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Abstract

We will consider connected circular planar graphs. We combine
two critical c.c.p. graphs Γ1 and Γ2 by identifying k boundary nodes
from Γ1 with k boundary nodes from Γ2. The combined graph is
denoted Γ1 ∨ Γ2 and may or may not be critical. We use the z-
sequences of Γ1 and Γ2 to find the z-sequence of a critical graph Γ
that has the same set of connections as Γ1 ∨ Γ2. We describe an
algorithm to find the z-sequence of Γ and implement this algorithm
in a computer program.

1 Introduction

This article was inspired by [3] in which Rosema explores combinations of re-
sistor networks using Dirichlet-Neumann maps. A resistor network is a graph
with an associated conductivity function. We will examine combinations of
circular planar graphs using techniques developed by Curtis, Ingerman, and
Morrow in [2] and Colin de Verdière, Gitler, and Vertigan in [1].

A graph Γ = (V,E) consists of nodes V = {v1, v2, ..., vn} and edges E =
{eij} such that eij connects node vi to node vj. The set of nodes consists of
two subsets: a set of boundary nodes VB and a set of interior nodes VI . A
connected circular planar (c.c.p.) graph is a graph embedded in the plane
such that the boundary nodes lie on the circle C and the interior nodes and
all edges are inside C.

∗e-mail: shubert@wittenberg.edu, msm5@ra.msstate.edu
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The boundary nodes of a c.c.p. graph Γ are numbered either clockwise
or counterclockwise on C. A sequence w1, w2, ..., wm is in circular order
if some cyclic permutation is in numerical order. A pair of sequences of
boundary nodes (P ;Q) = (p1, ..., pk; q1, ..., qk) such that the entire sequence
(p1, ..., pk, qk, ..., q1) is in circular order is a circular pair.

A circular pair (P ;Q) of boundary nodes is connected through Γ if there
are k disjoint paths α1, ..., αk in Γ, such that αi starts at pi, ends at qi, and
passes through no other boundary nodes. The set of paths α is a connection
from P to Q. For each c.c.p. graph Γ, π(Γ) is the set of all circular pairs
(P ;Q) of boundary nodes which are connected through Γ.

If the removal of any edge in a graph Γ breaks some connection in π(Γ),
then Γ is a critical graph.

Each c.c.p. graph Γ has an associated medial graph, M(Γ). M(Γ) con-
sists of vertices (interior and boundary) and medial edges which connect the
vertices. M(Γ) is formed in three steps:

1. place two boundary vertices on C between every two boundary nodes
of Γ,

2. place interior vertices at the midpoint of each edge in Γ,

3. connect the vertices with medial edges.

The placement of the medial edges is restricted as follows:

1. no two boundary vertices may be connected,

2. connect each boundary vertex in M(Γ) to exactly one interior vertex
(boundary vertices are one-valent),

3. connect each interior vertex to exactly four vertices (interior vertices
are four-valent),

4. a medial edge cannot cross an edge in Γ.

Figure 1.1 shows a graph Γ and its associated medial graph, M(Γ). The
heavy lines are the edges of Γ. A node of Γ is represented by a filled circle
(•). The thin lines are the medial edges of M(Γ).
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Figure 1.1

Given an interior vertex v inM(Γ), a medial edge uv has a direct extension
vw if the medial edges uv and vw separate the two other medial edges in-
cident to v. A path of medial edges u0u1, u1u2, u2u3, ..., uk−1uk in M(Γ) is
a geodesic arc if each medial edge ui−1ui has medial edge uiui+1 as a direct
extension. A geodesic arc u0u1, u1u2, u2u3, ..., uk−1uk is a geodesic if either

1. u0 and uk are boundary vertices, or

2. uk = u0 and uk−1uk has u0u1 as a direct extension.

A geodesic forms a loop if it begins and ends at the same vertex. If a geodesic
intersects itself, it forms a self-intersection. If two distinct geodesics intersect
at two different vertices, they form a lens.

A graph Γ has an associated z-sequence. The z-sequence is formed by
numbering each boundary vertex in M(Γ) such that when two vertices are
connected by a geodesic, those two vertices have the same number. If Γ has
n boundary nodes, then the z-sequence is a sequence of the numbers from 1
to n where each number occurs exactly twice. The z-sequence for the medial
graph in Figure 1.1 is z = {1, 2, 3, 4, 2, 1, 4, 3}.

