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Abstract

In this paper it is shown that the resistors and capacitors of a 2-

layer network can be determined by measuring alternating currents

and voltages at boundary nodes.

Key terms:

Resistor. A resistor is the electrical device that limits current flow in
accordance with Ohm’s Law, ∆u = IR. Here, ∆u represents an electric
potential difference, I the current, and R the resistance. Henceforth, resistors
shall be referred to as conductors; numerically, a conductor’s conductance,
γ, is equivalent to R−1. Ohm’s Law can thus be rewritten as I = γ∆u. All
conductances to be considered are assumed to be greater than zero.

Capacitor. A capacitor is the electrical device that condenses charge. Its
capacitance, C, relates how much charge it can collect for some ∆u across
its terminals. All capacitances will be assumed to be greater than zero.
These voltages will be considered to be of the form Aeiωt, where A is some
arbitrary amplitude, i =

√
−1, ω stands for frequency, and t represents time.

The expression iωC is unitwise equivalent to conductance; both iωC and γ
will be termed admittances, a.

Network. Any network to be considered in this work is a graph of an
electrical construction with conductors and capacitors as edges. Each of these
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conductors and capacitors must be connected to at least one other element,
but not necessarily to all others. Networks will be denoted by either Ω or T .

Node. In a network, the nodes are those points that represent a terminal
of at least one element. A node may be shared by the terminals of several
elements.

Boundary node. A boundary node is a node that is arbitrarily chosen
to have a given net current, which may be nonzero. A node that is not a
boundary node is called an interior node.

Kirkhoff’s Current Law. Kirkhoff’s Current Law states that an interior
node of a network must always have a net current flow of zero. Boundary
nodes, by definition, are exempt from Kirkhoff’s Law.

2-Layer network. A 2-layer network is one that consists of 2 layers of con-
ductors, with capacitors connecting the nodes between them. The conductors
in the top layer lead to boundary nodes, while the lower layer conductors all
meet at one interior node. Figure 1 shows a 2-layer network consisting of
three boundary nodes (denoted by 1, 2, and 3), four interior nodes, (denoted
by 4 through 7), two layers of three conductors each, and two capacitors:

This specific example of a 2-layer network will now be called the 3-prong,
2-layer network. An n-prong, 2-layer network, with n ≥ 2, consists of n
boundary nodes, n + 1 interior nodes, 2n conductors, and n − 1 capacitors.
Figure 2 shows the 5-prong, 2-layer network:

Forward problem. Assume that a network is known. That is, all con-
ductances and capacitances are known, as well as the connections between
them. The forward problem uses given potentials at the network’s boundary
nodes to find potentials at its interior nodes which satisfy Kirkhoff’s Law.
By solving the forward problem, it is then possible to determine boundary
currents.

Inverse problem. For an inverse problem, we are given a graph Ω with
unknown values of admittances. The inverse problem uses currents and po-
tentials at Ω’s boundary nodes to determine its admittances. To “solve” an
inverse problem means that all of a network’s internal components can be
recovered by measuring its boundary currents and potentials.

1. Preliminaries. While the inverse problem can be solved for many
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types of networks, there exists a relatively simple class of networks whose
inverse problems do not yield unique solutions. The networks of this class
have n connected spokes, n boundary nodes, 2mn conductors (m on each
spoke, m > 1), and n(m− 1) + 1 interior nodes. Figure 3 shows an example
similar to those in this class, (n = 3 and m = 1), which can be solved, and
will be shortly:

In this network, to be referred to as T1 (for T ripod 1), nodes 1, 2, and
3 are boundary nodes. For networks with a greater number of spokes, the
boundary nodes will always be those at the end of each spoke (those that are
common to only one conductor).

Figure 4 shows a network of this type with n = 3 and m = 2:

The inverse problem of the network of Figure 4, T2, can not be solved,
because of the multiple conductors on each spoke. Any of these networks
with m greater than 1 can not be solved. (It is important to note that all
conductivities in these networks come from resistors. A tripod with m > 1
may have a solvable inverse problem if capacitors take the places of some
resistors.)

