Combining Critical Graphs

Erika L. Shubert Michael S. McLendon *

June 19, 2003

Abstract

We will consider connected circular planar graphs. We combine two critical c.c.p. graphs Γ_{1} and Γ_{2} by identifying k boundary nodes from Γ_{1} with k boundary nodes from Γ_{2}. The combined graph is denoted $\Gamma_{1} \vee \Gamma_{2}$ and may or may not be critical. We use the z sequences of Γ_{1} and Γ_{2} to find the z-sequence of a critical graph Γ that has the same set of connections as $\Gamma_{1} \vee \Gamma_{2}$. We describe an algorithm to find the z-sequence of Γ and implement this algorithm in a computer program.

1 Introduction

This article was inspired by [3] in which Rosema explores combinations of resistor networks using Dirichlet-Neumann maps. A resistor network is a graph with an associated conductivity function. We will examine combinations of circular planar graphs using techniques developed by Curtis, Ingerman, and Morrow in [2] and Colin de Verdière, Gitler, and Vertigan in [1].

A graph $\Gamma=(V, E)$ consists of nodes $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edges $E=$ $\left\{e_{i j}\right\}$ such that $e_{i j}$ connects node v_{i} to node v_{j}. The set of nodes consists of two subsets: a set of boundary nodes V_{B} and a set of interior nodes V_{I}. A connected circular planar (c.c.p.) graph is a graph embedded in the plane such that the boundary nodes lie on the circle C and the interior nodes and all edges are inside C.

[^0]The boundary nodes of a c.c.p. graph Γ are numbered either clockwise or counterclockwise on C. A sequence $w_{1}, w_{2}, \ldots, w_{m}$ is in circular order if some cyclic permutation is in numerical order. A pair of sequences of boundary nodes $(P ; Q)=\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots, q_{k}\right)$ such that the entire sequence $\left(p_{1}, \ldots, p_{k}, q_{k}, \ldots, q_{1}\right)$ is in circular order is a circular pair.

A circular pair $(P ; Q)$ of boundary nodes is connected through Γ if there are k disjoint paths $\alpha_{1}, \ldots, \alpha_{k}$ in Γ, such that α_{i} starts at p_{i}, ends at q_{i}, and passes through no other boundary nodes. The set of paths α is a connection from P to Q. For each c.c.p. graph $\Gamma, \pi(\Gamma)$ is the set of all circular pairs $(P ; Q)$ of boundary nodes which are connected through Γ.

If the removal of any edge in a graph Γ breaks some connection in $\pi(\Gamma)$, then Γ is a critical graph.

Each c.c.p. graph Γ has an associated medial graph, $\mathcal{M}(\Gamma) . \mathcal{M}(\Gamma)$ consists of vertices (interior and boundary) and medial edges which connect the vertices. $\mathcal{M}(\Gamma)$ is formed in three steps:

1. place two boundary vertices on C between every two boundary nodes of Γ,
2. place interior vertices at the midpoint of each edge in Γ,
3. connect the vertices with medial edges.

The placement of the medial edges is restricted as follows:

1. no two boundary vertices may be connected,
2. connect each boundary vertex in $\mathcal{M}(\Gamma)$ to exactly one interior vertex (boundary vertices are one-valent),
3. connect each interior vertex to exactly four vertices (interior vertices are four-valent),
4. a medial edge cannot cross an edge in Γ.

Figure 1.1 shows a graph Γ and its associated medial graph, $\mathcal{M}(\Gamma)$. The heavy lines are the edges of Γ. A node of Γ is represented by a filled circle (\bullet). The thin lines are the medial edges of $\mathcal{M}(\Gamma)$.

Figure 1.1

Given an interior vertex v in $\mathcal{M}(\Gamma)$, a medial edge $u v$ has a direct extension $v w$ if the medial edges $u v$ and $v w$ separate the two other medial edges incident to v. A path of medial edges $u_{0} u_{1}, u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{k-1} u_{k}$ in $\mathcal{M}(\Gamma)$ is a geodesic arc if each medial edge $u_{i-1} u_{i}$ has medial edge $u_{i} u_{i+1}$ as a direct extension. A geodesic arc $u_{0} u_{1}, u_{1} u_{2}, u_{2} u_{3}, \ldots, u_{k-1} u_{k}$ is a geodesic if either

1. u_{0} and u_{k} are boundary vertices, or
2. $u_{k}=u_{0}$ and $u_{k-1} u_{k}$ has $u_{0} u_{1}$ as a direct extension.

A geodesic forms a loop if it begins and ends at the same vertex. If a geodesic intersects itself, it forms a self-intersection. If two distinct geodesics intersect at two different vertices, they form a lens.

A graph Γ has an associated z-sequence. The z-sequence is formed by numbering each boundary vertex in $\mathcal{M}(\Gamma)$ such that when two vertices are connected by a geodesic, those two vertices have the same number. If Γ has n boundary nodes, then the z-sequence is a sequence of the numbers from 1 to n where each number occurs exactly twice. The z-sequence for the medial graph in Figure 1.1 is $z=\{1,2,3,4,2,1,4,3\}$.

To form the z-sequence of Γ each geodesic in $\mathcal{M}(\Gamma)$ that intersects the boundary circle is labeled. For simplicity, we refer to a geodesic in $\mathcal{M}(\Gamma)$ using its corresponding label in the z-sequence.

