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1 Introduction

In the past, work has been done by Anderson and Duffin on series addition
of conductors in an electrical network. It is my aim to look at parallel
and series additions of networks and to find interesting properties from the
resulting Λ matrices.
I will be looking at the division of current in networks that result from

the parallel addition of previously formed electrical networks and looking
at the power dissipated by the resulting network as compared to the power
dissipated by the component networks. The same will be done for the series
addition of networks. Also a way to calculate the inverse of the Λ matrix in
terms of the effective resistances is formed.

2 Parallel Addition

Let Γ1 and Γ2 be the graphs of networks 1 and 2 respectively, with boundary

nodes {p
(1)
i }

n
1 , {p

(2)
i }

m
1 and with n = m, taking the ordering of the boundary

nodes to be counterclockwise around the network. We will define the parallel
addition of networks 1 and 2 to be the connecting of the boundary nodes in

such a way that p
(1)
1 is connected to p

(2)
1 , p

(1)
2 is connected to p

(2)
2 , and so

on, as in Figure 1. Parallel addition of networks is defined only when the
number of boundary nodes in network 1 is equal to the number of boundary
nodes of network 2. Current flowing into the boundary nodes of the newly
formed network now has a choice of which way to flow. The current may
flow into either network 1 or network 2, although the total current flow
cannot change. We will assume that the current will divide in such a way
that the power dissipated is a minimum. Also, we will assume that there are
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Figure 1: Parallel Addition of Networks

no sources or sinks inside either component network, so there are no sources
or sinks in the network formed by their parallel addition.
Given a graph Γ, we will let Λ denote its associated Dirichlet to Neu-

mann map. For our definition of parallel addition of resistor networks, the
following is true:

Theorem 1 Let Γ1,Γ2 be a pair of networks with associated Dirichlet to

Neumann maps Λ1,Λ2 and boundary nodes {p
(1)
i }

n
1 , {p

(2)
i }

n
1 . Take ΓP to be

the graph resulting from the parallel addition of Γ1 and Γ2 as defined

above. Then the map associated with ΓP is:

ΛP = Λ1 + Λ2 (1)

A Simple Example Consider two networks Γ1 and Γ2, each with two
boundary nodes. Take the conductance between the two boundary nodes
in network 1 to be a and the conductance between the two boundary nodes

in network 2 to be b. Then Λ1 =

(

a −a
−a a

)

and Λ2 =

(

b −b
−b b

)

.

Taking the parallel addition of the two networks results in another
network, ΓP , with conductance a+ b between the two boundary nodes of

this network. Therefore, ΛP =

(

a+ b −a− b
−a− b a+ b

)

= Λ1 + Λ2.

Proof. Let u1 be the solution of the Dirichlet problem for Γ1 and let u2 be
the solution of the Dirichlet problem for Γ2. Since the current at the
boundary nodes of the combined network is just the sum of the currents at
the boundary nodes of the individual networks, the solution of the
Dirichlet problem for ΓP is u1 + u2. Therefore, ΛP = Λ1 + Λ2.

♠
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Lemma 1 (Λ1 + Λ2)
−1 = Λ−1

1 (Λ
−1
1 + Λ−1

2 )
−1Λ−1

2

Proof.

(Λ1 + Λ2)(Λ
−1
1 (Λ

−1
1 + Λ−1

2 )
−1Λ−1

2 ) = (Λ
−1
1 + Λ−1

2 )
−1Λ−1

2 + (Λ−1
1 + Λ−1

2 )
−1Λ−1

1

= (Λ−1
1 + Λ−1

2 )(Λ
−1
1 + Λ−1

2 )
−1

= I

So Λ−1
1 (Λ

−1
1 + Λ−1

2 )
−1Λ−1

2 = (Λ1 + Λ2)
−1.

♠

For notational simplicity, we will denote Λ−1
1 (Λ

−1
1 + Λ−1

2 )
−1Λ−1

2 by
Λ−1

1 ‖Λ−1
2 .

