
Determining the Shape of a Tree Network

From Boundary Measurements

K. Lorentz Johnson ∗

June 19, 2003

Abstract

The main concern of this paper is the recovery of the shape of

a resistor network from boundary measurements. In particular, we

concern ourselves with the special case where the graph is a tree.

Algorithms are given for recovering not only the shape of the graph,

but also the conductivity, γ, of each resistor. Applying the shape

recovery algorithm to non-tree graphs, it turns out, has the effect of

recovering any tree-like “branches” on the outer part of the network.

1 Introduction

Formally, a resistor network Γ is a collection of nodes and edges– each edge
connecting two nodes. A good physical interpretation is an electric circuit.
Each node, p, has a number associated with it u(p) which can be thought of
as the voltage at that node. Each edge also has a number associated with it
γ(pq) which can be thought of as the conductivity of the resistor(edge). The
number of edges incident to a node is the degree or valence of the node, which
can be any number. The nodes are divided into two groups: interior nodes
and boundary nodes. We will denote the set of boundary nodes ∂(Γ). At the
boundary nodes we are allowed to make measurements. A typical measure-
ment consists of applying voltages to the boundary nodes and measuring the
resulting currents at each boundary node.

∗e-mail: johnsonk@veblen.carleton.edu

1



This is the forward problem: Given a potential function for the boundary,
determine the current flow. The problem can be solved by making use of
Kirchoff’s law, which states that the net current flow out of an interior node
is 0, and some linear algebra.

If we order the boundary nodes, and consider a voltage vector, φ and a
current vector, ψ, then there is a matrix, Λ, which satisfies the equation Λφ =
ψ. Λ can be found by performing row reduction on a matrix constructed
from the conductivity function γ(pq). This matrix is also straightforward to
obtain from boundary measurements. To determine the columns of Λ, place
a voltage of 1 at boundary node n. The resulting current vector corresponds
to the nth column of Λ. In [1], it is shown that Λ will be a symmetric matrix.

A typical inverse problem is: Given the shape of the network, and the
Λ-matrix, find γ(pq) for each resistor in the network. The inverse problem
that we consider here is more challenging: Given the Λ-matrix, find not only
γ(pq), but also the shape of the network. “Shape”, here, is meant in the
topological sense. We want to find the number of nodes and edges and find
all the connections between nodes and edges. We will begin by limiting our
recovery attempts to finding graphs of a special type–“tree” graphs.

2 Tree Networks

The tree networks considered can have nodes of any degree greater than or
equal to 3. Each node at the end of a branch (nodes of degree 1) is considered
a boundary node, while all the branch points are interior nodes. The precise
definition to be used in this paper is:

Definition 1. A tree is any finite network which could be constructed as
follows: Start with an interior node and attach at least three edges to it. At
the other end of these edges, add either:

(a) a boundary node
or
(b) a new interior node.
If a new interior node is added, at least two more edges must be attached

to this node. Again, at the end of these two new edges put either (a) or (b).
If a boundary node is added, then do nothing more to this branch. Repeat
until all the branches have reached boundary nodes.

2



Theorem 2. A network is a tree network if and only if the following condi-
tions are met:

(1) There are no closed loops inside the network. That is, there exists
only one path which connects any two nodes.

(2) All boundary nodes are boundary spikes. That is, all boundary nodes
are only connected to one edge.

(3) The degree of any interior node is at least three.
(4) Every boundary node is connected through the interior to every other

boundary node. (1-connectedness)

NOTE: Condition (3) ensures us that we will not have any two resistors
in series (a non-recoverable feature: See section 4).

Proof. Constructing the network as in the definition ensures that we will
have no closed loops (condition 1). Because we keep adding new nodes at
the end of each new edge, the network can not close up on itself. Boundary
nodes can only be added at the ends of edges so they will always be spikes
(condition 2). Whenever we add a new interior node, we also add at least
two new edges, so the degree must always be three (condition 3). Finally,
the network was constructed so that every boundary node is connected to
every other boundary node through the interior (condition 4).