A boundary node p in a c.c.p. graph Γ_{1} is identified with a boundary node
q in a c.c.p. graph Γ_{2} by replacing both p and q with a single node, $p=q$. Given $s \in V_{B}, s$ is interiorized by changing it from a boundary node to an interior node.

A geodesic g in $\mathcal{M}\left(\Gamma_{1}\right)$ is joined with a geodesic h in $\mathcal{M}\left(\Gamma_{2}\right)$ by "identifying" a boundary vertex of g with a boundary vertex of h, forming one geodesic from g and h.

Given four nodes s, p, r, q and three edges $p s, r s, q s$ (as in Figure 1.2a), a $Y-\Delta$ transformation removes the node s and the edges $p s, r s, q s$ and adds three new edges $p q, q r, r p$ (as in Figure 1.2b). A $\Delta-Y$ transformation reverses this operation. Two c.c.p. graphs Γ_{1} and Γ_{2} are $Y-\Delta$ equivalent if Γ_{1} can be transformed to Γ_{2} by a sequence of $Y-\Delta$ or $\Delta-Y$ transformations.

Figure 1.2a

Figure 1.2b

A motion in $\mathcal{M}(\Gamma)$ moves a geodesic past the intersection of two other geodesics. Figure 1.3 shows a motion of the geodesic f past the intersection p.

Figure 1.3

By $\S 6$ in [2] a $Y-\Delta$ transformation in Γ corresponds to a motion in $\mathcal{M}(\Gamma)$.

2 Combining Two Critical Graphs with Interiorization

Let Γ_{1} be a critical c.c.p. graph with n boundary nodes. Let Γ_{2} be a critical c.c.p. graph with m boundary nodes. Suppose we choose k successive boundary nodes of Γ_{1} and k successive boundary nodes of Γ_{2}. By a renumbering of the boundary nodes of Γ_{1} and Γ_{2}, we may assume that the boundary nodes of Γ_{1} are $\left\{p_{1}, p_{2}, \ldots, p_{k}, \ldots, p_{n}\right\}$ ordered clockwise on the circle C_{1} and the boundary nodes of Γ_{2} are $\left\{q_{1}, q_{2}, \ldots, q_{k}, \ldots, q_{m}\right\}$ ordered counterclockwise on the circle C_{2}.

Definition 1. The combination of Γ_{1} and Γ_{2}, denoted $\Gamma_{1} \vee \Gamma_{2}$, is formed by identifying p_{i} with q_{i} for $i=1,2, \ldots, k$ and then interiorizing the identified nodes.
$\Gamma_{1} \vee \Gamma_{2}$ is a c.c.p. graph embedded in the plane with $n+m-2 k$ boundary nodes $\left\{p_{k+1}, p_{k+2}, \ldots, p_{n}, q_{m}, q_{m-1}, \ldots, q_{k+1}\right\}$ ordered clockwise on the circle C.

The z-sequence of Γ_{1} is a sequence of numbers from 1 to n where each number occurs exactly twice. The z-sequence of Γ_{2} is a sequence of numbers from 1 to m where each number occurs exactly twice. The first $2 k$ geodesics in $\mathcal{M}\left(\Gamma_{1}\right)$ are distinct, and the first $2 k$ geodesics in $\mathcal{M}\left(\Gamma_{2}\right)$ are distinct. We order $z_{1}=\{1,2, \ldots, 2 k, P\}$ clockwise around C_{1} and we order $z_{2}=\{1,2, \ldots, 2 k, Q\}$ counterclockwise around $C_{2} . P$ is a permutation of the remaining geodesic labels in z_{1}, and Q is a permutation of the remaining geodesic labels in z_{2}. Combining Γ_{1} and Γ_{2} joins the first $2 k$ geodesics in z_{1} with the first $2 k$ geodesics in z_{2}. The z-sequence of $\Gamma_{1} \vee \Gamma_{2}$ is $z=\left\{P, Q^{\prime}\right\}$ ordered clockwise around C, where the elements of Q^{\prime} are the elements of Q in reverse order.
$\Gamma_{1} \vee \Gamma_{2}$ is pictured in Figure 2.1. The boundary nodes are circled in $\Gamma_{1} \vee \Gamma_{2}$. The nodes that have been identified are connected with double dashed lines. The nodes $p_{1}=q_{1}, p_{2}=q_{2}, \ldots, p_{k}=q_{k}$ have been interiorized, thus they are now interior nodes and are not circled.

Figure 2.1

In $\Gamma_{1} \vee \Gamma_{2}$, the geodesics numbered $1,2, . ., 2 k$ in $\mathcal{M}\left(\Gamma_{1}\right)$ will be joined
with the corresponding geodesics in $\mathcal{M}\left(\Gamma_{2}\right)$. The geodesics numbered $2 k+$ $1,2 k+2, \ldots, n$ in $\mathcal{M}\left(\Gamma_{1}\right)$ and the geodesics numbered $2 k+1,2 k+2, \ldots, m$ in $\mathcal{M}\left(\Gamma_{2}\right)$ will not be joined in $\mathcal{M}\left(\Gamma_{1} \vee \Gamma_{2}\right)$. We call the geodesics that will be joined affected geodesics and we call the geodesics that will not be joined unaffected geodesics.

