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Abstract

This paper discusses the recovery of conductances in a square re-

sistor network from measurements of boundary output currents gen-

erated by internal current sources. The F matrix is defined and its

characteristics are described. An algorithm is developed and tested for

solving the inverse problem. Results are given for these tests, which

show significant improvement over previous results, and the properties

of the algorithm are analyzed.

1 Introduction

We consider resistor networks similar to those described in [2] and [3] with
modifications suggested by [1]. For every positive integer n, there is a square
network Ω consisting of nodes and edges constructed as follows. The nodes
of Ω are the integer lattice points (i, j) in the cartesian plane for 0 ≤ i ≤ n+1
and 0 ≤ j ≤ n+1 with the four corner points (0, 0), (n+1, 0), (0, n+1), and
(n+1, n+1) excluded. The edges of Ω consists of all unit-length horizontal or
vertical line segments connecting nodes in Ω. Two nodes are called neighbors
if an edge connects them. All interior nodes of Ω have four neighbors, and
all boundary nodes have one. Let N(s) denote the set of all nodes which is a
neighbor of node s. Throughout this paper s and t will be used to represent
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nodes of Ω in general. Interior and boundary nodes will be denoted by p and
q respectively.
Let Ω0 denote the set of all nodes in Ω. The set of all boundary

nodes, numbered clockwise starting from the upper left, is denoted by
∂Ω0 = {q1, q2, ..., q4n}. The set of all interior nodes is denoted by intΩ0 =
{p1, p2, ..., pn2}. Thus, Ω0 = (∂Ω0 ∪ intΩ0). Note that the numbering scheme
for interior nodes is not consistent throughtout this paper. An example of a
network with n = 5 is shown in Figure 1.
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Figure 1

The set of edges is denoted by Ω1, where each edge represents a conductor.
Individual edges are labelled according to which two nodes they join, i.e.
pipj or piqj or st. The function γ which assigns a positive real-value to each
edge in Ω1 is called the conductivity. Let γi denote the conductivity of the
conductor joining qi to its interior neighbor, γ(qipj). Similarly, let γi,j denote
the conductivity between pi and pj, γ(pipj). A network of resistors is a
network Ω = (Ω0,Ω1) with a γ on Ω1. Let u be a function on Ω0 representing
the potential at each node. Let I(s), a function on Ω0, denote the current
at each node s in Ω0. The only condition on the potential function u is
Kirchhoff’s Current Law which states that

∑

t∈N(s)

γ(st)(u(s)− u(t)) = I(s) (1)

for all s in Ω0. The function u is called γ–harmonic at all nodes s where
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I(s) = 0. Thus, u is γ–harmonic at all interior nodes except at those specified
as sources of internal current.
Throughout this paper the potential at all boundary nodes is assumed to

be zero.

2 Preliminary Properties

2.1 The Kirchhoff matrix K

The square Kirchhoff matrix K is defined in Section 3 of [4]. It has the
following interpretation. If u is a voltage matrix defined at the nodes of Ω,
then Ku is the resulting current flow. The definition of K implies that it is
symmetric. [4] also shows that K is positive semi-definite.
We assume the numbering scheme and block structure used in Theorem

3.2 of [4]. Thus K has the following block structure,

K =
(

A B
BT D

)

. (2)

By the definition of K, and since all boundary potentials are zero,
(

A B
BT D

)(

0
ψ

)

=
(

J
e

)

, (3)

where ψ is the vector of interior potentials, J is the vector of boundary
currents, and e is the vector of interior currents.

2.2 The F matrix

Definition 1. For 1 ≤ i ≤ 4n and 1 ≤ j ≤ n2, define each entry fi,j in F to
be the current flow out of boundary node qi due to a source current of +1 at
pj.

As an immediate consequence of Definition 1, if e is the vector of current
flowing through each interior node, then Fe represents the vector of current,
−J , flowing out of the boundary nodes. That is,

Fe = −J. (4)

There are two simple properties of F which can now be shown. Both will
become useful in later sections.
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Lemma 2. The sum of the entries in each column of F is 1.

