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Abstract. An analytic method for using boundary measurements to recover the conductivity of
a circular region within the unit disc is presented. The conductivity of the circular inhomogeneity is
assumed to be constant, and the background conductivity is normalized to one. The location and size
of non-concentric inhomogeneities are required to apply the method.

1. Introduction. In general, the inverse conductivity problem is that of finding
the internal conductivity of an object by making measurements on its boundary. Also
referred to as Electrical Impedance Tomography (EIT), methods for solving this problem
may be applied to areas such as geology and medical imaging.

In [2] a method was developed and implemented for imaging the conductivity of a
circular plate. In experiments, their method determined the approximate location and
size of circular inhomogeneities. However, it did not accurately reproduce the conduc-
tivity. Here, we will provide an analytical method for determining the conductivity of
a circular inhomogeneity.

2. The General Problem. Let Ω ⊂ R2 be a smooth, bounded domain. If we let
Ω represent an isotropic body with no sources or sinks of current, then there exists a
conductivity γ : R2 → R+ such that

∇ · γ(~p)∇u(~p) = 0(1)

where u is the potential in Ω. Further, if f represents the potential on the boundary,
∂Ω, the Dirichlet to Neumann map is defined by

Λ(f) = γ
∂u

∂n
(2)

and represents the current density normal to ∂Ω.
Here we define Ω to be the disk of radius one centered on the origin. Let Ω1 ⊂ Ω

be a circular region of constant conductivity σ, and let Ω0 = Ω − Ω1 have constant
conductivity 1.

3. The Forward Problem. We begin the solution to the forward problem by
solving a system of P.D.E. on Ω with Ω1 centered at the origin. This requires defining
separate potential functions for each region,

u(~p) =

{

u0(~p) ∈ C2(Ω0), ~p ∈ Ω0
u1(~p) ∈ C2(Ω1), ~p ∈ Ω1

(3)
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and demanding that both the potential and current density are continuous across ∂Ω1.
The next step is to use a conformal map, Ψ, on Ω, which maps a non-concentric

∂Ω1 onto a circle centered at the origin. Composing Ψ with the general solution to the
concentric problem provides the general solution to the non-concentric problem.

3.1. Solution to the Concentric Problem. The following system of P.D.E.
defines the concentric Dirichlet problem in terms of u0 and u1:

∆u0 = 0,∆u1 = 0,(4)

u0 |∂Ω= f,

u0 |∂Ω1
= u1 |∂Ω1

and(5)

∂u0

∂r
|∂Ω1
= σ

∂u1

∂r
|∂Ω1

.(6)

Here, f is an arbitrary potential function on ∂Ω. Boundary condition (5) requires the
potential to be continuous at the boundary ∂Ω1 and condition (6) requires conservation
of current across ∂Ω1.

Applying separation of variables to system (4) provides the following general solu-
tion:

u0 =
∞
∑

n=1

rn(A0n cosnθ +B0
n sinnθ) + r−n(D0

n cosnθ + E0
n sinnθ) and(7)

u1 =
∞
∑

n=1

rn(A1n cosnθ +B1
n sinnθ).

Note that while u0 has a r
−n term, this is impossible for u1 because a singularity in the

potential would result at the origin.
In the next several steps we use (7) to obtain a refined general solution to our

problem. Substitution of u0 into boundary conditions (5) and (6) provides restrictions
on the possible coefficients. By collecting the coefficients of the sin and cos terms, we
obtain the following equations:

hnA0n + h−nD0
n = hnA1n,(8)

hnB0
n + h−nE0n = hnB1

n,(9)

(hnA0n − h−nD0
n) = σhnA1n and(10)

(hnB0
n − h−nE0n) = σhnB1

n,(11)

with h representing the radius of ∂Ω1. Equations (8) and (10) can be solved for A
1
n and

equated to obtain a single equation of the coefficients A0n and D
0
n. Further simplification

provides the following relationship :

(1− σ)h2n

1 + σ
A0n = D0

n.(12)
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Similar operations on (9) and (11) give an equivalent relation between B0
n and E0

n.
Given these restrictions on the coefficients, (7) can be rewritten as:

u0 =
∞
∑

n=1

(C0nr
−n + rn)(A0n cosnθ +B0

n sinnθ) and(13)

u1 =
∞
∑

n=1

rn(A1n cosnθ +B1
n sinnθ)

with

C0n =
h2n(1− σ)

(1 + σ)
.(14)

Further algebra on (8) through (11) yields

A1n = A0n
2

1 + σ
and(15)

B1
n = B0

n

2

1 + σ
.