Lemma 2. Let Γ_{1} and Γ_{2} be critical c.c.p. graphs. $\mathcal{M}\left(\Gamma_{1} \vee \Gamma_{2}\right)$ has no loops or self-intersections.

Proof. Since Γ_{1} and Γ_{2} are both critical, there are no loops, self-intersections, or lenses in $\mathcal{M}\left(\Gamma_{1}\right)$ or $\mathcal{M}\left(\Gamma_{2}\right)$ by Corollary 6.4 in [2]. Since the geodesics numbered $1,2, \ldots, 2 k$ are distinct, each affected geodesic is joined exactly once. Therefore, $\mathcal{M}\left(\Gamma_{1} \vee \Gamma_{2}\right)$ has no loops or self-intersections.
$\mathcal{M}\left(\Gamma_{1} \vee \Gamma_{2}\right)$ has no loops or self-intersections; however, $\mathcal{M}\left(\Gamma_{1} \vee \Gamma_{2}\right)$ may have lenses. Finding these lenses is addressed in $\S 4$.

3 Geodesic Columns

A geodesic column is an ordered set of geodesics. Given a geodesic column A and geodesics $a, b \in A$, moving a to the position of b and moving b to the position of a is a switch of a and b. A switch forms a new geodesic column A^{\prime}.

Three geodesic columns represent the affected geodesics of $\mathcal{M}\left(\Gamma_{1}\right)$ and $\mathcal{M}\left(\Gamma_{2}\right)$. The center column C will represent the affected geodesics of $\mathcal{M}\left(\Gamma_{1}\right)$ and $\mathcal{M}\left(\Gamma_{2}\right)$ in the region of the identified nodes. $C=\{1,2, \ldots, 2 k\}$ since the affected geodesics in this region are ordered $1,2, \ldots, 2 k$ in both z_{1} and z_{2}. The left column L will represent the affected geodesics of P in reverse order. Likewise, the right column R will represent the affected geodesics of Q in reverse order.

Example 3. An example of a combined medial graph $\mathcal{M}\left(\Gamma_{1} \vee \Gamma_{2}\right)$ is shown in Figure 3.1 a and the corresponding left, center, and right geodesic columns are shown in Figure 3.1b. Here Γ_{1} has eight boundary nodes, Γ_{2} has six boundary nodes, and $\Gamma_{1} \vee \Gamma_{2}$ is formed by identifying and interiorizing three boundary
nodes. Note that the geodesics numbered 7 and 8 in $\mathcal{M}\left(\Gamma_{1}\right)$ are unaffected geodesics and therefore these numbers do not appear in the columns.

Figure 3.1a
Figure 3.1b

4 Finding Lenses

$\mathcal{M}\left(\Gamma_{1} \vee \Gamma_{2}\right)$ has no loops or self-intersections by Lemma 2. However, the affected geodesics from $\mathcal{M}\left(\Gamma_{1}\right)$ and $\mathcal{M}\left(\Gamma_{2}\right)$ may form lenses in $\mathcal{M}\left(\Gamma_{1} \vee \Gamma_{2}\right)$. To find these lenses, we first examine the affected geodesic pairs of $\mathcal{M}\left(\Gamma_{1}\right)$ and $\mathcal{M}\left(\Gamma_{2}\right)$ that intersect.

The set of affected geodesic pairs (a, b) that intersect in $\mathcal{M}\left(\Gamma_{1}\right)$ will be denoted $\mathcal{I}\left(\Gamma_{1}\right)$. $\mathcal{I}\left(\Gamma_{1}\right)$ can be determined from z_{1}. Since the geodesic columns L and C represent the affected geodesics of $z_{1}, \mathcal{I}\left(\Gamma_{1}\right)$ can be determined from columns L and C. Likewise, $\mathcal{I}\left(\Gamma_{2}\right)$ can be determined from z_{2} and therefore from columns C and R. For example, if a precedes b in L and b precedes a in C then the geodesics a and b intersect in $\mathcal{M}\left(\Gamma_{1}\right)$, and we write (a, b) $\in \mathcal{I}\left(\Gamma_{1}\right)$. Using columns to determine $\mathcal{I}\left(\Gamma_{1}\right)$ is analogous to using numbers that interlace in a z-sequence to determine the geodesics that intersect in a medial graph, as described in $\S 7$ of [2]. However, interlacing considers all geodesics, and we need only consider affected geodesics.

The set of affected geodesic pairs (a, b) that form lenses in $\mathcal{M}\left(\Gamma_{1} \vee \Gamma_{2}\right)$, denoted $\Psi\left(\Gamma_{1} \vee \Gamma_{2}\right)$, is the intersection of $\mathcal{I}\left(\Gamma_{1}\right)$ and $\mathcal{I}\left(\Gamma_{2}\right)$. That is, for geodesics a and b in $\mathcal{M}\left(\Gamma_{1} \vee \Gamma_{2}\right)$, if $(a, b) \in \mathcal{I}\left(\Gamma_{1}\right)$ and $(a, b) \in \mathcal{I}\left(\Gamma_{2}\right)$ then the geodesics a and b form a lens in $\mathcal{M}\left(\Gamma_{1} \vee \Gamma_{2}\right)$ and we write $(a, b) \in \Psi\left(\Gamma_{1} \vee \Gamma_{2}\right)$.