Proof. Fei produces a vector representing the total current flowing out of
the network due to a source current of +1 at pi. Since the total current out
of a network must equal the total current into the network by Kirchhoff’s
Current Law, the sum of the entries in Fei, and therefore the sum of the
entries in the ith column of F , must equal 1.

Lemma 3. F = −BD−1.

Proof. By Equation (3),

Bψ = J, and Dψ = e.

By Lemma 3.1 in [4], D is nonsingular and thus invertible. Therefore,

BD−1e = J,

and by Definition 1, the lemma is proved.

Lemma 3 expresses F in terms of blocks in K. The next section will show
that F is thus related to the U matrix.

2.3 The U matrix

Definition 4. Let ui(j) represent the potential at interior node pj due to a
source current of +1 at pi and of 0 everywhere else in the interior.

Definition 5. Let ui represent the vector of interior potentials due to a single
interior source current of +1 at pi,

ui =





















ui(1)
ui(2)
.
.
.

ui(n
2)





















,

and let U be the (n2 × n2) matrix [u1, u2, . . . , un2 ].
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Lemma 6. DU = I.

Proof. Since ui represents a vector of interior potentials, from Equation (3)

Dui = ei,

where ei is the vector of interior currents representing a current source of
+1 at pi and of 0 everywhere else in the interior. Numerically, ei is the i

th

column of the (n2 × n2) identity matrix. As a result,

DU = I and U = D−1.

Corollary 7. U is symmetric. Thus, ui(j) = uj(i).

Proof. Since K is symmetric, D is also symmetric. Thus,

D = DT , which implies D−1 = (D−1)T .

Therefore, from Lemma 6, U is also symmetric.

Having defined U , we can express F in terms of γk and i(j),

F =















































































γ1u1(1) γ1u2(1) · · · γ1un2(1)
γ2u1(2) γ2u2(2) · · · γ2un2(2)
...

...
. . .

...
γnu1(n) . · · · .
γn+1u1(n) . · · · .

γn+2u1(n+ 1) . · · · .
...

...
. . .

...
γ2nu1(2n− 1) . · · · .
γ2n+1u1(2n− 1) . · · · .
γ2n+2u1(2n) . · · · .

...
...

. . .
...

γ3nu1(3n− 2) . · · · .
γ3n+1u1(3n− 2) . · · · .
γ3n+2u1(3n− 1) . · · · .

...
...

. . .
...

γ4n−1u1(4n− 4) γ4n−1u2(4n− 4) · · · γ4n−1un2(4n− 4)
γ4nu1(1) γ4nu1(1) · · · γ4nun2(1)















































































. (5)
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Another useful property concerning the potentials in a network with in-
terior sources of current follows.

Theorem 8. The Maximum Principle. If there is a single interior current
source at node p, the potential function u being γ–harmonic elsewhere, and
all boundary potentials are zero, then the magnitude of the potential at the
source node is larger than the magnitude of the potential at any other node.

Proof. Consider the interior current source node, p, as a boundary node, and
thus u is γ–harmonic everywhere in the interior. Corollary 2.2 in [2] states
that the magnitude of all interior potentials would then be less than or equal
to the magnitude of the potential at p. The potential at p is non-zero because
otherwise no current would flow through the network by Corollary 2.3 in [2],
but we assume there is at least one current source. Since the potential at p is
non-zero, all interior potentials have lesser magnitudes than at p. Otherwise
all potentials throughout the network must be equal, which is contradictory
since the potential at some boundary nodes is zero and at others they’re
non-zero.

The following is now stated as a proposition, but follows from [1] and will
be shown true later in this paper.

Proposition 9. If a square resistor network produces an F matrix and di-
agonals of U , no other square network can produce the same F matrix and
U diagonals.

3 Relations in F

Theorem 10. Kirchhoff’s Condition on U is expressed by DU = I.

Proof. Equation (5) shows that F is expressable in terms of boundary con-
ductors and entries in U . The conductors depend on the network. The
entries of U depend on Equation 1. Thus, if all the neighbors of pj are in the
interior, then for j 6= i

∑

pk∈N(pj)

γ(pjpk)(ui(j)− ui(k)) = 0,
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and for j = i
∑

pk∈N(pj)

γ(pjpk)(ui(j)− ui(k)) = 1.