Lemma 2 Λ−1
1 ‖Λ−1

2 = Λ−1
2 ‖Λ−1

1

Proof.

Λ−1
1 ‖Λ−1

2 = Λ−1
1 (Λ

−1
1 + Λ−1

2 )
−1Λ−1

2

= (Λ−1
1 + Λ−1

2 − Λ−1
2 )(Λ

−1
1 + Λ−1

2 )
−1(Λ−1

2 + Λ−1
1 − Λ−1

1 )

= (Λ−1
1 + Λ−1

2 )(Λ
−1
1 + Λ−1

2 )
−1(Λ−1

2 + Λ−1
1 )− Λ

−1
2 (Λ

−1
1 + Λ−1

2 )
−1(Λ−1

2 + Λ−1
1 )

−(Λ−1
1 + Λ−1

2 )(Λ
−1
1 + Λ−1

2 )
−1Λ−1

1 + Λ−1
2 (Λ

−1
1 + Λ−1

2 )
−1Λ−1

1

= Λ−1
2 (Λ

−1
1 + Λ−1

2 )
−1Λ−1

1

= Λ−1
2 ‖Λ−1

1

♠

Given a resistor network with associated Dirichlet to Neumann map Λ,
the power dissipated by current w flowing through the boundary nodes of
the network is given by wTΛ−1w.

Theorem 2 For any x and y such that x+ y = z, where z is the current on

the boundary of the network formed by the parallel addition of Γ1 and Γ2,

zT (Λ−1
1 ‖Λ−1

2 )z ≤ xTΛ−1
1 x+ yTΛ−1

2 y (2)

Proof. The minimum of xTΛ−1
1 x+ yTΛ−1

2 y, when x+ y = z, occurs when
xo = (Λ

−1
1 + Λ−1

2 )
−1Λ−1

2 z and yo = (Λ
−1
1 + Λ−1

2 )
−1Λ−1

1 z. So
Λ−1

1 xo = (Λ
−1
1 ‖Λ−1

2 )z and Λ
−1
2 yo = (Λ

−1
1 ‖Λ−1

2 )z. Then
xTo Λ

−1
1 xo + y

T
o Λ

−1
2 yo = xTo (Λ

−1
1 ‖Λ−1

2 )z + y
T
o (Λ

−1
1 ‖Λ−1

2 )z = zT (Λ−1
1 ‖Λ−1

2 )z.
So given these values of xo and yo, equality holds.
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Let x = xo + u, y = yo − u, u 6= 0. Then x+ y = xo + yo = z. We want
to show that xTΛ−1

1 x+ yTΛ−1
2 y > zT (Λ−1

1 ‖Λ−1
2 )z.

Λ−1
1 x = Λ−1

1 xo + Λ
−1
1 u = (Λ−1

1 ‖Λ−1
2 )z + Λ

−1
1 u

Λ−1
2 y = Λ−1

2 yo − Λ
−1
2 u = (Λ−1

1 ‖Λ−1
2 )z − Λ

−1
2 u

xTΛ−1
1 x+ yTΛ−1

2 y = xT (Λ−1
1 ‖Λ−1

2 )z + x
TΛ−1

1 u+ yT (Λ−1
1 ‖Λ−1

2 )z − y
TΛ−1

2 u

= zT (Λ−1
1 ‖Λ−1

2 )z + x
TΛ−1

1 u− yTΛ−1
2 u.

In order to complete the proof, we must show that xTΛ−1
1 u−yTΛ−1

2 u > 0.

xTΛ−1
1 u− yTΛ−1

2 u = xTo Λ
−1
1 u+ uTΛ−1

1 u− yTo Λ
−1
2 u+ uTΛ−1

2 u

= zTΛ−1
2 (Λ

−1
1 + Λ−1

2 )
−1Λ−1

1 u+ uTΛ−1
1 u

−zTΛ−1
1 (Λ

−1
1 + Λ−1

2 )
−1Λ−1

2 u+ uTΛ−1
2 u

= uTΛ−1
1 u+ uTΛ−1

2 u > 0.