The boundary condition on ∂Ω requires the following definitions for the remaining
coefficients:

A0n =
1

π(C0n + 1)

∫ π

−π
f(θ) cosnθdθ and(16)

B0
n =

1

π(C0n + 1)

∫ π

−π
f(θ) sinnθdθ.

3.2. The Conformal Map. Since the location and size of the object are known,
we assume that Ω1 is centered along the positive real axis. This can be accomplished
by a simple angular rotation. The intersection points of Ω1 and the positive real axis
are denoted by x1 and x2 with x1 > x2. The conformal map, Ψ, is the reciprocal of a
linear fractional transformation obtained from [1],

Ψ(z) =
az − 1

z − a
and(17)

a =
1 + x1x2 +

√

(1− x21)(1− x22)

x1 + x2
.

Note that under Ψ ∂Ω is mapped onto itself, and ∂Ω1 is mapped to a circle centered on
the origin. The radius, h, of the inner concentric circle of the mapped region is

h =
x1 − x2

1− x1x2 +
√

(1− x21)(1− x22)
.(18)

Figure 1 shows the results of the transformation. The compression of points along
the edge of the concentric circles near the positive real axis gives some indication of the
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Fig. 1. The diagram on the left shows points placed at equal angles on non-concentric disks in the

complex plane. The diagram on the right shows the transformation of these points under Ψ.

impact the transformation has on Dirichlet boundary functions. Neumann boundary
conditions have a more complicated transformation process which will be discussed
later. One aspect of the transformation, not evident in figure 1, is that 1 maps to -1
and -1 to 1.

The benefit of using a conformal map is that harmonic functions in the concen-
tric reference frame pull back to harmonic functions in the non-concentric system.
Therefore, we may compose the solution in the concentric case with Ψ to form the
non-concentric solution. Before we can do this, we must rewrite (17) as

Ψ(reiθ) = ρ(r, θ)eiφ(r,θ),(19)

ρ(r, θ) =

√

1 + ar2 − 2ar cos θ

a2 + r2 − 2ar cos θ
and

φ(r, θ) = arctan

(

(1− a2)r sin θ

a+ ar2 − (1 + a2)r cos θ

)

.

This polar form maps (r, θ)
Ψ
−→ (ρ, φ), where (r, θ) are in the non-concentric reference

frame and (ρ, φ) are in the concentric. Functions are pulled back by composition with
the transformation in the following manner. Suppose we have a Dirichlet boundary
function f(r, θ) on ∂Ω, then the corresponding boundary function in the concentric
reference frame is g(ρ, φ) given by

f(r, θ)
◦ψ−1

−→ g(ρ, φ).(20)

3.3. General Solution to the Non-concentric Problem. Now the concentric
solution can be composed with the polar transformation yielding the following solution
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Fig. 2. A graph of the equipotentials for an object with conductivity σ = 0.005.

for the non-concentric problem:

u0 =
∞
∑

n=1

(C0nρ
−n + ρn)(A0n cosnφ+B0

n sinnφ),(21)

u1 =
∞
∑

n=1

ρn(A1n cosnφ+B1
n sinnφ),

C0n =
h2n(1− σ)

(1 + σ)
,

A0n =
1

π(C0n + 1)

∫ π

−π
g(φ) cosnφdφ,

B0
n =

1

π(C0n + 1)

∫ π

−π
g(φ) sinnφdφ,

A1n = A0n
2

1 + σ
and

B1
n = B0

n

2

1 + σ
.

The equations for u0 and u1 are equations (13) composed with Ψ. This pulls the
concentric function into the non-concentric system. Since the integrals used to compute
A0n and B

0
n involve the boundary potential in the concentric system, we use g(ρ, φ) as

defined in (20) with ρ = 1.
Figure 2 is a graph of the equipotential lines of the non-concentric solution with a

boundary potential of f = cos θ.