If some neighbor of pj is a boundary node, then for j 6= i

γ(pjqj)ui(j) +
∑

pk∈N(pj)

γ(pjpk)(ui(j)− ui(k)) = 0,

and for j = i

γ(pjqj)ui(j) +
∑

pk∈N(pj)

γ(pjpk)(ui(j)− ui(k)) = 1.

By the definition of K in [4], if i 6= j, then Di,j = −γ(pipj) if pi ∈ N(pj), else
Di,j = 0. If i = j, then Di,i =

∑

t∈N(pi) γ(pit). Now notice that the entries
of DU are of the form

∑

t∈N(s) γ(st)(ui(s) − ui(t)). Therefore each equation
expressed by DU = I is a condition of Equation 1.

Note that the condition on F stated by Lemma 2 also follows from the
equations in DU = I, particularly Dui = ei for 1 ≤ i ≤ n2. Observe that the
sum of the entries in ith column of F equals the sum of rows in Dui. Both
these sums equal the sum of the entries in ei, which is 1.
Another consequence of DU = I is that U is symmetric ( Corollary 7 ).

By Lemma 3, F = −BU . So although F is not symmetric, it has symmetric
characteristics due to U . For example,

f1,2/f2,1 = γ1/γ2.

3.1 F and Non-Intersecting Connections in a Network

Let P = (p1, p2, . . . , pk) be a sequence of k distinct interior nodes and Q =
(q1, q2, . . . , qk) be a sequence of k distinct boundary nodes such that there
is only one permutation of non-intersecting connections between P and Q.
That is, if there is a connection between P and Q, it must connect pi to qi
for 1 ≤ i ≤ k.

Lemma 11. If (1) all boundary nodes have a potential of zero, (2) all interior
nodes not in the set P have currents of zero, and (3) the currents at the
boundary nodes of Q are all zero, then the potential at all nodes is zero.
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Proof. Consider a network similar to that above except all nodes in P are
treated as boundary nodes. Then Theorem 4.1 in [4] states that detΛ(Q;P ) 6=
0 due to the conditions on P and Q. Thus the only solution to Λ(Q;P )~x = 0
is ~x = 0. This implies that, in a network where the potential function
is γ–harmonic in the interior and 0 at all boundary nodes not in P (still
considered a boundary node), if the currents at the nodes in Q are all 0, then
the potentials at the boundary nodes in P are all 0. Since the potentials
at all boundary nodes are thus 0, by Corollary 2.3 in [2], all nodes have a
potential of zero.

Theorem 12. The determinant of a square matrix in F made up of rows
labelled by Q and columns labelled by P , detF (Q,P ), is non-zero.

Proof. detF (Q,P ) 6= 0 if and only if the only solution to F (Q,P )~x = 0 is
~x = 0. This is equivalent to stating that if the conditions described in Lemma
10 are all satisfied, then the currents at all nodes of P are 0. Such a statement
is true since Lemma 10 shows that all the potentials in the network equal
zero. Thus all the currents, including those at P , are 0, and the theorem is
proven.

Because there are often many such permutations P and Q in square rect-
angular networks, Theorem 11 implies several relationships between the el-
ements of F . For example, suppose it is possible to input certain amounts
of current at specific interior nodes such that some boundary currrents are
zero. Consider Figure 2.
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Figure 2

Suppose currents of +1, α1, α2, and α3 are forced on the nodes as labelled
such that the potential at all nodes marked by (o) is zero. Then it would be
possible to express specific terms of F in a system of equations as follows. Let
p1, p2, p3, p4 correspond to the nodes with currents α1, α2, α3,+1 respectively.
Then,

fi,4 + α1fi,1 + α2fi,2 + α3fi,3 = 0 for 3 ≤ i ≤ 18

is true. Theorem 11 identifies which 3 equations can be used to solve for
α1, α2, α3. Similar relations follow for different sets of interior nodes.