To form the z-sequence of Γ each geodesic in M(Γ) that intersects the
boundary circle is labeled. For simplicity, we refer to a geodesic in M(Γ)
using its corresponding label in the z-sequence.

A boundary node p in a c.c.p. graph Γ1 is identified with a boundary node
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q in a c.c.p. graph Γ2 by replacing both p and q with a single node, p = q.
Given s ∈ VB, s is interiorized by changing it from a boundary node to an
interior node.

A geodesic g in M(Γ1) is joined with a geodesic h in M(Γ2) by “iden-
tifying” a boundary vertex of g with a boundary vertex of h, forming one
geodesic from g and h.

Given four nodes s, p, r, q and three edges ps, rs, qs (as in Figure 1.2a),
a Y −∆ transformation removes the node s and the edges ps, rs, qs and
adds three new edges pq, qr, rp (as in Figure 1.2b). A ∆− Y transformation
reverses this operation. Two c.c.p. graphs Γ1 and Γ2 are Y −∆ equivalent if
Γ1 can be transformed to Γ2 by a sequence of Y −∆ or ∆−Y transformations.
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A motion in M(Γ) moves a geodesic past the intersection of two other
geodesics. Figure 1.3 shows a motion of the geodesic f past the intersection
p.
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By §6 in [2] a Y − ∆ transformation in Γ corresponds to a motion in
M(Γ).

2 Combining Two Critical Graphs with Inte-

riorization

Let Γ1 be a critical c.c.p. graph with n boundary nodes. Let Γ2 be a critical
c.c.p. graph with m boundary nodes. Suppose we choose k successive bound-
ary nodes of Γ1 and k successive boundary nodes of Γ2. By a renumbering
of the boundary nodes of Γ1 and Γ2, we may assume that the boundary
nodes of Γ1 are {p1, p2, ..., pk, ..., pn} ordered clockwise on the circle C1 and
the boundary nodes of Γ2 are {q1, q2, ..., qk, ..., qm} ordered counterclockwise
on the circle C2.

Definition 1. The combination of Γ1 and Γ2, denoted Γ1 ∨ Γ2, is formed by
identifying pi with qi for i = 1, 2, ..., k and then interiorizing the identified
nodes.

Γ1∨Γ2 is a c.c.p. graph embedded in the plane with n+m−2k boundary
nodes {pk+1, pk+2, ..., pn, qm, qm−1, ..., qk+1} ordered clockwise on the circle C.
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The z-sequence of Γ1 is a sequence of numbers from 1 to n where each
number occurs exactly twice. The z-sequence of Γ2 is a sequence of num-
bers from 1 to m where each number occurs exactly twice. The first 2k
geodesics in M(Γ1) are distinct, and the first 2k geodesics in M(Γ2) are
distinct. We order z1 = {1, 2, ..., 2k, P} clockwise around C1 and we order
z2 = {1, 2, ..., 2k,Q} counterclockwise around C2. P is a permutation of the
remaining geodesic labels in z1, and Q is a permutation of the remaining
geodesic labels in z2. Combining Γ1 and Γ2 joins the first 2k geodesics in z1

with the first 2k geodesics in z2. The z-sequence of Γ1 ∨ Γ2 is z = {P,Q′}
ordered clockwise around C, where the elements of Q′ are the elements of Q
in reverse order.

Γ1 ∨ Γ2 is pictured in Figure 2.1. The boundary nodes are circled in
Γ1 ∨ Γ2. The nodes that have been identified are connected with double
dashed lines. The nodes p1 = q1, p2 = q2, ..., pk = qk have been interiorized,
thus they are now interior nodes and are not circled.
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Figure 2.1

In Γ1 ∨ Γ2, the geodesics numbered 1, 2, .., 2k in M(Γ1) will be joined
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with the corresponding geodesics in M(Γ2). The geodesics numbered 2k +
1, 2k + 2, ..., n in M(Γ1) and the geodesics numbered 2k + 1, 2k + 2, ...,m
in M(Γ2) will not be joined in M(Γ1 ∨ Γ2). We call the geodesics that will
be joined affected geodesics and we call the geodesics that will not be joined
unaffected geodesics.