Now, we start with a network which satisfies the 4 conditions. Choose
an interior node as our starting point. There must be at least three edges
attached by condition 3. By condition 1, these branches must always lead
to either new interior nodes or boundary nodes. By condition 2, if we reach
a boundary node, there can be no further edges attached. If we lead to a
new interior node there must always be at least two new edges attached by
condition 3. Finally, by condition 4, we must be able to construct the entire
network in this fashion.

The definition of a tree network gives rise to the concept of pairings. If
we reached a point in our construction where we added only two new edges
to an interior node, and placed boundary nodes at the ends of these edges,
we would have a special relationship between these nodes nodes. Precisely,
two boundary nodes of a tree network are said to be paired if they are both
connected to an interior node of valence 3 (as shown below).

3



¥
¥¥

T
TT

·
··

s
××

There is also a notion analogous to pairing for an interior node of higher
degree. If an interior node has degree (n+1), and n of its edges connect to
boundary nodes, then this set of boundary nodes is said to be n-tupled.

¥
¥¥

T
TT

·
··

s
× ××

3-tupled
boundary nodes

¥
¥¥

¡
¡¡

@
@@

HHHHH

PPPPPPPP

XXXXXXXXXX

s
× × × × × ×

Set of 6-tupled
boundary nodes

NOTE: A pairing is an n-tupling with n=2.

Lemma 3. If a network is a tree, then there is an n ≥ 2 for which there
exists a set of n boundary nodes that is n-tupled.

Proof. Due to the way a tree can be constructed, when we add a boundary
node, if all the other nodes added to the same interior node are either all
boundary nodes, or else at least one is an interior node. If they are all
boundary nodes, then we have an n-tupling. If one of the other nodes is
an interior node, we repeat our process of looking at the nodes added to
this interior node. Since our network is (assumed to be) finite, there must
be some point at which no new interior nodes are added, and we add only
boundary nodes. Therefore, there will always be an n-tuple.

Definition 4. A spider is a tree graph with only one interior node. All of
the boundary nodes, then, are connected directly to this interior node.

4



@
@
@
@
@
@
@
@
@
@
@
@
@
@
@¡

¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡

s

×

×

× ×

×

××

×

Spider with 8 boundary nodes

Note that a spider must have at least 3 boundary nodes. Note also that
when constructing a tree, if we choose to add all boundary nodes at the first
step, we will have constructed a spider. So, a spider is a very basic type of
tree graph.

3 Connectivity

An important tool in recovering the shape of a network is that of connectiv-
ity. Two boundary nodes are connected through the interior if they can be
connected by a path which doesn’t go through any other boundary nodes.
We can extend this concept to a set of n nodes being connected to another
set of n nodes. In the case of n=2 for example, two boundary nodes p1, p2 are
said to be connected through the interior to two other boundary nodes q1, q2
if and only if there is a path between p1 and q1 disjoint from a path between
p2 and q2. The existence of this connection is denoted (p1, p2; q1, q2). For a
resistor network, Γ, the set π(Γ) is defined as the set of all (P;Q) which are
connected where P and Q are sets of any size. (P has the same size as Q)

It is shown in [1], that if and only if (p1, p2; q1, q2) 6∈ π(Γ), then the 2×2

5



determinant of Λ (of rows p1 and p2, columns q1 and q2) is 0. This condition
holds for n × n determinants for any n. So, by checking determinants of Λ,
we can find π(Γ). When recovering the shape of a tree network, it turns out
that all we need to know is the set π(Γ). The rest of the information in Λ
concerns conductivity values.

4 Equivalency

One inherent limitation to accurate recovery of a network from boundary
measurements is due to equivalency. Certain combinations of resistors will
respond to boundary measurements the same way as other resistor setups.
The problem is that two different networks may have the same set π(Γ).
These networks are then said to be in the same equivalence class. A simple
example is that two resistors in series, each with conductivity 1, will act
the same as a single resistor with conductivity 1/2. So, we could transform
a network by replacing two resistors in series with a single resistor. If we
choose the right conductivity for our new resistor, there will be no effect on
boundary measurements. We can not tell the two networks apart.