4 Theoretical Characterization of F in Sim-

pler Networks

Up to this point we have identified the contraints on F , particularly DU = I.
We have also identified three properties: (1) the sum of each column in F
equals 1, (2) F is related to the symmetric matrix U , and (3) certain sub-
matrices in F are non-singular (Theorem 11). The third property, for large
networks, produces the most conditions on what the entries of F can be.
To simplify matters we shall now consider networks of the following type.

For every positive integer n there is a one–layer network Γ with n boundary
nodes and n interior nodes. Let Γ0 denote the set of all nodes in Γ. The set
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of interior nodes is denoted by intΓ0 = {p1, p2, . . . , pn}. Similarly, the set of
boundary nodes is denoted by ∂Γ0 = {q1, q2, . . . , qn}. Let Γ be constructed
as follows. Interior node p1 is connected to pn and p2, and pn is connected
to pn−1 and p1. In the same manner, for 1 < i < n, pi is connected to pi−1

and pi+1. Also, each boundary node qi is connected only to pi. The cases for
n = 3 and n = 4 are shown below.
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All other terms and conditions associated with this network are the same
as described in Section 1.

4.1 Γ Network for n = 4

We shall describe two methods for recovering all of F using only minimal
information from it. Note that knowing all of F is not sufficient for recovering
the network. Thus we allow ourself the option of knowing certain diagonal
entries of the U matrix. [1] and later sections of this paper show how recovery
of networks is possible from F and diagonals of U . Ideally, we can recover
all m conductors of a network from knowing just m entries in F and in the
diagonals of U . For example, in the case of n = 4 we should be able to recover
all 8 conductors from 8 measurements. However, each equation in the system
represnted by DU = I depends on interior conductors not immediate from
F or U . Thus finding a solvable system of linear equations with only m
measurements has proven difficult.
We now investigate Γ for n = 4, assuming the numbering scheme shown

in Figure 4.
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4.1.1 Method I

In this first method all the characteristics of F previously listed are uti-
lized. Consider the following scheme for representing F .

F =











γ1u1(1) γ1u1(2) γ1u1(3) γ1u1(4)
γ2u1(2) γ2u2(2) γ2u2(3) γ2u2(4)
γ3u1(3) γ3u2(3) γ3u3(3) γ3u3(4)
γ4u1(4) γ4u2(4) γ4u3(4) γ4u4(4)











. (6)

We have made use of the symmetric property of U and thus reduced the
number of variables in F by 42− (4+ 10) = 2. Since each column of F sums
to 1, there are four additional relations. Now consider the following nine
entries of F ,

F =











0 ∗ 0 0
∗ 0 ∗ 0
∗ ∗ 0 ∗
∗ ∗ ∗ 0











.

Due to U symmetry, the boundary conductors and then the upper right
triangle entries can be found. Using the column sum, the diagonal entries
follow. So if we know u1(1) and those nine entries (*) of F , we can recover
all of F and U , and subsequentially all conductors in the network.
However, we still have not reduced the the number of measurements to

eight. Perhaps Theorem 11 will supply the necessary two relations. Infact,
the following equations does theoretical narrow the number of relations by
two,

f2,1 + α1f2,2 + α2f2,4 = 0 f1,2 + β1f1,1 + β2f1,3 = 0
f3,1 + α1f3,2 + α2f3,4 = 0 f3,2 + β1f3,1 + β2f3,3 = 0
f4,1 + α1f4,2 + α2f4,4 = 0 f4,2 + β1f4,1 + β2f4,3 = 0

but doesn’t lead to a linear solution.

4.1.2 Method II

Consider Du1 = e1, written out as follows:

u1(1)(γ1 + γ8 + γ5)− u1(2)(γ5)− u1(4)(γ8) = 1,
u1(2)(γ2 + γ5 + γ6)− u1(3)(γ6)− u1(1)(γ5) = 0,
u1(3)(γ3 + γ6 + γ7)− u1(4)(γ7)− u1(2)(γ6) = 0,
u1(4)(γ4 + γ7 + γ8)− u1(1)(γ8)− u1(3)(γ7) = 0.
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Assume we can find γi and u1(i) for 1 ≤ i ≤ 4. We are then left with a
system of four equations and four unknowns. Unfortunately, this system has
rank three and thus the interior conductors cannot be solved for. However, if
the value of one interior conductor is found, the other conductors will follow
from the system above.
To discover a conductor, say γ5, apply the following method. Put a source

current of +1 at p1 and a source current of α at p4 such that the potential
at p1 and p4 are equal. In other words,

u1(1) + αu4(1) = u1(4) + αu4(4).