Lemma 2. Let Γ1 and Γ2 be critical c.c.p. graphs. M(Γ1 ∨Γ2) has no loops
or self-intersections.

Proof. Since Γ1 and Γ2 are both critical, there are no loops, self-intersections,
or lenses in M(Γ1) or M(Γ2) by Corollary 6.4 in [2]. Since the geodesics
numbered 1, 2, ..., 2k are distinct, each affected geodesic is joined exactly
once. Therefore, M(Γ1 ∨ Γ2) has no loops or self-intersections.

M(Γ1 ∨ Γ2) has no loops or self-intersections; however, M(Γ1 ∨ Γ2) may
have lenses. Finding these lenses is addressed in §4.

3 Geodesic Columns

A geodesic column is an ordered set of geodesics. Given a geodesic column
A and geodesics a, b ∈ A, moving a to the position of b and moving b to the
position of a is a switch of a and b. A switch forms a new geodesic column
A′.

Three geodesic columns represent the affected geodesics of M(Γ1) and
M(Γ2). The center column C will represent the affected geodesics ofM(Γ1)
and M(Γ2) in the region of the identified nodes. C = {1, 2, ..., 2k} since
the affected geodesics in this region are ordered 1, 2, ..., 2k in both z1 and z2.
The left column L will represent the affected geodesics of P in reverse order.
Likewise, the right column R will represent the affected geodesics of Q in
reverse order.

Example 3. An example of a combined medial graphM(Γ1∨Γ2) is shown in
Figure 3.1a and the corresponding left, center, and right geodesic columns are
shown in Figure 3.1b. Here Γ1 has eight boundary nodes, Γ2 has six boundary
nodes, and Γ1 ∨ Γ2 is formed by identifying and interiorizing three boundary
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nodes. Note that the geodesics numbered 7 and 8 in M(Γ1) are unaffected
geodesics and therefore these numbers do not appear in the columns.
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Figure 3.1a Figure 3.1b

4 Finding Lenses

M(Γ1 ∨ Γ2) has no loops or self-intersections by Lemma 2. However, the
affected geodesics from M(Γ1) and M(Γ2) may form lenses in M(Γ1 ∨ Γ2).
To find these lenses, we first examine the affected geodesic pairs of M(Γ1)
and M(Γ2) that intersect.

The set of affected geodesic pairs (a, b) that intersect in M(Γ1) will be
denoted I(Γ1). I(Γ1) can be determined from z1. Since the geodesic columns
L and C represent the affected geodesics of z1, I(Γ1) can be determined from
columns L and C. Likewise, I(Γ2) can be determined from z2 and therefore
from columns C and R. For example, if a precedes b in L and b precedes
a in C then the geodesics a and b intersect in M(Γ1), and we write (a, b)
∈ I(Γ1). Using columns to determine I(Γ1) is analogous to using numbers
that interlace in a z-sequence to determine the geodesics that intersect in a
medial graph, as described in §7 of [2]. However, interlacing considers all
geodesics, and we need only consider affected geodesics.
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The set of affected geodesic pairs (a, b) that form lenses in M(Γ1 ∨ Γ2),
denoted Ψ(Γ1 ∨ Γ2), is the intersection of I(Γ1) and I(Γ2). That is, for
geodesics a and b inM(Γ1∨Γ2), if (a, b) ∈ I(Γ1) and (a, b) ∈ I(Γ2) then the
geodesics a and b form a lens inM(Γ1∨Γ2) and we write (a, b) ∈ Ψ(Γ1∨Γ2).

5 Removing Lenses

Definition 4. Let C be the center geodesic column for M(Γ1 ∨ Γ2) and let
(a, b) ∈ Ψ(Γ1 ∨ Γ2). Let PC(a) denote the position of a in the center column
C. Without loss of generality, we can assume PC(a) < PC(b). Let Sa,b =
{s | PC(a) ≤ PC(s) ≤ PC(b)}. Then the gap of (a, b) in M(Γ1 ∨ Γ2), written
gap(a, b), is defined to be the cardinality of Sa,b \ {a, b}. That is, gap(a, b) is
the number of geodesics between geodesics a and b in C. If gap(a, b) = 0, then
geodesics a and b are adjacent in C. The lens formed by the geodesic pair
(a, b) surrounds a lens if there exist c, d ∈ Sa,b such that (c, d) ∈ Ψ(Γ1 ∨ Γ2)
and (c, d) 6= (a, b). 1

If geodesics a and b are adjacent in C, then the lens formed by a and b
can be made empty by motions in M(Γ1 ∨ Γ2). An example is pictured in
Figure 5.1.
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Figure 5.1

In both Figures 5.2a and 5.2b, the lens formed by geodesics a and b
surrounds the lens formed by geodesics c and d.