So for any x, y so that x+ y = z, xTΛ−1
1 x+ yTΛ−1

2 y ≥ zT (Λ−1
1 ‖Λ−1

2 )z.

♠

Since we are assuming that the current flow will divide itself in such a
way that the power dissipated is minimum, the current will divide itself so
that x = (Λ−1

1 +Λ−1
2 )

−1Λ−1
2 z and y = (Λ−1

1 +Λ−1
2 )

−1Λ−1
1 z to minimize the

power dissipated by the network formed by parallel addition.
Since we are assuming that the networks contain no sources or sinks,

∑

zi = 0, where z is the current flow on the boundary of the network. Let
a1 = zTΛ−1

1 z and a2 = zTΛ−1
2 z. Clearly if z = 0, then a1 = 0 and a2 = 0.

We will assume z 6= 0 so that a1 > 0 and a2 > 0. Then the following is true:

Corollary

zT (Λ−1
1 ‖Λ−1

2 )z ≤

(

1

a1
+
1

a2

)

−1

(3)

Proof. Let x =
(

a2

a1+a2

)

z and y =
(

a1

a1+a2

)

z.

Then x+ y =
(

a2

a1+a2

)

z +
(

a1

a1+a2

)

z = z.

So by Theorem 2, zT (Λ−1
1 ‖Λ−1

2 )z ≤ xTΛ−1
1 x+ yTΛ−1

2 y =
(

a2

a1+a2

)

zTΛ−1
1 z

(

a2

a1+a2

)

+
(

a1

a1+a2

)

zTΛ−1
2 z

(

a1

a1+a2

)

=
(

a2

a1+a2

)2
a1 +

(

a1

a1+a2

)2
a2 =

a1a2(a1+a2)

(a1+a2)
2 = a1a2

a1+a2
.

So zT (Λ−1
1 ‖Λ−1

2 )z ≤
a1a2

a1+a2
=
(

1
a1
+ 1

a2

)

−1
.

♠
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Figure 2: Series Addition of Networks

3 Series Addition

Let Γ1 and Γ2 be the graphs of networks 1 and 2 respectively, with bound-

ary nodes {p
(1)
i }

n
1 , {p

(2)
i }

m
1 . Take the ordering of the boundary nodes to be

counterclockwise around network 1 and clockwise around network 2. The
boundary nodes of each network are divided into two subsets, those where
the current flows into the network, and those where the current flows out of

the network. Let {q
(1)
i }b1 and {q

(2)
i }k1 be the boundary nodes with current

flowing into the network of networks 1 and 2, respectively. Let {r
(1)
i }

d
1 and

{r
(2)
i }

j
1 be the boundary nodes of networks 1 and 2 with current flowing out

of the network so that b+ d = n and k+ j = m. The series addition of net-
works 1 and 2 is defined to be the connecting and interiorizing of the second

subsets of boundary nodes of the two networks in such a way that r
(1)
1 is

connected in series to q
(2)
1 , r

(1)
2 is connected to q

(2)
2 , and so on, as in Figure

2. For series addition of networks to be defined, the boundary nodes of the
two networks must be divided in such a way that d = k. Our definition of
the series addition of networks is analagous to Γ1 •Γ2 as defined in Rosema.

Theorem 3 Let Γ1,Γ2 be a pair of networks with associated Dirichlet to

Neumann maps Λ1,Λ2, and boundary nodes {q
(1)
i }b1, {r

(1)
i }

d
1, {r

(2)
i }

j
1, {q

(2)
i }k1,

with d = k. Let Λ1 =

(

A1 B1

BT
1 C1

)

and Λ2 =

(

A2 B2

BT
2 C2

)

. Take ΓS to be

the graph resulting from the series addition of Γ1 and Γ2 as defined above.