Recall that we already know u1(1) and u1(4). To find α, it is also necessary to
know u4(4). The current through γ8 can thus be set to zero. We now recover
the conductor γ5 from Kirchhoff’s Current Law applied at p1, namely

γ1[(u1(1) + αu4(1))− (0) + γ5[(u1(1) + αu4(1))− (u1(2) + αu4(2)) = 1.

In addition to the previously mentioned, we must also know u4(2).
So, given u1(1) and the following eight values of F ,

F =











0 ∗ ∗ ∗
∗ 0 0 0
∗ 0 0 0
∗ ∗ 0 ∗











,

we can recover the one-layer, n = 4, network as follows. First determine
f1,1 = γ1u1(1) by Lemma 2. Then, aware of U symmetry, use the complete
first row and column of F to find the boundary conductors. u4(2) and u4(4)
follows from f4,2 and f4,4, and then γ5 subsequentially. The other conductors
can now be recovered from Du1 = e1. The remainder of F and U also follows
from DU = I.
This method requires one measurement more than the number of con-

ductors, but works well for all one–layer networks. A similar algorithm
applicable to square rectangular networks is being investigated.

5 The Forward Problem

The forward problem is to find the matrix F for a particular network Ω,
using the definition of F in Section 2. The calculation is simply a matrix
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multiplication. The forward problem based on internal currents displays
some attractive properties in comparison to the traditional forward problem
of finding a map from boundary potentials to boundary currents. In partic-
ular, a random percentage change in the values of the conductors produces
a comparable percentage change in the values of F , assuming conditions on
the size of the network, the size of the change in the γ ′s and the range of
sizes of γ ′s. In addition, the changes in F are less dependent on the size of
the network and range of γ ′s than one would expect. Some representative
numerical results for this phenomenon are given in the following table. In
the table, G∗ is the vector of all γ ′s with a consistent, but not given ordering,
and F∗ is the vector of all entries in the matrix F with a consistent, but not
given ordering.

∆G = ‖
|Gr(i)−Gm(i)|

Gr(i)
‖∞

and

∆F = ‖
|Fr(i)− Fm(i)|

Fr(i)
‖∞

where Fr(i) is a real value of F found using unchanged entries of G, and
Fm(i) is a modified value of F found using the modified entries of G, and
likewise for all other vectors used in this paper.

n Rangeofγ ∆G ∆F
8 2 ≤ γ ≤ 3 1.0 ∗ 10−6 8.4845 ∗ 10−5

1.0 ∗ 10−4 8.4849 ∗ 10−3

1.0 ∗ 10−2 0.85297
1.0 0.72056

8 1 ≤ γ ≤ 10 1.0 ∗ 10−5 4.5993 ∗ 10−6

1.0 ∗ 10−3 4.6006 ∗ 10−4

0.1 4.7330 ∗ 10−2

0.5 0.26019

6 Solution of the Inverse Problem

In this section, we describe the algorithm that we used to recover the con-
ductors in a square resistor network, given the entries of F and the diagonal
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entries of U . The algorithm is essentially a completion of the partial algo-
rithm started in [1].
The algorithm is composed of three steps:

1. Recovery of Boundary Conductors

2. Two Current Conductor Recovery

3. Calculation of Potentials

6.1 Recovery of Boundary Conductors.

Let µj(i) be the current through exterior node qi due to a current of 1 into
pj. Let µj(a, b) be the current through the edge connecting pa and pb due to
an input current at pj. Then the conductors γ(i) for 1 ≤ i ≤ 4n can all be
recovered using the formula:

γ(i) =
µ4n+i(i)

ui(i)
=
Fi,4n+i

Ui,i

(7)

The recovery of these conductors is both rapid and exact, as each calcu-
lation depends on only one value of F and one value of U .