1Note that a lens cannot surround itself since (c, d) 6= (a, b); however, a lens formed
by the geodesic pair (a, b) may, for example, surround a lens formed by the geodesic pair
(a, c) if c ∈ Sa,b and (a, c) ∈ Ψ(Γ1 ∨ Γ2).
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Lemma 5. Suppose Γ1 and Γ2 are critical c.c.p. graphs and Ψ(Γ1∨Γ2) 6= ∅.
If (a, b) ∈ Ψ(Γ1∨Γ2) has minimum gap, then the lens formed by the geodesics
a and b does not surround a lens.

Proof. Let L be the lens formed by the geodesics a and b in M(Γ1 ∨ Γ2).
Suppose L surrounds a lens N . N is formed by some geodesic pair (ak, bk)
∈ Ψ(Γ1 ∨ Γ2) where (a, b) 6= (ak, bk). Then gap(ak, bk) ≤ gap(a, b). This
contradicts the fact that the pair of geodesics (a, b) has minimum gap. Thus
L does not surround a lens.

Let Γ1 and Γ2 be critical c.c.p. graphs. Let Γ3 = Γ1 ∨ Γ2, and let L be
an empty lens in M(Γ3). Let (a, b) be the geodesic pair that forms L. L
results from two edges in series or in parallel in the graph Γ3. If there is an
interior node of Γ3 inside L, L results from two edges in series. If there is
not an interior node of Γ3 inside L, L results from two edges in parallel. See
Figure 5.3a. Let e1 and e2 be the two edges in series or parallel. Replacing
the series or parallel combination of e1 and e2 in Γ3 with a single edge e will
remove the empty lens L from M(Γ3). See Figure 5.3b.
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When the empty lens L is removed fromM(Γ3), one geodesic intersection
of a and b is eliminated and the geodesics a and b are redirected as shown in
Figure 5.4.
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Replacing the edges e1 and e2 with the single edge e in Γ3 creates a new
graph Γ′3. The z-sequence of the original graph Γ3 is z = {P,Q′} as defined in
§2. Thus, the z-sequence of Γ′3 is z′ = {P,Q′′} where Q′′ is the permutation
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of Q′ formed by redirecting the geodesics a and b in the lens removal process.

We will systematically remove lenses in M(Γ1 ∨ Γ2) to form a critical
graph Γ. Each step in the lens removal process retains the set of connections,
therefore π(Γ) = π(Γ1 ∨ Γ2).

Lemma 6. Two critical c.c.p. graphs have the same set of connections if
their medial graphs are equivalent under motions.

Proof. Suppose Γ1 and Γ2 are critical c.c.p. graphs whereM(Γ1) andM(Γ2)
are equivalent under motions. By Lemma 6.1 in [2], Γ1 and Γ2 are Y − ∆
equivalent. Then by Theorem 1.3 in [2], π(Γ1) = π(Γ2).

Lemma 7. Given two c.c.p. graphs Γ1 and Γ2, let Γ3 = Γ1 ∨ Γ2. Let L be
an empty lens in M(Γ3) formed by a geodesic pair (a, b). The removal of L
from M(Γ3) removes an edge in Γ3 forming Γ′3. In this case, (a, b) 6∈ Ψ(Γ′3)
and π(Γ′3) = π(Γ3).

Proof. The geodesics a and b intersect twice in M(Γ3). The lens removal
process results in the elimination of a geodesic intersection and the redirection
of the geodesics. Thus (a, b) 6∈ Ψ (Γ′3).

The empty lens L inM(Γ3) results from either two edges in series or two
edges in parallel in Γ3. The lens removal process replaces these two edges
with a single edge and forms Γ′3. In either case, the set of connections is
retained; therefore π(Γ′3) = π(Γ3).