In [2], it is shown that there are 6 such transformations that can be made
to networks. Most of these, such as the example of resistors in series, arise
from the existence of “superfluous edges” in a graph. A critical network is
a network in which the contraction (elimination) of any edge will affect the
set of connections. Therefore, if we assume that our network is critical, then
every edge is important and there are no “superfluous” edges.

The one equivalence we can not eliminate by limiting ourselves to critical
graphs is the Y - ∆ equivalence. A ∆ is a set of three nodes and three edges.
Each node is at a vertice of a triangle, and the edges correspond to the sides
of the triangle. There are no other nodes or edges inside the triangle. A Y is
a set of four nodes and three edges. One node is in the center and has degree
3. Each of its edges connects to each of the other three nodes. These two
formations will produce the same connections so we can not tell them apart
from boundary measurements.

When attempting to recover a network, then, the best we can do is to find
something in the same equivalence class as the original network. This does
not present any ambiguity in the case of trees due to the following theorem.

Theorem 5. A tree can not be transformed by Y-∆ and ∆-Y transformations

6



into a different tree.

Proof. If we start with a tree, we have no closed loops, so there can not exist
any ∆. The only transformation we can make initially is a Y-∆. In order to
end up with another tree, we have to somehow remove the ∆ we have just
added to the graph. We can either:

(a) Make another Y-∆ transformation to one of the corner nodes (a vertice
of the ∆).

(b) Make a ∆-Y to undo what we did and return to the original graph
It will now be shown that (a) is impossible. Therefore, we can not come

up with a new tree, by making Y-∆ and ∆-Y transformations.
The effect of the Y-∆ transformation on a corner node is to increase the

degree by 1. Since we started with a tree, these nodes must have had degree
at least 3, and now they have at least degree 4. In order to make a Y-∆
transformation, the center node must have degree 3, so the corner nodes can
not be the center of another Y-∆ transformation.

So, for tree graphs, recovering the equivalence class is as good as recov-
ering the shape of the graph itself.

5 Recovery Algorithm

The method for recovery hinges on being able to find sets of boundary nodes
that are n-tupled. A method for finding whether or not a set of nodes is
n-tupled from π(Γ) will be presented in the next section. For now, we will
assume that this is possible.

When we find two nodes that are n-tupled, we will remove these n nodes
along with the n edges connected to them. The resulting graph will still be
a tree. Going back to our definition of a tree, we could have constructed
the network the same way, but stopped a step earlier and placed a boundary
node instead of an interior node and the n edges. Therefore, we still have a
tree.

Fortunately, if we have an actual physical network, we do not have to
rebuild the network or remove any resistors in order to apply the algorithm.
When we find n-tupled nodes, we simply ground these nodes together so that
from now on, the voltage at these nodes is always the same. We would then

7



have n resistors in parallel followed by one resistor in series. This can be
treated as a single resistor with a conductivity which is a function of the
original n+1 conductivities. The transformation will look like (for n=2):

s ×

×
HHH

©©©

γ1

γ2

γ3

- s ×
®


©
ª - s × - ×

1

γ1

+ 1

γ2+γ3

Theorem 6. In the Λ-matrix, if we add together the rows and columns corre-
sponding to n n-tupled nodes, then use this new row and column to correspond
to our new boundary node as described above, we can eliminate the n rows
and columns corresponding to the deleted boundary nodes, and the resulting
Λ-matrix will be correspond to the new network.

Proof. We saw in section 1 that the nth column in the Λ-matrix corresponds
to the current produced by a voltage of 1 placed at node n. If we placed
voltages of 1 at n boundary nodes, the resulting current vector would just be
the sum of these n columns in the Λ-matrix.

Due to the way in which we collapsed the n-tupled boundary nodes, ap-
plying a voltage of 1 at the new boundary in the new graph has the same
effect as placing voltages of 1 at all n nodes in the old graph. So this is the
same as placing voltages of 1 at the n boundary nodes, and the resulting
current vector is the sum of these n columns in the Λ-matrix. The rows can
also be added due to the symmetry of the Λ-matrix.