6.2 Two Current Conductor Recovery

We use this procedure to recover all of the edges between interior nodes.
The method uses two known conductors (γ(b, e) and γ(a, e) in Figure 5),
along with potentials found using the method in Section 6.3 to recover two
additional conductors (γ(d, e) and γ(c, e)).
To recover γ(d, e), we must know the current through γ(d, e) and the

potential difference between nodes d and e, for a given set of internal sources.
We know that the current through γ(d, e) will be equal to the current through
all the other edges in Figure 5 plus any input current at node e. We will
force a current of 0 through γ(c, e). This is done by inserting a current of 1
at node e and a current of α at c such that the potential at e will equal the
potential at c. This α is given by:

α =
ue(e)− ue(c)

uc(c)− ue(c)
. (8)
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Then, the current through γ(d, e) is:

µ(d, e) = 1 + γ(b, e)(αuc(b) + ue(b)− ue(e)− αuc(e)) (9)

+γ(a, e)(αuc(a) + ue(a)− ue(e)− αuc(e))

And

γ(d, e) =
µ(d, e)

pot(e)− pot(d)
(10)

=
µ(d, e)

ue(e) + αue(c)− ue(d)− αuc(d)

Similarly, by blocking the current between nodes d and e, we can also recover
γ(c, e). The placement of a sample structure such as in Figure 5 is shown
below.
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Remark 13. While the main purpose of blocking current through edge c-e
was to avoid calculations with an unknown value, this method also increases
the current flowing through edge d-e, thus reducing the small-current problems
found in former algorithms. It is also possible to insert currents at nodes a,b
and c, such that the only current passing the edge d-e is the current of 1 from
node e. However, the errors introduced by an increased use of potentials and
the solution of a system of three equations do not make up for the small
increase in current through edge d-e.
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6.3 Calculation of Potentials

In order to make the calculations in the previous section, we required values
of the potentials at nodes a,b,c and d due to an input current at e and the
values of these potentials due to an input current at c or d. Suppose you
wish to calculate ua(b) = ub(a) in Figure 7, then
1. Determine which node, a or b is closer to a face of the network. In

this case it is node b.
2. Determine which face node b is closest to.
3. Determine the nodes between b and this edge at which we must find

the potentials due to an input current at a in order to find ua(b). These
nodes will be those lying on or between the diagonal lines in Figure 7.
4. Calculate the potentials at level one using the formula ua(i) = Fj,a/γ(j)

for boundary nodes qj within the diagonal lines and interior nodes, pi, on the
first level and within the diagonal lines (level here is defined as in [1]).
5. Using these potentials and the conductors values γ(f, g), γ(c, g) and

γ(d, g) in Figure 8, calculate the currents µ(f, g), µ(c, g) and µ(d, g). These
currents will equal µ(g, e), which we use with ua(g) and γ(g, e) to find ua(e).
6. Finally, we repeat step 5 to determine the other potentials in Level 2

and all deeper levels until we find ua(b).

6.4 The Algorithm

These three procedures fit together in the following manner. First, use proce-
dure 1 to recover the conductivity of all edges connected to boundary nodes.
Second, use procedure 2, with values from procedure 3, to calculate the con-
ductivity of all edges in Level 1 and connecting Level 1 to Level 2. We
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accomplish this by using the procedure on the North side, then rotating the
structure in Figure 5 clockwise 90 degrees and doing the East side, then ro-
tating for the South and again for the West. (The North side is the set of
nodes closest to exterior nodes q1 through qn, the East is the set of nodes
closest to nodes qn+1 through q2n, etc.) This is illustrated in Figure 9 which
shows all b and e nodes for Level 1. A similar process is done to recover all
other levels. Level 2 is illustrated in Figure 10.
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7 Amount of Information Required

While we assumed the knowledge of all of the F and the diagonal of U , this
is far more information than the number of conductors and all of it should
not be necessary. In fact, the algorithm does not use all of the information
we make available to it.
The intermediate information that we need is all in the form of potentials.