5 Removing Lenses

Definition 4. Let C be the center geodesic column for $\mathcal{M}\left(\Gamma_{1} \vee \Gamma_{2}\right)$ and let $(a, b) \in \Psi\left(\Gamma_{1} \vee \Gamma_{2}\right)$. Let $P_{C}(a)$ denote the position of a in the center column C. Without loss of generality, we can assume $P_{C}(a)<P_{C}(b)$. Let $S_{a, b}=$ $\left\{s \mid P_{C}(a) \leq P_{C}(s) \leq P_{C}(b)\right\}$. Then the gap of (a, b) in $\mathcal{M}\left(\Gamma_{1} \vee \Gamma_{2}\right)$, written gap (a, b), is defined to be the cardinality of $S_{a, b} \backslash\{a, b\}$. That is, gap (a, b) is the number of geodesics between geodesics a and b in C. If gap $(a, b)=0$, then geodesics a and b are adjacent in C. The lens formed by the geodesic pair (a, b) surrounds a lens if there exist $c, d \in S_{a, b}$ such that $(c, d) \in \Psi\left(\Gamma_{1} \vee \Gamma_{2}\right)$ and $(c, d) \neq(a, b) .{ }^{1}$

If geodesics a and b are adjacent in C, then the lens formed by a and b can be made empty by motions in $\mathcal{M}\left(\Gamma_{1} \vee \Gamma_{2}\right)$. An example is pictured in Figure 5.1.

Figure 5.1
In both Figures 5.2a and 5.2b, the lens formed by geodesics a and b surrounds the lens formed by geodesics c and d.

[^1]

Figure 5.2a

Lemma 5. Suppose Γ_{1} and Γ_{2} are critical c.c.p. graphs and $\Psi\left(\Gamma_{1} \vee \Gamma_{2}\right) \neq \emptyset$. If $(a, b) \in \Psi\left(\Gamma_{1} \vee \Gamma_{2}\right)$ has minimum gap, then the lens formed by the geodesics a and b does not surround a lens.

Proof. Let \mathcal{L} be the lens formed by the geodesics a and b in $\mathcal{M}\left(\Gamma_{1} \vee \Gamma_{2}\right)$. Suppose \mathcal{L} surrounds a lens $\mathcal{N} . \mathcal{N}$ is formed by some geodesic pair $\left(a_{k}, b_{k}\right)$ $\in \Psi\left(\Gamma_{1} \vee \Gamma_{2}\right)$ where $(a, b) \neq\left(a_{k}, b_{k}\right)$. Then $\operatorname{gap}\left(a_{k}, b_{k}\right) \leq \operatorname{gap}(a, b)$. This contradicts the fact that the pair of geodesics (a, b) has minimum gap. Thus \mathcal{L} does not surround a lens.

Let Γ_{1} and Γ_{2} be critical c.c.p. graphs. Let $\Gamma_{3}=\Gamma_{1} \vee \Gamma_{2}$, and let \mathcal{L} be an empty lens in $\mathcal{M}\left(\Gamma_{3}\right)$. Let (a, b) be the geodesic pair that forms \mathcal{L}. \mathcal{L} results from two edges in series or in parallel in the graph Γ_{3}. If there is an interior node of Γ_{3} inside \mathcal{L}, \mathcal{L} results from two edges in series. If there is not an interior node of Γ_{3} inside \mathcal{L}, \mathcal{L} results from two edges in parallel. See Figure 5.3a. Let e_{1} and e_{2} be the two edges in series or parallel. Replacing the series or parallel combination of e_{1} and e_{2} in Γ_{3} with a single edge e will remove the empty lens \mathcal{L} from $\mathcal{M}\left(\Gamma_{3}\right)$. See Figure 5.3b.

Figure 5.3a
Figure 5.3b

When the empty lens \mathcal{L} is removed from $\mathcal{M}\left(\Gamma_{3}\right)$, one geodesic intersection of a and b is eliminated and the geodesics a and b are redirected as shown in Figure 5.4.

Figure 5.4

Replacing the edges e_{1} and e_{2} with the single edge e in Γ_{3} creates a new graph Γ_{3}^{\prime}. The z-sequence of the original graph Γ_{3} is $z=\left\{P, Q^{\prime}\right\}$ as defined in $\S 2$. Thus, the z-sequence of Γ_{3}^{\prime} is $z^{\prime}=\left\{P, Q^{\prime \prime}\right\}$ where $Q^{\prime \prime}$ is the permutation
of Q^{\prime} formed by redirecting the geodesics a and b in the lens removal process.

We will systematically remove lenses in $\mathcal{M}\left(\Gamma_{1} \vee \Gamma_{2}\right)$ to form a critical graph Γ. Each step in the lens removal process retains the set of connections, therefore $\pi(\Gamma)=\pi\left(\Gamma_{1} \vee \Gamma_{2}\right)$.

Lemma 6. Two critical c.c.p. graphs have the same set of connections if their medial graphs are equivalent under motions.

