +

∫

T2

γ2W · ∇U =

∫

∂T1

γ1UWn1
+

∫

∂T2

γ2UWn2

Along C, this integral is

(1.2.25)

∫

C

γ1UWn1
+ γ2UWn2

= 0

This comes from the the hypothesis on W .

(1.2.26)

∫

Ω12

γW · ∇U =

∫

∂Ω12

γUWn

This process follows for adding on other triangles. ¤

1.3. Calculations of piecewise constant conductivity. Using figure 1.3 as an example, we
get

1 2 3 4 5 6 7 8
1 2.9956 -2.28504 0 0 0 -0.450001 0 -0.260562
2 -2.28504 4.91348 0 0 0 0 -1.21393 -1.41451
3 0 0 7.3173 -0.00595878 -2.98121 0 -4.33013 0
4 0 0 -0.00595878 0.00777863 -0.00181986 0 0 0
5 0 0 -2.98121 -0.00181986 12.9163 0.116576 5.1054 -15.1552
6 -0.450001 0 0 0 0.116576 0.768285 0 -0.43486
7 0 -1.21393 -4.33013 0 5.1054 0 9.17329 -8.73463
8 -0.260562 -1.41451 0 0 -15.1552 -0.43486 -8.73463 25.9998

DISTRUBUTED AND LUMPED NETWORKS WITH PIECEWISE CONSTANT CONDUCTIVITIES 11

(figure 1.3)

#2

.9

#1

3.2

#4

1.7

#6

node 5

5

#7

.01

3 V

0 V

5 V

#3

.5

#5

10

node 8

node 6

node 1

node 2

node 7
node 3

node 4

for the upper Kirchoff matrix. (The lower Kirchoff matrix is not displayed here since it is 14 by
14.) Using methods described in [1], we get 69.9055 for the upper bound of the Dirichlet norm,
and 33.3273 for the lower bound.

References

[1] E. Curtis, D. Ingerman, J. Morrow, Circular planar graphs and resistor networks, submitted.
[2] R. J. Duffin, Distributed and Lumped Networks, Journal of Mathematics, Vol. 8, No. 5 (1959), 793-826.

Appendix A. Files used

A.1. triangle.cxx.

12 MARC PICKETT I

// FILE: triangle.cxx (by Marc Pickett I pickett@refuge)

// this program calculates the upper and lower Kirchoff matrices

// for triangulated distributed networks with piecewise constant

// conductivities.

// The usage of this command is:

// cat <file.triangle> | triangle

// file.triangle is the input file a sample of which is

// sample.triangle or sample2.triangle

// Note: sample triangle is unusable because of its comments.

include <iostream.h>

include <stdlib.h>

include <math.h>

#include <iomanip.h> // Provides setw and setf

// the triangle struct

struct triangle

{

double conduct;

double angle[3];

int points[3][2];

};

void initialize(int numma_of_triangles, triangle* &distrib);

void upper(

int numma_of_triangles,

triangle* &distrib,

double** &upper_kirch,

int nodes

);

void lower(

int numma_of_triangles,

triangle* &distrib,

double** &upper_kirch,

int &nodes

);

void init_matrix(double** &matrix, int nodes);

void display_mat(double** &mat, int rows, int columns);

int find_match(

int i,

int ii,

triangle* &distrib,

int numma_of_triangles,

int &nodes

);

void switcher(double** &mat, int a, int b, int nodes);

void kirch_diag (double** kirch, int nodes);

main()

DISTRUBUTED AND LUMPED NETWORKS WITH PIECEWISE CONSTANT CONDUCTIVITIES 13

{

int numma_of_triangles, nodes, low_nodes;

// nodes is the number of nodes in the triangle (and the upper network)

// low_nodes is the number of nodes in the lower network

triangle* distrib;

double** upper_kirch;

double** lower_kirch;

// these are where the upper and lower kirchoff matrices are stored

cin >> numma_of_triangles;

cin >> nodes;

distrib = new triangle[numma_of_triangles];

initialize(numma_of_triangles, distrib);

// input the network

low_nodes = numma_of_triangles;

upper(numma_of_triangles, distrib, upper_kirch, nodes);

lower(numma_of_triangles, distrib, lower_kirch, low_nodes);

// compute the upper and lower matrices

cout << "The upper Kirchoff matrix is:" << endl;

display_mat(upper_kirch, nodes, nodes);

cout << "\n \n";

cout << "The lower Kirchoff matrix is:" << endl;

display_mat(lower_kirch, low_nodes, low_nodes);

cout << "\n \n";

}

void initialize(int numma_of_triangles, triangle* &distrib)

// read in the triangles

{

int i, ii;

for (i = 0; i < numma_of_triangles; i++)

{

cin >> distrib[i].conduct;

for (ii = 0; ii <= 2; ii++)

{

cin >> distrib[i].angle[ii];

cin >> distrib[i].points[ii][0];

cin >> distrib[i].points[ii][1];

distrib[i].points[ii][0] -= 1;

distrib[i].points[ii][1] -= 1;

14 MARC PICKETT I

distrib[i].angle[ii] = distrib[i].angle[ii] * 3.14159/180;

}

}

return;

}

void upper(

int numma_of_triangles,

triangle* &distrib,

double** &upper_kirch,

int nodes

)

// compute the upper matrix

{

int i,ii;

init_matrix(upper_kirch, nodes);

// the following for loop is calculating the new conductivities as

// given by my paper

for (i = 0; i < numma_of_triangles; i++)

{

for (ii = 0; ii <= 2; ii++)

{

upper_kirch[distrib[i].points[ii][0]]

[distrib[i].points[ii][1]]

-= .5 * distrib[i].conduct * cot(distrib[i].angle[ii]);

upper_kirch[distrib[i].points[ii][1]]