After modifying the network, we repeat the process of searching for n-
tuples until we cannot find any more n-tuples for n less than or equal to
the number of boundary nodes minus two. We shall see that we will need
at least two more boundary nodes in order to make any checks about a set
being n-tupled(see next section).

8



6 Finding n-tuples

We will begin by showing how to determine whether or not two nodes are
paired given π(Γ).

Theorem 7. Two nodes p1, p2 are paired nodes of a tree network, Γ, if and
only if the following two conditions are met:

(1) (p1, x; p2, y) ∈ π(Γ) ∀{x, y} ∈ {∂(Γ) \ {p1, p2}}, x 6= y

(2) (p1, p2;x, y) 6∈ π(Γ) ∀{x, y} ∈ {∂(Γ) \ {p1, p2}}

NOTE: Both conditions are necessary if we are dealing with a graph that
may or may not be a tree. If we know the graph is a tree, either one of the
conditions will suffice.

Proof. Given 2 paired nodes in a tree network p1, p2 we can connect p1 to
p2 through their common interior node. This path, then, involves no other
interior nodes. The common interior node has valence 3, so there is only 1
more edge incident to it. Therefore, there can not be a path between x and
y that goes through this node. There must be some path between x and y
by property 4 of Theorem 2.2. Therefore, this path must be disjoint from
the path between p1 and p2.

Condition 2 is true because if we connect p1 to some other node x, we
have to go through the common interior node. Now, if we wish to connect
p2 to anything, we must also go through the common interior node, so there
can not exist a disjoint path.

If condition 1 is true, then we must have a path between p1 and p2 that
does not interfere with any other connections between boundary nodes. If
we can show that there is one common node along this path from which all
other paths branch, then we will know that p1 and p2 are paired.

Condition 2 shows that there must be such a common node. If p1 is
connected to some other node, then we can not simultaneously connect p2 to
any other nodes. This can only happen if p1 and p2 are paired.

In section 3, we saw that we can determine the connections in Γ by taking
determinants of Λ, so we can determine whether or not two nodes are paired
from these determinants. Now, if we wish to determine whether a set of n
nodes are n-tupled, we make a slight modification to our test for pairings.

9



Definition 8. Two nodes p1, p2 are paired without respect to a set Q of
boundary nodes, {q1, q2...} if upon removal of Q and the edges connected to
Q, p1 and p2 would be paired.

The test for pairings without respect to Q then uses {x, y} chosen from ∂

(Γ) \{p1, p2, q1, q2...}. The following theorem gives us a way to find n-tuples.

Theorem 9. In a tree network, a set P of n nodes {p1, p2...pn} is n-tupled if
and only each node pk is paired with the next node pk+1 for all k ≤ n without
respect to the rest of the set(P \{pk, pk+1}.

Proof. If we have n n-tupled nodes, it is straightforward to see that each
node is paired with the next node without respect to the rest of the n-tupled
nodes.

Going the other direction, we start with p1 paired with p2 in a network
which doesn’t contain {p3, p4...pn}. In a network without {p1, p3, p4...pn}, p2

and p3 are paired. This can only occur if p1, p2, and p3 are a 3-tuple in the
network without {p4, p5...pn}. Continuing in this fashion, we will find that
{p1, p2...pn} is an n-tuple in the entire network.

Now that we have the ability to test for n-tuplings, we are ready to state
the recovery algorithm.

Algorithm 10. We begin by checking for an n-tupling using Theorems 6.1
and 6.3. If we find n boundary nodes that are n-tupled, we replace these
nodes with one boundary node. In the Λ-matrix we add together the rows and
columns to produce a new row and column. If we do not know the Λ-matrix
but are instead given the set π(Γ), then we simply choose one of the old node’s
connection properties to represent the new node.

After we find an n-tuple and have collapsed it into a single boundary spike,
we continue to search for n-tuples. The algorithm proceeds until we can no
longer find n-tuples. This means that we cannot find an n-tuple for n less
than or equal to the number of boundary nodes minus 2.