The following network is of a different type for which the inverse problem
can not be solved:

If γ4,5, γ5,6, and γ4,6 in this network were replaced with capacitors, it would
have a solvable inverse problem. (Such a network would be very similar to
the network in Figure 9 on page 10. The algorithm to be described is based
on the fact that this substitution of capacitors for conductors allows such a
network to have a solvable inverse problem.)

Two representative matrices exist for any network which play impor-
tant roles in forward and inverse problems: the Kirkhoff matrix, K, and the
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Lambda matrix, Λ. The Kirkhoff matrix is square, with the number of rows
(and columns) being equal to the total number of nodes in the network.

Construction of K is dependent on the indexing of the nodes. For a
network with p boundary nodes and q interior nodes, the boundary nodes
must be indexed from 1 to p, and the interior nodes indexed from p + 1 to
p+ q. Each node will then correspond to one row and one column in K. K
will consist of (p+ q)2 entries labeled ki,j , with i, j = 1 to (p+ q).

Now, for example, consider some node n in T1, corresponding to row n
in K. The n, j entry of K will always have a value of zero, unless one of
two conditions is true: either node n is directly connected to node j by a
conductor, or j = n. If the first condition is true, kn,j = −γn,j where γn,j is
the conductance between nodes n and j. If j = n, kn,n is equal to the sum
of all conductors touching node n.

A result of this construction is that the sum of all entries in any row or
column of K will necessarily be zero. That is, Σiγi,j = 0 and Σjγi,j = 0. K
is also symmetric, as km,n = −γm,n = −γn,m = kn,m for any nodes m and n
in the network.

Figure 6 shows the Kirkhoff matrix for T1:

K =

Fig. 6

(With σ4 = γ1,4 + γ2,4 + γ3,4.)

The Kirkhoff matrix is now broken into four blocks, as shown by Figure
7:

K =

Fig. 7

The break represented by the vertical line occurs between columns p and
p + 1, while the horizontal line occurs between rows p and p + 1. In other
words, the breaks separate boundary nodes and interior nodes. The part of
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K now called K ′ represents connections between boundary nodes, while that
called A shows those between interior nodes. B and BT show connections
between one boundary node and one interior node. Returning to the example
network of T1, the components are:

K ′ = BT = B = A = [σ4]

The other key matrix, Λ, is now calculated from K by:

Λ = K ′ −BTA−1B. (1)

For T1,

Λ =

Fig. 8

Λ shares two important characteristics of K. Λ is symmetric, and all of
its rows and columns sum to zero. These two facts mean that only the off-
diagonal entries of Λ are of interest. Furthermore, Λ has the same number
of rows and columns as the network has boundary nodes, and the i, j entry
of Λ represents the current flowing into boundary node i due to a potential
of 1 applied at boundary node j.

The preceding follows the steps of the forward problem for T1. Since we
now know the form of Λ, the inverse problem–the problem of getting from
boundary currents to conductances–is readily solved. We have, for T1:

λ1,2 = −γ1,4γ2,4/σ4 (2)

λ1,3 = −γ1,4γ3,4/σ4 (3)

λ2,3 = −γ2,4γ3,4/σ4 (4)

At this point, the ratio γ1,4/γ2,4 can be found by dividing λ1,3 by λ2,3;
γ1,4/γ3,4 and γ2,4/γ3,4 are obtained similarly. To proceed, choose a conductor
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to solve for, such as γ1,4. The first and second of the above ratios are used
to express γ2,4 and γ3,4 in terms of γ1,4. Specifically, γ2,4 = γ1,4λ2,3/λ1,3, and
γ3,4 = γ1,4λ2,3/λ1,2. These expressions can then be substituted into σ4, which
then factors down to γ1,4(1 + λ2,3/λ1,3 + λ2,3/λ1,2).