Proof. Suppose Γ_{1} and Γ_{2} are critical c.c.p. graphs where $\mathcal{M}\left(\Gamma_{1}\right)$ and $\mathcal{M}\left(\Gamma_{2}\right)$ are equivalent under motions. By Lemma 6.1 in [2], Γ_{1} and Γ_{2} are $Y-\Delta$ equivalent. Then by Theorem 1.3 in [2], $\pi\left(\Gamma_{1}\right)=\pi\left(\Gamma_{2}\right)$.

Lemma 7. Given two c.c.p. graphs Γ_{1} and Γ_{2}, let $\Gamma_{3}=\Gamma_{1} \vee \Gamma_{2}$. Let \mathcal{L} be an empty lens in $\mathcal{M}\left(\Gamma_{3}\right)$ formed by a geodesic pair (a, b). The removal of \mathcal{L} from $\mathcal{M}\left(\Gamma_{3}\right)$ removes an edge in Γ_{3} forming Γ_{3}^{\prime}. In this case, $(a, b) \notin \Psi\left(\Gamma_{3}^{\prime}\right)$ and $\pi\left(\Gamma_{3}^{\prime}\right)=\pi\left(\Gamma_{3}\right)$.

Proof. The geodesics a and b intersect twice in $\mathcal{M}\left(\Gamma_{3}\right)$. The lens removal process results in the elimination of a geodesic intersection and the redirection of the geodesics. Thus $(a, b) \notin \Psi\left(\Gamma_{3}^{\prime}\right)$.

The empty lens \mathcal{L} in $\mathcal{M}\left(\Gamma_{3}\right)$ results from either two edges in series or two edges in parallel in Γ_{3}. The lens removal process replaces these two edges with a single edge and forms Γ_{3}^{\prime}. In either case, the set of connections is retained; therefore $\pi\left(\Gamma_{3}^{\prime}\right)=\pi\left(\Gamma_{3}\right)$.

Lemma 8. Let Γ_{3} be a c.c.p. graph and $(a, b) \in \Psi\left(\Gamma_{3}\right)$. If gap (a, b) is the minimum gap, then there is a finite sequence of $Y-\Delta$ transformations in Γ_{3} that forms Γ_{3}^{\prime} such that $(a, b) \in \Psi\left(\Gamma_{3}^{\prime}\right)$ and gap $(a, b)=0$ in $\mathcal{M}\left(\Gamma_{3}^{\prime}\right)$.

Proof. Suppose Γ_{3} is a c.c.p. graph and the geodesic pair (a, b) forms a lens \mathcal{L} in $\mathcal{M}\left(\Gamma_{3}\right)$. Suppose also that $\operatorname{gap}(a, b)$ is the minimum gap. Let $S_{a, b} \backslash\{a, b\}=$ $\left\{s_{1}, s_{2}, \ldots, s_{\delta}\right\}$, that is, $s_{1}, s_{2}, \ldots, s_{\delta}$ are the geodesics strictly between a and b in column C of $\mathcal{M}\left(\Gamma_{3}\right)$.

By Lemma $5, \mathcal{L}$ does not surround a lens. Therefore, each s_{i} intersects a exactly once and b exactly once, and for $i, j=1,2, . ., \delta, i \neq j, s_{i}$ intersects
s_{j} at most once. From the proof of Lemma 6.2 in [2], a finite sequence of motions will remove from \mathcal{L} every geodesic $s_{1}, s_{2}, \ldots, s_{\delta}$. Since motions in $\mathcal{M}\left(\Gamma_{3}\right)$ correspond to $Y-\Delta$ transformations in Γ_{3} by $\S 6$ in [2], this produces Γ_{3}^{\prime} that is $Y-\Delta$ equivalent to Γ_{3}. The geodesics a and b are adjacent in the center column C in $\mathcal{M}\left(\Gamma_{3}^{\prime}\right)$, thus $\operatorname{gap}(a, b)$ in $\mathcal{M}\left(\Gamma_{3}^{\prime}\right)$ is 0 .

Algorithm 9. Given two critical c.c.p. graphs Γ_{1} and Γ_{2}, let $\Gamma_{3}=\Gamma_{1} \vee \Gamma_{2}$. The algorithm consists of the following steps:

1. Determine the lenses in $\mathcal{M}\left(\Gamma_{3}\right)$.
2. Consider a lens \mathcal{L} in $\mathcal{M}\left(\Gamma_{3}\right)$ formed by the geodesic pair (a, b) where gap (a, b) is minimum.
3. Empty \mathcal{L} to form $\mathcal{M}\left(\Gamma_{3}^{\prime}\right)$.
4. Remove \mathcal{L} to form $\mathcal{M}\left(\Gamma_{3}^{\prime \prime}\right)$.
5. Repeat steps 1-4 until $\mathcal{M}\left(\Gamma_{3}^{(n)}\right)$ has no lenses.

Theorem 10. Suppose Γ_{1} and Γ_{2} are two critical c.c.p. graphs. Let $\Gamma_{3}=$ $\Gamma_{1} \vee \Gamma_{2}$. Let Γ be a critical c.c.p. graph produced by Algorithm 9. Then $\pi(\Gamma)$ $=\pi\left(\Gamma_{3}\right)$.

Proof. By Lemma $2, \mathcal{M}\left(\Gamma_{3}\right)$ has no loops or self-intersections. We consider two cases since $\mathcal{M}\left(\Gamma_{3}\right)$ may or may not have lenses.
Case I. Suppose $\Psi\left(\Gamma_{3}\right)=\emptyset$. Then $\mathcal{M}\left(\Gamma_{3}\right)$ has no lenses. In this case, $\Gamma=\Gamma_{3}$.