10



7 Arbitrary Networks

We now consider the algorithm as applied to arbitrarily shaped networks.
The theorems in this section will show that we can use the theorem to de-
termine whether or not a network is a tree. Also, in non-tree networks, we
can recover any tree-like appendages on the outside part of the graph.

Theorem 11. If our original network is a tree, then applying the algorithm
to the network will produce a spider.

Proof. Since the network is a tree, by Lemma 2.3, there will always be an
n-tuple to remove until we reach a spider (which is also an n-tuple). A
spider can not be removed because we do not have enough boundary nodes
to continue to check. Also, considering a tree as it was defined, removing
n-tuples will just reverse the construction process, until we get back to the
point of having a spider.

We can easily check if the resulting network is a spider. In a spider, each
boundary node is connected through the interior to every other boundary
node. However, there are no sets of 2 or more nodes connected through the
interior. The Λ-matrix for a spider is rather special.

One complication that arises from applying the algorithm to non-tree
graphs is that we must modify our concept of n-tupling. If n nodes are
connected directly to an interior node which is part of a closed loop, then
these nodes might be n-tupled. They are n-tupled if we make sure we are
including all such boundary nodes.

11



s s

s s
¡

¡
¡¡

@
@

@@

¡
¡
¡¡

× ×

×

×
× ×

×

We now allow 3-tuples as in the lower left corner,
and pairings as in the lower right corner

The algorithm will find these n-tuples, and we can remove them the same
way as we did for tree graphs. We will not, however, remove any closed loops
out of the graph. This, in essence, is the proof of the following theorem.

Theorem 12. Applying the algorithm to a non-tree graph will not produce a
spider.

Proof. The algorithm will find n-tuples on the outer parts of the graph. It
will also find n-tuples of the sort described above. So, eventually, we will
have our network reduced to just a closed polygon with boundary nodes at
the corners, or on the ends of edges attached to the corners. If we choose any
two adjacent boundary nodes, we can always connect them simultaneously to
two other boundary nodes by going different directions around the polygon.
Therefore condition 2 of our test for pairings will always fail. No nodes will
be removed and the closed loop will never be removed from the graph. We
can not, then, produce a spider since a spider has no closed loop in it.

8 Recovering Conductivities

Once we know the shape of a tree graph, we can recover the conductivities.
If we have two boundary nodes that are paired (or two out of a set that is
n-tupled), we can apply a voltage of 1 at one node, and a voltage of -α at the

12



other node. Apply voltages of 0 at all other boundary nodes. Choose α so
that the current will be 0 at all boundary nodes besides the paired ones. All
the current flow will be through the two boundary spikes. From the value of
this current (which we are allowed to measure), and the value of α that we
chose, we can find the conductivities of the two boundary spikes.

We can then ground the two boundary nodes together and treat the
complex resistor as a single resistor as we did in section 5. We already know
the values of two of the three conductors, so finding the value of the complex
conductor will give us enough information to calculate the conductivity of
the third resistor. We can thus recover the conductivity function over the
entire network by proceeding in this manner.

9 Further Problems

Another way to approach the problem of tree recovery is through the use of
dual graphs. The concept of a dual graph is precisely defined in [1]. The
convenient thing about the dual graph of a tree is that it will have no interior
nodes. Since there is a way of relating the Λ-matrix for a network to the Λ-
matrix for it’s dual, we could attempt to recover the shape of a network by
recovering the shape of it’s dual graph.

Other questions that arise involve finding other structures in a network
that could be easily recovered from boundary measurements. Networks that
are close to being trees might be recoverable by methods similar to those
described in this paper. Hopefully, one would eventually be able to recover,
within equivalence classes, the shape of any arbitrary network.

References

[1] E. B. Curtis, D. Ingerman, J. A. Morrow, Circular planar graphs and
resistor networks .

[2] Y. Colin de Verdière, I. Gitler, D. Vertigan, Rèseaux Èlectriques Planaires
II , Prèpublication de l’Institute fourier, no. 276, (1994).

13