Lemma 8. Let Γ3 be a c.c.p. graph and (a, b) ∈ Ψ(Γ3). If gap(a, b) is the
minimum gap, then there is a finite sequence of Y − ∆ transformations in
Γ3 that forms Γ′3 such that (a, b) ∈ Ψ(Γ′3) and gap(a, b) = 0 in M(Γ′3).

Proof. Suppose Γ3 is a c.c.p. graph and the geodesic pair (a, b) forms a lens L
inM(Γ3). Suppose also that gap(a, b) is the minimum gap. Let Sa,b\{a, b} =
{s1, s2, ..., sδ}, that is, s1, s2, ..., sδ are the geodesics strictly between a and b
in column C of M(Γ3).

By Lemma 5, L does not surround a lens. Therefore, each si intersects a
exactly once and b exactly once, and for i, j = 1, 2, .., δ, i 6= j, si intersects
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sj at most once. From the proof of Lemma 6.2 in [2], a finite sequence of
motions will remove from L every geodesic s1, s2, ..., sδ. Since motions in
M(Γ3) correspond to Y −∆ transformations in Γ3 by §6 in [2], this produces
Γ′3 that is Y −∆ equivalent to Γ3. The geodesics a and b are adjacent in the
center column C in M(Γ′3), thus gap(a, b) in M(Γ′3) is 0.

Algorithm 9. Given two critical c.c.p. graphs Γ1 and Γ2, let Γ3 = Γ1 ∨ Γ2.
The algorithm consists of the following steps:

1. Determine the lenses in M(Γ3).

2. Consider a lens L in M(Γ3) formed by the geodesic pair (a, b) where
gap(a, b) is minimum.

3. Empty L to form M(Γ′3).

4. Remove L to form M(Γ′′3).

5. Repeat steps 1-4 until M(Γ
(n)
3 ) has no lenses.

Theorem 10. Suppose Γ1 and Γ2 are two critical c.c.p. graphs. Let Γ3 =
Γ1 ∨Γ2. Let Γ be a critical c.c.p. graph produced by Algorithm 9. Then π(Γ)
= π(Γ3).

Proof. By Lemma 2, M(Γ3) has no loops or self-intersections. We consider
two cases since M(Γ3) may or may not have lenses.

Case I. Suppose Ψ(Γ3) = ∅. ThenM(Γ3) has no lenses. In this case, Γ = Γ3.
•

Case II. Suppose Ψ(Γ3) 6= ∅. Consider (a, b) ∈ Ψ(Γ3) such that gap(a, b) is
the minimum gap. Then by Lemma 5, the lens L formed by geodesics a and
b does not surround a lens.

By Lemma 8 there exists a finite sequence of Y −∆ transformations in Γ3

which produces Γ′3 where (a, b) ∈ Ψ(Γ′3) and gap(a, b) = 0 in M(Γ′3). Since
Γ′3 is Y −∆ equivalent to Γ3, by Lemma 5.1 in [2] π(Γ′3) = π(Γ3).

Since gap(a, b) = 0 inM(Γ′3), L can be made empty by motions inM(Γ′3).
By Lemma 7 the removal of L from M(Γ′3) produces M(Γ′′3) where (a, b)
6∈ Ψ(Γ′′3) and π(Γ′′3) = π(Γ′3).
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The removal of L from M(Γ′3) may simultaneously create or eliminate
other lenses in M(Γ′3). Therefore the sets of intersections, I(Γ′′1) and I(Γ

′′
2),

and the set of lenses, Ψ(Γ′′3) must be evaluated with the same process that
was used to evaluate I(Γ1), I(Γ2), and Ψ(Γ3).

The removal of an empty lens from M(Γ3) removes an edge from Γ3.
There is a finite number of edges in Γ3. The number of edges in Γ3 places
an upper bound on the number of lenses that can occur. Therefore, a finite
number of lens removals must produce a medial graph M(Γ

(n)
3 ) with no

lenses, that is, Ψ(Γ
(n)
3 ) = ∅. Since the set of connections is retained in each

step of the lens removal process, π(Γ
(n)
3 ) = π(Γ3). In this case, Γ = Γ

(n)
3 . •

Now,M(Γ) has no loops, self-intersections, or lenses, and by Proposition
13.1 in [2], Γ is a critical c.c.p. graph. Every step used to form Γ retains the
set of connections, thus π(Γ) = π(Γ3) = π (Γ1 ∨ Γ2).