Then the map associated with ΓS is:

ΛS =

(

A1 −B1(C1 + C2)
−1BT

1 −B1(C1 + C2)
−1BT

2

−B2(C1 + C2)
−1BT

1 A2 −B2(C1 + C2)
−1BT

2

)

(4)

Proof. This follows directly from Lemma 10 in Rosema.
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♠

Let Γ be the graph of a network with intΓ representing the set of in-
terior nodes and ∂Γ representing the set of boundary nodes. Let wj =
∑

i∼j wji, wij = −wji, where i ∼ j are those nodes i that are neighbors of j.
Also, let W = {wij : wj = 0 for jε intΓ, wj = ψj for jε∂Γ, where

∑

ψi = 0},
and Q(w,w) =

∑

rijw
2
ij =

∑ 1
γij
w2
ij .

Theorem 4 Q(w,w) is minimized for that {wij}εW such that

wij = γij(vi − vj) for some {vi}.

Proof. Since the Neumann problem has a solution, such {vi} exist. Let
wij = γij(vi − vj) and let zijεW , such that zij = wij + xij . Since zijεW ,
zi = 0 at each interior node. Therefore, since zi = wi + xi and wi = 0 at
each interior node, xi = 0 at each interior node. Also, zi = ψi at each
boundary node. Since wi = ψi at each boundary node, xi = 0 at each
boundary node. Thus, xi = 0 for all i.
Q(z, z) =

∑ 1
γij
z2
ij =

∑ 1
γij
(wij + xij)

2 = Q(w,w) +Q(x, x) + 2
∑ 1

γij
wijxij .

But
∑

i,j
1
γij
wijxij =

∑

i,j(vi − vj)xij =
∑

i,j vixij −
∑

i,j vjxij =
∑

vixi +
∑

vjxj = 0 since xi = 0 for all i. So Q(z, z) = Q(w,w) +Q(x, x).
Therefore, Q(w,w) ≤ Q(z, z).

♠

Let ΓS be the network formed by the series addition of Γ1 and Γ2. Con-
sider a given current z on the boundary, where the current flowing into
the network flows out of the network divided into the exact same val-
ues as it entered (the current flowing on the boundary of the network is
z = [x1 · · ·xn,−x1 · · · − xn]

T ). Then the following is true:

Theorem 5

zTΛ−1
S z ≤ zTΛ−1

1 z + zTΛ−1
2 z (5)

Proof. Follows from Theorem 4.

♠
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4 Inverse for the Λ Matrix

Let Λ : <n −→ <n be the Dirichlet to Neumann map for a network with n
boundary nodes. Since we are considering only those networks that contain
no sources or sinks, W = Im(Λ), where W = {w = [w1 · · ·wn]

T : w1 + · · ·+
wn = 0}. Let e be the n× 1 matrix containing all 1’s. Then ker(Λ) = {te}.
Let R : <n −→ <n represent Λ−1.

Theorem 6 R =
(

−
(ρij)

2

)

acts as Λ−1, where ρij is the effective resistance

between nodes i and j.

Proof. From Lemma 2 in Duffin, there exists constants ρij such that
vi =

−1
2

∑n
j=0 ρijwj + c, where c does not depend on i. Also,

ρij = ρji, ρjj = 0, and ρij > 0 for i 6= j. It is later shown in Duffin’s paper
that these constants are the effective resistances for the network. So






v1
...
vn






= −1

2







ρ11 · · · ρ1n
...

. . .
...

ρn1 · · · ρnn













w1
...
wn






+ ce. Therefore Rw = v − ce.

So ΛRw = Λ(v − ce) = Λv = w for all wεW and ΛR = I on W .

♠

Although Rw, where w is a current on the boundary of a network, only
determines the boundary voltages v up to a constant, R may be used in
place of Λ−1 when calculating the power dissipated by the network.

Theorem 7

vTΛv = wTRw (6)

Proof.

vTΛv = vTw

= wT v

= wT (Rw − ce)
= wTRw, since

∑

wi = 0.