This reformulated σ4, and the expression for γ2,4 in terms of γ1,4 are then
substituted into Equation 2 above. That equation is now strictly in terms of
γ1,4 and the three lambdas. A little more algebra yields

γ1,4 = (λ1,2λ1,3 + λ1,2λ2,3 + λ1,3λ2,3)/λ2,3. (5)

By the same method, it is found that

γ2,4 = (λ1,2λ1,3 + λ1,2λ2,3 + λ1,3λ2,3)/λ1,3 (6)

and

γ3,4 = (λ1,2λ1,3 + λ1,2λ2,3 + λ1,3λ2,3)/λ1,2. (7)

Thus, this inverse problem has yielded the conductances of the three con-
ductors of T1 from information strictly about boundary currents. (The same
can be done for any similar network with at least 3 spokes, provided it has
only one conductor per spoke.) The same technique could have been applied
to T2, but there is only enough information in Λ to find the sums (γ1,4+γ4,7),
(γ2,5 + γ5,7), and (γ3,6 + γ6,7). Specific values for the six conductances can
not be determined because there are an infinite number of combinations that
could yield each sum.

With the addition of two capacitors, possibly unknown, across the middle
nodes of T2, the resulting network is the 3-prong, 2-layer network of Figure
1 (now called Ω1). Lambda matrices can be used to uniquely determine the
six conductances of Ω1.

2. 2-Layer Networks vs. Spoked Networks. All 2-layer networks,
as defined, are structured essentially the same as the spoked networks T1 and
T2, with the addition of n−1 capacitors. (n is the number of spokes in T .) All
examples of these networks could have included a last, nth, capacitor, but the
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algorithm to be outlined works just as well if it is not present. Furthermore,
by using the 2-layer networks as will be done, a geophysical application is
suggested. The network Ω1, or perhaps better the network of Figure 2, could
be used to model the structure of a section of the Earth, with conductivities
being analogous to depth, and capacitances being the analog of magnetic
induction1.

The property of capacitors that allows inverse problems containing them
to be solved is this: when admittance is expressed in terms of capacitance,
it is dependent on frequency. That is, a = f(C, ω) or, in this case, a = iωC.
This implies that the Kirkhoff matrix of a network containing capacitors,
as well as its Lambda matrix, also become functions of ω. (In the previous
example of T1, Λ had a guaranteed existence because A, being composed of
one real entry, was invertible. An A matrix containing capacitances is not so
obviously invertible, but will soon be shown to be so.)

A network consisting strictly of conductors is analyzed with the use of
direct currents; therefore, there is no ω dependence and the network has
only one Kirkhoff matrix and one Lambda matrix. A network containing
capacitors and their resulting ω dependence, on the other hand, has as many
K’s and Λ’s as an analyst has frequencies to choose from.

The algorithm to follow is a method of comparing these multitudes of
Lambda matrices to determine the composition of 2-layer networks.

3. Forward Problem. Before dealing with the inverse problem of a 2-
layer network, it needs to be shown that the forward problem can be solved.
This, and all future calculations and proofs, will be demonstrated using the
3-prong, 2-layer network of Figure 9, to be called Ω2:

Ω2 has the same structure as Ω1, except that rather than having six
different conductors, it has only two types, with each layer consisting of one
type of conductor. Anything to be done with this network can be similarly
done with Ω1. Ω2 is preferable strictly because it will have fewer unknowns
to solve for. This model is perhaps a little simple, but will suffice for our

1These interpretations were brought to the author’s attention by a paper titled The

Inverse Problem of Electromagnetic Induction: Existence and Construction of Solutions

Based On Incomplete Data by Robert L. Parker. Published in the Journal of Geophysical

Research, vol. 85, no. B8, pp. 4421-4428, 1980.
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purposes.

The Kirkhoff matrix for Ω2 is shown in Figure 10:

K(ω) =

Fig. 10

where:

σ4 = γ1 + γ2 + iωC4,5 (8)

σ5 = γ1 + γ2 + iω(C4,5 + C5,6) (9)

σ6 = γ1 + γ2 + iωC5,6 (10)

The lines in K(ω) represent the borders between K ′, BT , B, and A, as
in Figure 7.

The question of whether or not Λ(ω) exists for Ω2, or any other 2-layer
network, comes down to the existence or non-existence ofA−1. In the example
of T1, this was easily verified because A was simply one real entry. Here, this
question of A(ω)’s invertibility is not so straightforward.