Therefore, the best way to determine how much information is required is to
determine which potentials are required and which values of F are necessary
to calculate those potentials. But first, let us look at the diagonal entries of
U . All of the diagonal entries of U are required by the algorithm described
in Section 6, because every internal node is used in one unit, such as that in
Figure 5, as the center node, e. ue(e) is required by each step 2 and therefore
all diagonal values of U are required.
Now we turn to F ,

Definition 14. A quadrant of a square network is the set of nodes such that
each node in the quadrant is closest to a single face. If a node is equidistant
from 2 or more faces, it will belong to both respective quadrants. Thus we will
speak of the North, East, South and West quadrants. A quadrant is illustrated
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in Figure 11 in which the set of nodes on and between the diagonal lines form
a quadrant.

In our algorithm, given a node denoted by c for this analysis, we require
at most the potentials at all adjacent nodes to c, as well as the potentials at
the nodes two edges away in a horizontal or vertical direction. Knowing this,
we can find the set of all necessary potentials in the following way: Take the
set of c’s as all nodes in a given quadrant except along the right diagonal
border of the quadrant (right diagonal border nodes are marked with circles
in Figure 11), and find the potentials, due to a current of 1 put into these
nodes, at the nodes one and two edges to the right of them, hereafter refered
to as ur and urr respectively. In the process of finding ua (the potential at
the node above c, due to a current at c), we must also find uaa (the potential
two nodes above c). In addition, in the process of finding ur, we must use the
nodes immediately above, diagonally to the above and right, and diagonally
to the above and left. The node diagonally to the above and left is ua, thus
we will find both ua and uaa in the process of finding ur. ul and ub (left and
below) will be found by the symmetry of U .
On the right diagonal boundary, find the potential at the node below c

due to a current at the node above c (uab). In addition, because we are
not calculating ur, we must calculate ua directly. After dealing with all four
quadrants, the potentials calculated to this point will be sufficient for our
algorithm.
Finding ur and urr requires 2l values of F where l is the Level of node c.
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Finding uab and ua along the right diagonal boundary each requires 1+2(l−2)
values of F , giving a total of 2(2l − 3) = 4l − 6. Note that this calculation
is only done in levels greater than one. In each level of a quadrant there are
(n− 1)− 2(l− 1) non-boundary nodes and one node on the right boundary.
There are [(n+ 1)/2)] levels in any network. Therefore, the total number of
values from F that are used to find all the potentials for the algorithm is

4(
[(n+1)/2]
∑

l=1

(2ln− 4l2 + 2l) +
[(n+1)/2]
∑

l=2

(4l − 6)). (11)

An additional 4n values of F are required for the boundary nodes. The
following table shows some values of Equation 11 for various sizes of networks,
along with the total number of entries in F and the number of conductors in
the network:

n # of Edges # of F Entries Used Total Entries in F
3 24 28 108
8 144 344 2048
10 220 608 4000
12 312 976 6912
16 554 2088 16384
20 840 3808 32000
32 2112 13896 131072

Initially, the number of measurements that are required is approximately
equal to the number of conductors. As the size of the network increases,
the ratio of information to conductors becomes larger. Luckily, however, the
growth of required measurements is far slower than the growth in the total
number of values of F.

8 Results of Numerical Tests

As expected, using internal sources produced improved results over using
only boundary sources. Assuming complete double precision accuracy (16
digits) in the given information, we were able to recover square networks
up to size n=24. Beyond n=24 we were unable to store and work with the
required matrices without sparse matrix techniques. We did not have time
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to implement these techniques, but we believe that the algorithm would have
recovered networks of at least n=30. We also performed tests using values of
F that included random errors, such as would exist in a physical situation.
Results on these tests were also favorable, as we were able to recover networks
with reasonable accuracy using values of F that included errors within the
range of real measuring devices. The results are given and explained in the
following sections.

8.1 Zero Error Tests

The following table gives the results we found assuming double precision
accuracy in the given values of F and the diagonals of U . The execution
times were all reasonable, particularly for the smaller networks and the errors
showed a steady increase with increased network size. The γ ′s that we used
were randomly distributed within the range of 2 to 3.