4. The Inverse Problem. The objective of the inverse problem is to obtain σ

from measurements of potentials and currents on ∂Ω. In theory the Dirichlet to Neu-
mann map provides all of the information for this calculation. A known boundary
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Fig. 3. Graph of cos(φ(1, θ)) for x1 = 0.8 and x2 = 0.2.

potential can be applied to ∂Ω and the Dirichlet to Neumann map for either the con-
centric or non-concentric problem can be evaluated using equation (2). Measured values
of currents could further be substituted into (2) and the result would be an equation in
σ.

Recovering the conductivity, however, is difficult for arbitrary boundary potentials.
Since σ is found in the coefficient C0n, it generally is part of a complicated infinite series
and not easily recovered. We will show in this section how carefully chosen boundary
potentials can be used to truncate the series at one term.

4.1. Recovery of σ for the Concentric Problem. The key to solving the in-
verse problem for the concentric case is to find an eigenvalue equation in the Dirichlet
to Neumann map. That is, we want to find a function f and a value λ such that

ΛC(f) = λf,(22)

where ΛC is the Dirichlet to Neumann map for the concentric problem and corresponds
to the current density, I(θ), on ∂Ω. Since taking the derivative of u0 (13) with respect
to r does not effect the A0n cosnθ or B

0
n sinnθ terms, it is readily apparent that f = cos θ

and f = sin θ are eigenfunctions of the map. Moreover, the eigenvalue is exclusively a
function of C01 ,

λ =
1− C01
1 + C01

.(23)

Recall, C01 (14) is a function of σ and the known radius of the inner circle, h. Therefore,
by placing f = cos θ or f = sin θ on ∂Ω, (22) reduces to

σ =
I(θ) (h2 + 1)− f(θ) (h2 − 1)

I(θ) (h2 − 1) + f(θ) (h2 + 1)
,(24)

where I(θ) are measurements of the current density on the boundary.
Note, an application of a second eigenfunction, such as f = cos 2θ, will provide

a second eigenvalue equation and enough information to recover both σ and h. For
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Fig. 4. A graph of the current density on ∂Ω. The boundary potential in this case is f =
cos(φ(1, θ)), x1 = 0.8, and x2 = 0.2.

instance, let f1 = cos θ and f2 = cos 2θ be potential functions placed on ∂Ω in separate
experiments. If I1(θ) and I2(θ) represent the respective current densities, then

h =

√

√

√

√

(I1(θ) + f1(θ))(I2(θ)− f2(θ))

(I1(θ)− f1(θ))(I2(θ) + f2(θ))
.(25)

4.2. recovery of σ for the Non-concentric Problem. An eigenvalue equation
for the Dirichlet to Neumann Map is difficult to find in the non-concentric problem
because the derivative of u0 with respect to r contains

∂ρ
∂r
and ∂φ

∂r
terms. However, ∂φ

∂r

is zero on ∂Ω so the map retains only the ∂ρ
∂r
term. This allows us to find an analytic

solution for σ with certain boundary functions.
We pursue a similar strategy to the one used in the concentric solution. By selecting

a Dirichlet boundary condition of f = cosφ, the general solution (21) to the non-
concentric problem truncates to

u0 =
C01ρ

−1 + ρ

C01 + 1
cosφ.(26)

Differentiating this with respect to r provides the relationship

ΛNC(f) = λ
∂ρ

∂r
f,(27)

∂ρ

∂r
=

a2 − 1

a2 + 1− 2a cos θ
.

Here, ΛNC represents the Dirichlet to Neumann map for the non-concentric problem and
λ is the eigenvalue for the concentric problem. Figures 3 and 4 show the relationship
between an induced boundary potential of f = cos(φ(1, θ)) and the resulting current
density on ∂Ω. Similar to the concentric case, (27) can be used to derive an expression
for σ in terms of experimental values of the current density:

σ =
I(θ) (h2 + 1)− ∂ρ

∂r
f(θ) (h2 − 1)

I(θ) (h2 − 1) + ∂ρ
∂r
f(θ) (h2 + 1)

.(28)
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5. Conclusion. We have derived analytic equations for recovering σ in terms of
experimentally measured values on the boundary. For the special case of concentric
inhomogeneities, σ can be recovered by applying simple trigonometric boundary poten-
tials, such as f = cos θ. In fact, these boundary functions may be used regardless of
the size of the inhomogeneity and can even be used to recover the radius. An impor-
tant aspect of the non-concentric solution is that the boundary potential required is a
function of the location and size of the inner region. This dependence is the primary
obstacle to imaging the object analytically.
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