[distrib[i].points[ii][0]]

-= .5 * distrib[i].conduct * cot(distrib[i].angle[ii]);

}

}

// put in the diagnal entries

kirch_diag (upper_kirch, nodes);

return;

}

void lower(

int numma_of_triangles,

triangle* &distrib,

double** &lower_kirch,

int &low_nodes

)

// compute the lower matrix

{

DISTRUBUTED AND LUMPED NETWORKS WITH PIECEWISE CONSTANT CONDUCTIVITIES 15

int i, ii, going_to[numma_of_triangles][3];

// here I need to find which conductivities are shared between triangles

// and which ones goto the border. For the ones that goto the border

// I need to create a new node (a border node.)A

// low_nodes is the total number of needed nodes (border nodes + boundary nodes)

for (i = 0; i < numma_of_triangles; i++)

for (ii = 0; ii <= 2; ii++)

going_to[i][ii] = find_match(i, ii, distrib,

numma_of_triangles, low_nodes);

init_matrix(lower_kirch, low_nodes);

// the following for loop is calculating the new conductivities as

// given by my paper

for (i = 0; i < numma_of_triangles; i++)

{

for (ii = 0; ii <= 2; ii++)

{

if (lower_kirch[i][going_to[i][ii]] == 0)

lower_kirch[i][going_to[i][ii]] = -2 * tan(distrib[i].angle[ii])

* distrib[i].conduct;

else

{

lower_kirch[i][going_to[i][ii]] =

-(1/(1/-lower_kirch[i][going_to[i][ii]] +

1/(2 * tan(distrib[i].angle[ii]) * distrib[i].conduct)));

}

lower_kirch[going_to[i][ii]][i] =

lower_kirch[i][going_to[i][ii]];

}

}

// put in the diagnal entries

kirch_diag (lower_kirch, low_nodes);

}

void init_matrix(double** &matrix, int nodes)

// initializes a matrix. Need more be said?

{

int i,ii;

matrix = new double*[nodes];

for (i = 0; i < nodes; i++)

{

matrix[i] = new double[nodes];

for (ii = 0; ii < nodes; ii++)

matrix[i][ii] = 0;

16 MARC PICKETT I

}

return;

}

void display_mat(double** &mat, int rows, int columns)

// displays a matrix.

{

int i,ii;

cout << "\n";

for (i = 0; i < rows; i++)

{

for (ii = 0; ii < columns; ii++)

cout << setw(10) << mat[i][ii] << " ";

cout << "\n";

}

return;

}

int find_match(

int i,

int ii,

triangle* &distrib,

int numma_of_triangles,

int &low_nodes

)

// this function looks for a triangle which shares the edge ii of triangle i

// it calls this triangle iii and it’s shared edge ia.

{

int iii = 0, ia = 0;

// a well conditioned while loop:

// basically this just looks that iii is a triangle not the same as

// i which shares edge iii of i.

while ((iii < numma_of_triangles)

&&

((iii == i)

||

(((distrib[i].points[ii][0] != distrib[iii].points[ia][0]) ||

(distrib[i].points[ii][1] != distrib[iii].points[ia][1]))

&&

((distrib[i].points[ii][1] != distrib[iii].points[ia][0]) ||

(distrib[i].points[ii][0] != distrib[iii].points[ia][1]))

)))

{

ia ++;

DISTRUBUTED AND LUMPED NETWORKS WITH PIECEWISE CONSTANT CONDUCTIVITIES 17

if (ia >= 3)

{

ia = 0;

iii++;

}

}

if (iii >= numma_of_triangles)

{

iii = low_nodes;

low_nodes++;

}

return iii;

}

void switcher(double** &mat, int a, int b, int nodes)

// This switches 2 nodes in matrix mat.

// this fuction is unused in this program, but it would

// be useful if one wanted to place the boundary nodes at the

// top of the Kirchoff matrix.

{

int i;

double temp2;

double* temp = mat[a - 1];

mat[a - 1] = mat[b - 1];

mat[b - 1] = temp;

for (i = 0; i < nodes; i++)

{

temp2 = mat[i][a - 1];

mat[i][a - 1] = mat[i][b - 1];

mat[i][b - 1] = temp2;

}

return;

}

void kirch_diag (double** kirch, int nodes)

// put the diagnal entries in a kirchoff matrix

{

int i, ii;

double row_sum = 0;

for (i = 0; i < nodes; i++)

{

for (ii = 0; ii < nodes; ii++)

18 MARC PICKETT I

row_sum -= kirch[i][ii];

kirch[i][i] = row_sum;

row_sum = 0;

}

}

A.2. sample.triangle. This is the sample input file used to make calculations with triangle.cxx
for the example distributed network in this paper. To use this, the comments must be taken
out.

// Sample triangulated network input file for triangle.cxx

// ALL the comments must be removed in order for this to work

// sample2.triangle is a usable sample file (with out comments)

7 // number of triangles

8 // number of nodes

// The order of input:

// angle of edges (in degrees), connects point, to point

// 1st triangle

3.2 // conductivity of triangle

60 2 8 // angle A

85 1 8 // angle B

35 1 2 // angle C

// 2nd triangle

.9

60 8 6

75 1 8

45 1 6

// 3rd triangle

.5

115 6 5

55 6 8

10 5 8

// 4th triangle

1.7

60 2 8

85 7 8

35 7 2

// 5th triangle

10

20 5 8

DISTRUBUTED AND LUMPED NETWORKS WITH PIECEWISE CONSTANT CONDUCTIVITIES 19

130 7 5

30 7 8

// 6th triangle

5

40 5 3

110 5 7

30 7 3

// 7th triangle

.01

40 3 4

70 5 4

70 5 3

E-mail address: pickett@refuge.colorado.edu