Corollary 11. Let Γ1 and Γ2 be critical c.c.p. graphs. Let Γ and Γ′ be two
critical c.c.p. graphs resulting from an application of Algorithm 9. Then Γ
and Γ′ are Y −∆ equivalent.

Proof. Γ and Γ′ result from Algorithm 9, therefore, by Theorem 10, π(Γ)
= π(Γ1 ∨ Γ2) and π(Γ′) = π(Γ1 ∨ Γ2). Thus, π(Γ) = π(Γ′) and by Theorem
1.3 in [2], Γ and Γ′ are Y −∆ equivalent.

Applying Algorithm 9 to Example 3 results in a critical graph with eight
boundary nodes and a new z-sequence z = {7, 6, 8, 1, 7, 2, 4, 3, 5, 8, 1, 2, 6, 4, 3, 5}.
Additional examples are listed in §7.

6 Combining Two Graphs Without Interior-

ization

In §2 we defined the combination of two critical c.c.p. graphs with interior-
ization, Γ1 ∨Γ2. Here we define the combination of two critical c.c.p. graphs
without interiorization. The following definition directly corresponds to Def-
inition 1.

Let Γ1 be a critical c.c.p. graph with n boundary nodes. Let Γ2 be a
critical c.c.p. graph with m boundary nodes. Suppose we choose k successive
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boundary nodes of Γ1 and k successive boundary nodes of Γ2. By a renum-
bering of the boundary nodes of Γ1 and Γ2, we may assume that the boundary
nodes of Γ1 are {p1, p2, ..., pk, ..., pn} ordered clockwise on the circle C1 and
the boundary nodes of Γ2 are {q1, q2, ..., qk, ..., qm} ordered counterclockwise
on the circle C2.

Definition 12. The combination without interiorization of Γ1 and Γ2 is
formed by identifying pi with qi for i = 1, 2, ...k and interiorizing the inner
k − 2 nodes: p2=q2, p3=q3, ..., pk−1=qk−1.

The combination of Γ1 and Γ2 without interiorization is a c.c.p. graph em-
bedded in the plane with n+m−(2k−2) boundary nodes {pk=qk, pk+1, ..., pn, p1=
q1, qm, qm−1, ..., qk+1} ordered clockwise around the circle C. See Figure 6.1.

The z-sequence of Γ1 is a sequence of numbers from 1 to n where each
number occurs exactly twice. The z-sequence of Γ2 is a sequence of numbers
from 1 to m where each number occurs exactly twice. The first 2k − 2
geodesics inM(Γ1) are distinct, and the first 2k− 2 geodesics inM(Γ2) are
distinct. We order z1 = {1, 2, ..., 2k−2, P} clockwise around C1 and we order
z2 = {1, 2, ..., 2k − 2, Q} counterclockwise around C2. P is a permutation of
the remaining geodesic labels in z1, and Q is a permutation of the remaining
geodesic labels in z2. Combining Γ1 and Γ2 without interiorization joins the
first 2k−2 geodesics in z1 with the first 2k−2 geodesics in z2. The z-sequence
of the combined graph is z = {P,Q′} ordered clockwise around C, where the
elements of Q′ are the elements of Q in reverse order.

Note that in Figure 6.1 the geodesics above node p1 = q1 and below node
pk = qk are not joined. These geodesics are not joined because neither p1 = q1

nor pk = qk is interiorized.
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Figure 6.1

An algorithm very similar to Algorithm 9 will reduce the combination of
Γ1 and Γ2 without interiorization to a critical graph with the same set of
connections.

7 An Implementation of Algorithm 9

Let Γ1 and Γ2 be critical c.c.p. graphs. Algorithm 9 produces a critical
c.c.p. graph Γ from Γ1 ∨ Γ2. By Theorem 10, π(Γ) = π(Γ1 ∨ Γ2). We have
written a computer program that implements Algorithm 9. The program
takes the z-sequence of Γ1 and the z-sequence of Γ2 and finds z, the z-
sequence of Γ. By Corollary 11 and Theorem 7.2 in [2], z is unique.