♠

Consider a network with n boundary nodes. The following is an algorithm
for finding ρij , where ρij is the effective resistance between boundary nodes
i and j.
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1. Apply a voltage of 1 at boundary node i and voltage of 0 at node
j. Insulate the other n − 2 boundary nodes so that current can flow only
through nodes i or j. Permute the Λ matrix so that node i is the first entry
in the matrix and node j the second, followed by the other n−2 nodes. The

Λ matrix may be divided into submatrices so that Λ =

(

A B

BT C

)

, where

A is 2× 2, B is 2× n− 2, BT is n− 2× 2, and C is n− 2× n− 2.
2. Now Λv = w, where v = (1 0 x1 · · ·xn−2)

T and w = (wij −
wij 0 · · · 0)

T . Therefore, by solving the last n − 2 equations of Λv = w,
you may find the voltages at the other boundary nodes. This amounts

to solving the equation BT

(

1
0

)

+ Cx = 0, which has a unique solu-

tion since C is invertible. Therefore, the unknown boundary voltages are

x = −C−1BT

(

1
0

)

.

3. We know that A

(

1
0

)

+ Bx =

(

wij

−wij

)

. Substituting the known

voltages for x, we get A

(

1
0

)

−BC−1BT

(

1
0

)

=

(

wij

−wij

)

.

4. Using Ohm’s Law, you get 1 = Iρij or ρij =
1
I
. So A−BC−1BT will

produce a 2× 2 matrix

(

wij −wij

−wij wij

)

. ρij is just
1
wij
.

5. Once ρij is found, ρji is known. Also, we know that ρii = 0, so
these values need not be calculated. Once ρij is found for every pair i, j, the
matrix R may be easily calculated.
Consider a network with four boundary nodes. R, representing the

inverse of the Λ matrix, will be a 4 × 4 symmetric matrix. Let the en-

tries of R be denoted by rij , where rij =
(

−
(ρij)

2

)

. Because of the prop-

erties of the effective resistance of a network, rii = 0 for all i. Thus,

R =











0 r12 r13 r14
r12 0 r23 r24
r13 r23 0 r34
r14 r24 r34 0











. This matrix may be divided into four 2 × 2

matrices so that R =

(

R1 R2

RT
2 R3

)

.

The power dissipated by this network by a current w =

(

z

−z

)

=

(x1 x2 − x1 − x2)
T is:

8



wTRw = (zT − zT )

(

R1 R2

RT
2 R3

)(

z

−z

)

= (zTR1 − z
TRT

2 zTR2 − z
TR3)

(

z

−z

)

= zTR1z − z
TRT

2 − z
TR2z + z

TR3z

= zTQz, where

Q = R1−R
T
2 −R2+R3 =

(

−2r13 r12 − r23 − r14 + r34
r12 − r23 − r14 + r34 −2r24

)

.

For a network with 6 boundary nodes with current flowing out exactly
the same way as it came in, the power dissipated by the network can be
represented by zTQz, where Q = R1 −R

T
2 −R2 +R3 =







−2r14 r12 − r24 − r15 + r45 r13 − r34 − r16 + r46
r12 − r15 − r24 + r45 −2r25 r23 − r35 − r26 + r56
r13 − r34 − r16 + r46 r23 − r26 − r35 + r56 −2r36






.

The entries of Q are the transfer resistances as defined in Duffin. For the
network with 6 boundary nodes, the i, j entry of Q is the transfer resistance
between node pairs i, j and i + 3, j + 3. The transfer resistance between
boundary node pairs a, b and c, d is ρt, where vc − vd = Jρt when a current
J enters the network at a and leaves at b, all other boundary nodes being
insulated.

ρt =
ρad+ρbc−ρac−ρbd

2

It follows from direct calculation that, in general, for a network with n
boundary nodes with current flowing out exactly the same way as it came
in, the power dissipated by the network can be represented by zTQz, where
Q is the n

2 ×
n
2 matrix where the i, j entry of Q is the transfer resistance

between nodes i, j and nodes i+ n
2 , j +

n
2 .
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