Sizeofn T imetoRun ∆G
4 1sec. 2.978D − 15
8 2 1.390D − 13
12 8 6.473D − 12
16 2 : 05 2.359D − 10
20 3 : 10 9.289D − 8
24 6 : 00 6.357D − 6

A lot of the lost accuracy in these tests is due to roundoff error that is
covered by larger errors in tests which assume less accuracy in F . Therefore,
the loss in accuracy will not agree with the results of the following section.

8.2 Tests With Assumed Error

The tables in the appendix give the results of our tests with errors assumed
in F . We noted two major features of the algorithm from these results.
First, for small errors in the entries of F , the errors in the recovered γ ′s
were directly proportional to the errors in the entries of F . This feature will
be proven in the next section. Second, beyond a threshold value of error
in F , the errors in recovered γ ′s became highly erratic. This is due to the
errors accumulated in the third procedure and will also be examined in the
following section.
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9 Analysis of Errors

Theorem 15. Assuming perfect accuracy in the calculation of potentials,

‖γd,e(r)− γd,e(c)‖∞ = k1‖γa,e(r)− γa,e(c)‖∞ + k2‖γb,e(r)− γb,e(c)‖∞ (12)

where k1 and k2 are constants, γ(r) is a real γ and γ(c) is a calculated γ.

Proof. The error in the current, µ(e, d), is proportional to the sum of constant
multiples of the errors in input conductors, assuming no error in potentials,
by Equation 9. The error in γ(d, e), as calculated in Equation 10, depends
on a constant multiple of this current and therefore on a sum of constant
multiples of the errors in input conductors.

This theorem leads us to believe that the linear dependence of errors in
calculated γ ′s before the breakdown point is due to the errors in the previous
γ′s used in step two of the algorithm. This claim is further supported by the
fact that the relative errors in the potentials are typically at least one to two
orders of magnitude smaller than the relative errors in the input γ ′s below
the breakdown point, and become equal to or greater than the errors in the
input γ’s as we move beyond the breakdown point. This also explains the
unpredictable behavior of the algorithm beyond the breakdown point. The
calculated potentials are factored into the second procedure in a multitude of
ways and would thus interact unpredictably, sometimes cancelling, sometimes
adding, to produce unpredictable results.
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10 Appendix

n rangeofγ ∆F ∆G
8 2..3 1.0 ∗ 10−6 1.1245 ∗ 10−5

1.0 ∗ 10−4 1.1238 ∗ 10−3

1.0 ∗ 10−2 0.10488
3.0 ∗ 10−2 0.30398
3.1 ∗ 10−2 1.4969
3.2 ∗ 10−2 0.95171
1.0 80.338
2.0 9.749 ∗ 10+15

8 1..10 1.0 ∗ 10−5 2.5692 ∗ 10−3

1.0 ∗ 10−4 2.5640 ∗ 10−2

1.0 ∗ 10−3 0.25293
5.0 ∗ 10−3 1.4032
1.0 ∗ 10−2 9.1905
0.1 289.65

12 2..3 1.0 ∗ 10−5 3.0135 ∗ 10−2

1.0 ∗ 10−4 0.29089
7.5 ∗ 10−4 1.6702
1.0 ∗ 10−3 1.2125
1.5 ∗ 10−3 13.022
1.0 ∗ 10−2 592.226

12 1..10 1.0 ∗ 10−7 6.3097 ∗ 10−2

1.0 ∗ 10−6 0.37217
1.0 ∗ 10−5 3.1208
1.0 ∗ 10−4 65.5581

16 2..3 1.0 ∗ 10−8 2.8734 ∗ 10−3

1.0 ∗ 10−7 2.8692 ∗ 10−2

1.0 ∗ 10−6 0.28135
7.5 ∗ 10−6 36.838
9.0 ∗ 10−6 4.8142
1.0 ∗ 10−5 111.75

16 1..10 1.0 ∗ 10−10 1.381 ∗ 10−3

1.0 ∗ 10−9 1.4040 ∗ 10−2

1.0 ∗ 10−8 0.16742
5.0 ∗ 10−8 5.3461
8.0 ∗ 10−8 0.89297
1.0 ∗ 10−7 1.2960
1.0 ∗ 10−6 274.19
24
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