Case II. Suppose $\Psi\left(\Gamma_{3}\right) \neq \emptyset$. Consider $(a, b) \in \Psi\left(\Gamma_{3}\right)$ such that $\operatorname{gap}(a, b)$ is the minimum gap. Then by Lemma 5 , the lens \mathcal{L} formed by geodesics a and b does not surround a lens.

By Lemma 8 there exists a finite sequence of $Y-\Delta$ transformations in Γ_{3} which produces Γ_{3}^{\prime} where $(a, b) \in \Psi\left(\Gamma_{3}^{\prime}\right)$ and $\operatorname{gap}(a, b)=0$ in $\mathcal{M}\left(\Gamma_{3}^{\prime}\right)$. Since Γ_{3}^{\prime} is $Y-\Delta$ equivalent to Γ_{3}, by Lemma 5.1 in $[2] \pi\left(\Gamma_{3}^{\prime}\right)=\pi\left(\Gamma_{3}\right)$.

Since $\operatorname{gap}(a, b)=0$ in $\mathcal{M}\left(\Gamma_{3}^{\prime}\right), \mathcal{L}$ can be made empty by motions in $\mathcal{M}\left(\Gamma_{3}^{\prime}\right)$. By Lemma 7 the removal of \mathcal{L} from $\mathcal{M}\left(\Gamma_{3}^{\prime}\right)$ produces $\mathcal{M}\left(\Gamma_{3}^{\prime \prime}\right)$ where (a, b) $\notin \Psi\left(\Gamma_{3}^{\prime \prime}\right)$ and $\pi\left(\Gamma_{3}^{\prime \prime}\right)=\pi\left(\Gamma_{3}^{\prime}\right)$.

The removal of \mathcal{L} from $\mathcal{M}\left(\Gamma_{3}^{\prime}\right)$ may simultaneously create or eliminate other lenses in $\mathcal{M}\left(\Gamma_{3}^{\prime}\right)$. Therefore the sets of intersections, $\mathcal{I}\left(\Gamma_{1}^{\prime \prime}\right)$ and $\mathcal{I}\left(\Gamma_{2}^{\prime \prime}\right)$, and the set of lenses, $\Psi\left(\Gamma_{3}^{\prime \prime}\right)$ must be evaluated with the same process that was used to evaluate $\mathcal{I}\left(\Gamma_{1}\right), \mathcal{I}\left(\Gamma_{2}\right)$, and $\Psi\left(\Gamma_{3}\right)$.

The removal of an empty lens from $\mathcal{M}\left(\Gamma_{3}\right)$ removes an edge from Γ_{3}. There is a finite number of edges in Γ_{3}. The number of edges in Γ_{3} places an upper bound on the number of lenses that can occur. Therefore, a finite number of lens removals must produce a medial graph $\mathcal{M}\left(\Gamma_{3}^{(n)}\right)$ with no lenses, that is, $\Psi\left(\Gamma_{3}^{(n)}\right)=\emptyset$. Since the set of connections is retained in each step of the lens removal process, $\pi\left(\Gamma_{3}^{(n)}\right)=\pi\left(\Gamma_{3}\right)$. In this case, $\Gamma=\Gamma_{3}^{(n)}$. \bullet

Now, $\mathcal{M}(\Gamma)$ has no loops, self-intersections, or lenses, and by Proposition 13.1 in [2], Γ is a critical c.c.p. graph. Every step used to form Γ retains the set of connections, thus $\pi(\Gamma)=\pi\left(\Gamma_{3}\right)=\pi\left(\Gamma_{1} \vee \Gamma_{2}\right)$.

Corollary 11. Let Γ_{1} and Γ_{2} be critical c.c.p. graphs. Let Γ and Γ^{\prime} be two critical c.c.p. graphs resulting from an application of Algorithm 9. Then Γ and Γ^{\prime} are $Y-\Delta$ equivalent.
Proof. Γ and Γ^{\prime} result from Algorithm 9, therefore, by Theorem 10, $\pi(\Gamma)$ $=\pi\left(\Gamma_{1} \vee \Gamma_{2}\right)$ and $\pi\left(\Gamma^{\prime}\right)=\pi\left(\Gamma_{1} \vee \Gamma_{2}\right)$. Thus, $\pi(\Gamma)=\pi\left(\Gamma^{\prime}\right)$ and by Theorem 1.3 in [2], Γ and Γ^{\prime} are $Y-\Delta$ equivalent.

Applying Algorithm 9 to Example 3 results in a critical graph with eight boundary nodes and a new z-sequence $z=\{7,6,8,1,7,2,4,3,5,8,1,2,6,4,3,5\}$. Additional examples are listed in $\S 7$.

6 Combining Two Graphs Without Interiorization

In $\S 2$ we defined the combination of two critical c.c.p. graphs with interiorization, $\Gamma_{1} \vee \Gamma_{2}$. Here we define the combination of two critical c.c.p. graphs without interiorization. The following definition directly corresponds to Definition 1.