Example 13. We give the program the following input:

1. Γ1 has six boundary nodes ordered clockwise on C1,

2. Γ2 has eight boundary nodes ordered counterclockwise on C2,
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3. Identify and interiorize three boundary nodes from each graph to form
Γ1 ∨ Γ2,

4. z1 = {1, 2, 3, 4, 5, 6, 2, 5, 1, 4, 3, 6} ordered clockwise around C1, and

5. z2 = {1, 2, 3, 4, 5, 6, 7, 8, 4, 7, 2, 5, 1, 3, 6, 8} ordered counterclockwise around
C2.

In Example 13, the program produces the z-sequence of a critical c.c.p. graph
Γ such that π(Γ) = π(Γ1 ∨ Γ2). In this case, Γ has eight boundary nodes
ordered clockwise around C and z = {2, 5, 1, 4, 3, 6, 8, 2, 5, 1, 4, 3, 7, 6, 8, 7}
ordered clockwise around C.

Example 14. Another example that is particularly interesting is:

1. Γ1 has n boundary nodes ordered clockwise on C1,

2. Γ2 has n boundary nodes ordered counterclockwise on C2,

3. Identify and interiorize n/2 boundary nodes from each graph to form
Γ1 ∨ Γ2,

4. z1 = {1, 2, ..., n, 1, 2, ..., n} ordered clockwise around C1, and

5. z2 = {1, 2, ..., n, 1, 2, ..., n} ordered counterclockwise around C2.

In Example 14, the program produces the z-sequence of a critical c.c.p. graph
Γ such that π(Γ) = π(Γ1∨Γ2). In this case, Γ has n boundary nodes ordered
clockwise around C and z = {1, 2, ..., n, 1, 2, ..., n} ordered clockwise around
C. The new graph Γ has the same z-sequence as both Γ1 and Γ2, thus Γ is
Y −∆ equivalent to Γ1 and Γ2!

8 Circular Planar Networks

Thus far, we have considered combining two critical c.c.p. graphs Γ1 and Γ2.
We have shown that Γ1 ∨Γ2 can be reduced to a graph Γ that is critical and
have given an algorithm to produce Γ.
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A c.c.p. network Ω = (Γ, γ) is a c.c.p. graph Γ with an associated con-
ductivity function γ. γ maps each edge in Γ to a positive real number, γ:
E → R+. The number γ(eij) is called the conductivity of the edge eij.

A c.c.p. network Ω = (Γ, γ) is a critical network if its associated graph Γ
is a critical graph. Let Ω1 = (Γ1, γ1) and Ω2 = (Γ2, γ2) be critical networks.
The combination of Ω1 and Ω2 is Ω1 ∨ Ω2 = (Γ1 ∨ Γ2, γ1 ∨ γ2). Γ1 ∨ Γ2 is
formed by Definition 1. Since every edge from Γ1 and Γ2 is an edge in Γ1∨Γ2,
γ1 ∨ γ2 is defined as γ1 on edges from Γ1 and γ2 on edges from Γ2.

For convenience, let Ω3 = Ω1 ∨ Ω2,Γ3 = Γ1 ∨ Γ2, and γ3 = γ1 ∨ γ2.

Algorithm 9 reduces Γ3 to a critical graph Γ such that π(Γ) = π(Γ3). In
this algorithm there are three ways to change Γ3:

1. by a Y −∆ transformation,

2. by replacing two edges in series with a single edge, and

3. by replacing two edges in parallel with a single edge.

When we perform a Y −∆ transformation in Γ3, Lemma 5.3 in [2] defines
a conductivity function γ ′3 on the graph after the transformation such that
Λ(Γ′3, γ

′
3) = Λ(Γ3, γ3).

When we replace two edges e1 and e2 in series with a new edge e, the new
conductivity function is defined as

γ′3(e) =

(

1

γ3(e1)
+

1

γ3(e2)

)−1

.

When we replace two edges e1 and e2 in parallel with a new edge e, the
new conductivity function is defined as

γ′3(e) = γ3(e1) + γ3(e2).

Defining the conductivities in this way ensures that Λ(Γ′3, γ
′
3) = Λ(Γ3, γ3),

that is, the networks Ω′3 =(Γ′3, γ
′
3) and Ω3 =(Γ3, γ3) have the same electrical

response.

Since we reduce Γ3 to Γ and γ3 to γ keeping Λ(Γ, γ) = Λ( Γ3, γ3), we have
formed Ω = (Γ, γ) such that Λ(Ω) = Λ(Ω3).
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