Let Γ_{1} be a critical c.c.p. graph with n boundary nodes. Let Γ_{2} be a critical c.c.p. graph with m boundary nodes. Suppose we choose k successive
boundary nodes of Γ_{1} and k successive boundary nodes of Γ_{2}. By a renumbering of the boundary nodes of Γ_{1} and Γ_{2}, we may assume that the boundary nodes of Γ_{1} are $\left\{p_{1}, p_{2}, \ldots, p_{k}, \ldots, p_{n}\right\}$ ordered clockwise on the circle C_{1} and the boundary nodes of Γ_{2} are $\left\{q_{1}, q_{2}, \ldots, q_{k}, \ldots, q_{m}\right\}$ ordered counterclockwise on the circle C_{2}.

Definition 12. The combination without interiorization of Γ_{1} and Γ_{2} is formed by identifying p_{i} with q_{i} for $i=1,2, \ldots k$ and interiorizing the inner $k-2$ nodes: $p_{2}=q_{2}, p_{3}=q_{3}, \ldots, p_{k-1}=q_{k-1}$.

The combination of Γ_{1} and Γ_{2} without interiorization is a c.c.p. graph embedded in the plane with $n+m-(2 k-2)$ boundary nodes $\left\{p_{k}=q_{k}, p_{k+1}, \ldots, p_{n}, p_{1}=\right.$ $\left.q_{1}, q_{m}, q_{m-1}, \ldots, q_{k+1}\right\}$ ordered clockwise around the circle C. See Figure 6.1.

The z-sequence of Γ_{1} is a sequence of numbers from 1 to n where each number occurs exactly twice. The z-sequence of Γ_{2} is a sequence of numbers from 1 to m where each number occurs exactly twice. The first $2 k-2$ geodesics in $\mathcal{M}\left(\Gamma_{1}\right)$ are distinct, and the first $2 k-2$ geodesics in $\mathcal{M}\left(\Gamma_{2}\right)$ are distinct. We order $z_{1}=\{1,2, \ldots, 2 k-2, P\}$ clockwise around C_{1} and we order $z_{2}=\{1,2, \ldots, 2 k-2, Q\}$ counterclockwise around $C_{2} . P$ is a permutation of the remaining geodesic labels in z_{1}, and Q is a permutation of the remaining geodesic labels in z_{2}. Combining Γ_{1} and Γ_{2} without interiorization joins the first $2 k-2$ geodesics in z_{1} with the first $2 k-2$ geodesics in z_{2}. The z-sequence of the combined graph is $z=\left\{P, Q^{\prime}\right\}$ ordered clockwise around C, where the elements of Q^{\prime} are the elements of Q in reverse order.

Note that in Figure 6.1 the geodesics above node $p_{1}=q_{1}$ and below node $p_{k}=q_{k}$ are not joined. These geodesics are not joined because neither $p_{1}=q_{1}$ nor $p_{k}=q_{k}$ is interiorized.

Figure 6.1

An algorithm very similar to Algorithm 9 will reduce the combination of Γ_{1} and Γ_{2} without interiorization to a critical graph with the same set of connections.

7 An Implementation of Algorithm 9

Let Γ_{1} and Γ_{2} be critical c.c.p. graphs. Algorithm 9 produces a critical c.c.p. graph Γ from $\Gamma_{1} \vee \Gamma_{2}$. By Theorem 10, $\pi(\Gamma)=\pi\left(\Gamma_{1} \vee \Gamma_{2}\right)$. We have written a computer program that implements Algorithm 9. The program takes the z-sequence of Γ_{1} and the z-sequence of Γ_{2} and finds z, the z sequence of Γ. By Corollary 11 and Theorem 7.2 in [2], z is unique.

Example 13. We give the program the following input:

1. Γ_{1} has six boundary nodes ordered clockwise on C_{1},
2. Γ_{2} has eight boundary nodes ordered counterclockwise on C_{2},
3. Identify and interiorize three boundary nodes from each graph to form $\Gamma_{1} \vee \Gamma_{2}$,
4. $z_{1}=\{1,2,3,4,5,6,2,5,1,4,3,6\}$ ordered clockwise around C_{1}, and
5. $z_{2}=\{1,2,3,4,5,6,7,8,4,7,2,5,1,3,6,8\}$ ordered counterclockwise around C_{2}.

In Example 13, the program produces the z-sequence of a critical c.c.p. graph Γ such that $\pi(\Gamma)=\pi\left(\Gamma_{1} \vee \Gamma_{2}\right)$. In this case, Γ has eight boundary nodes ordered clockwise around C and $z=\{2,5,1,4,3,6,8,2,5,1,4,3,7,6,8,7\}$ ordered clockwise around C.

Example 14. Another example that is particularly interesting is:

1. Γ_{1} has n boundary nodes ordered clockwise on C_{1},
2. Γ_{2} has n boundary nodes ordered counterclockwise on C_{2},
3. Identify and interiorize $n / 2$ boundary nodes from each graph to form $\Gamma_{1} \vee \Gamma_{2}$,
4. $z_{1}=\{1,2, \ldots, n, 1,2, \ldots, n\}$ ordered clockwise around C_{1}, and
5. $z_{2}=\{1,2, \ldots, n, 1,2, \ldots, n\}$ ordered counterclockwise around C_{2}.

In Example 14, the program produces the z-sequence of a critical c.c.p. graph Γ such that $\pi(\Gamma)=\pi\left(\Gamma_{1} \vee \Gamma_{2}\right)$. In this case, Γ has n boundary nodes ordered clockwise around C and $z=\{1,2, \ldots, n, 1,2, \ldots, n\}$ ordered clockwise around C. The new graph Γ has the same z-sequence as both Γ_{1} and Γ_{2}, thus Γ is $Y-\Delta$ equivalent to Γ_{1} and Γ_{2} !

8 Circular Planar Networks

Thus far, we have considered combining two critical c.c.p. graphs Γ_{1} and Γ_{2}. We have shown that $\Gamma_{1} \vee \Gamma_{2}$ can be reduced to a graph Γ that is critical and have given an algorithm to produce Γ.

A c.c.p. network $\Omega=(\Gamma, \gamma)$ is a c.c.p. graph Γ with an associated conductivity function γ. γ maps each edge in Γ to a positive real number, γ : $E \rightarrow \mathbf{R}^{+}$. The number $\gamma\left(e_{i j}\right)$ is called the conductivity of the edge $e_{i j}$.

A c.c.p. network $\Omega=(\Gamma, \gamma)$ is a critical network if its associated graph Γ is a critical graph. Let $\Omega_{1}=\left(\Gamma_{1}, \gamma_{1}\right)$ and $\Omega_{2}=\left(\Gamma_{2}, \gamma_{2}\right)$ be critical networks. The combination of Ω_{1} and Ω_{2} is $\Omega_{1} \vee \Omega_{2}=\left(\Gamma_{1} \vee \Gamma_{2}, \gamma_{1} \vee \gamma_{2}\right)$. $\Gamma_{1} \vee \Gamma_{2}$ is formed by Definition 1. Since every edge from Γ_{1} and Γ_{2} is an edge in $\Gamma_{1} \vee \Gamma_{2}$, $\gamma_{1} \vee \gamma_{2}$ is defined as γ_{1} on edges from Γ_{1} and γ_{2} on edges from Γ_{2}.

For convenience, let $\Omega_{3}=\Omega_{1} \vee \Omega_{2}, \Gamma_{3}=\Gamma_{1} \vee \Gamma_{2}$, and $\gamma_{3}=\gamma_{1} \vee \gamma_{2}$.
Algorithm 9 reduces Γ_{3} to a critical graph Γ such that $\pi(\Gamma)=\pi\left(\Gamma_{3}\right)$. In this algorithm there are three ways to change Γ_{3} :

1. by a $Y-\Delta$ transformation,
2. by replacing two edges in series with a single edge, and
3. by replacing two edges in parallel with a single edge.

When we perform a $Y-\Delta$ transformation in Γ_{3}, Lemma 5.3 in [2] defines a conductivity function γ_{3}^{\prime} on the graph after the transformation such that $\Lambda\left(\Gamma_{3}^{\prime}, \gamma_{3}^{\prime}\right)=\Lambda\left(\Gamma_{3}, \gamma_{3}\right)$.

When we replace two edges e_{1} and e_{2} in series with a new edge e, the new conductivity function is defined as

$$
\gamma_{3}^{\prime}(e)=\left(\frac{1}{\gamma_{3}\left(e_{1}\right)}+\frac{1}{\gamma_{3}\left(e_{2}\right)}\right)^{-1}
$$

When we replace two edges e_{1} and e_{2} in parallel with a new edge e, the new conductivity function is defined as

$$
\gamma_{3}^{\prime}(e)=\gamma_{3}\left(e_{1}\right)+\gamma_{3}\left(e_{2}\right)
$$

Defining the conductivities in this way ensures that $\Lambda\left(\Gamma_{3}^{\prime}, \gamma_{3}^{\prime}\right)=\Lambda\left(\Gamma_{3}, \gamma_{3}\right)$, that is, the networks $\Omega_{3}^{\prime}=\left(\Gamma_{3}^{\prime}, \gamma_{3}^{\prime}\right)$ and $\Omega_{3}=\left(\Gamma_{3}, \gamma_{3}\right)$ have the same electrical response.

Since we reduce Γ_{3} to Γ and γ_{3} to γ keeping $\Lambda(\Gamma, \gamma)=\Lambda\left(\Gamma_{3}, \gamma_{3}\right)$, we have formed $\Omega=(\Gamma, \gamma)$ such that $\Lambda(\Omega)=\Lambda\left(\Omega_{3}\right)$.

References

[1] Y. Colin de Verdière, I. Gitler, D. Vertigan, Rèseaux Èlectriques Planaires, II, Prèpublication de l'Institut Fourier, no. 276, (1994).
[2] E. B. Curtis, D. Ingerman, and J. A. Morrow, Circular Planar Graphs and Resistor Networks.
[3] Kevin Rosema, Operations on Networks of Discrete and Generalized Conductors.

[^0]: *e-mail: shubert@wittenberg.edu, msm5@ra.msstate.edu

[^1]: ${ }^{1}$ Note that a lens cannot surround itself since $(c, d) \neq(a, b)$; however, a lens formed by the geodesic pair (a, b) may, for example, surround a lens formed by the geodesic pair (a, c) if $c \in S_{a, b}$ and $(a, c) \in \Psi\left(\Gamma_{1} \vee \Gamma_{2}\right)$.