Theorem 1. A(ω) is invertible for any 2-layer network.

Proof. Recall that A(ω) is the lower-right block of K(ω), as is shown by
Figure 11:

A(ω) =

Fig. 11

To prove the existence of A−1(ω), it is sufficient to show that the only
solution to the equation:
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A(ω)u(ω) = 0 (11)

is u = 0; that is, A(ω) is nonsingular. Assume that A(ω)u(ω) = 0.

Consider a column vector x(ω):

x(ω) =

Fig. 12

whose entries stand for potentials at a network’s nodes. The zero in x(ω) is
a column vector representing a network’s boundary potentials, all zero, and
u(ω) is another column vector of interior potentials. Now,

K(ω)x(ω) ==

by our assumption that A(ω)u(ω) = 0.

It can be verified that:

x̄T (ω)K(ω)x(ω) = 0, (12)

with x̄(ω) being the complex conjugate of x(ω).

Now consider a matrix C(ω), for some network, to be constructed as
follows. Number its rows according to the network’s nodes, and number its
columns according to its edges (conducting elements). In each column l,
corresponding to edge l, there will be two entries. One will appear in each
row corresponding to one of the nodes that edge l connects, differing only by
sign. The entries will be of the form ±√am,n, with am,n being the value of the
admittance of edge l between connected nodes m and n in the network. The
sign of each element does not matter, as long as one entry in each column is
positive and the other is negative. Any C(ω) will look something like Figure
13, with appropriate dimensions:

C(ω) =

Fig. 13

9



It can be verified that:

K(ω) = C(ω)CT (ω). (13)

This is substituted into Equation 12 above, resulting in:

(x̄TC)(CTx) = 0. (14)

CT (ω)x looks like Figure 14:

CT (ω)x =

Fig. 14

Therefore,

0 = x̄TKx = x̄TCCTx = Σai,j|xi − xj|2. (15)

This can be broken down to:

0 = ΣRe(ai,j)|xi − xj|2 + iΣIm(ai,j)|xi − xj|2. (16)

All real parts of A are non-negative, since all conductivities were originally
assumed to be greater than zero. The same applies to the imaginary parts.
From Equation 16, it follows that xi = xj for all i, j where γi,j 6= 0. Hence, all
the xi’s must be equal to all the xj’s (for all i, j), which will then be equal to
some constant. But since the x matrix (Figure 12) already has some entries
equal to zero, all entries of x must be equal to zero. Therefore, u = 0 and A
is invertible, concluding the proof. •
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It is significant that the only conditions necessary for the above to hold is
that all conductivities be greater than zero and that likewise all capacitors be
greater than zero. The shape of the network and size of A make no difference.

The forward problem can therefore always be solved for 2-layer networks
as considered here. Λ(ω) can in fact be computed for Ω2. The entries of Λ(ω)
will consist of ratios of polynomials of degree n− 1 (where n is the number
of spokes in the network) in ω.

Note: This Λ(ω) is actually a “pseudo-Lambda” matrix. The true Λ has
an additional coefficient eiωt in front of each entry because of the alternating
voltage being applied. (In networks with strictly real conductivities, the i, jth
entry of Λ signified the current into boundary node i due to a potential of 1
at boundary node j. With the addition of capacitors, λi,j now represents the
current into boundary node i caused by a potential of eiωt at boundary node
j.) The term eiωt will be divided out of each entry of Λ(ω) to produce the
Lambda matrix to be used. (This has the additional benefit of makingΛ(ω)
independent of t).

4. Inverse Problem and Algorithm. The before-mentioned polyno-
mials in ω, even those of small degrees, will turn out to have many more
terms than are comfortable to work with, such as this entry, λ1,2(ω), from
the Lambda matrix of Ω2:

−(γ2

1
(γ1γ

2

2
+ γ3

2
+ 3iC4,5γ1γ2ω + 2iC4,5γ

2

2
ω + 2iC5,6γ

2

2
ω − 3C4,5C5,6γ2ω

2))

(3(γ3

1
γ2 + 2γ2

1
γ2

2
+ γ1γ

3

2
+ 2iC4,5γ

2

1
a2ω + 2iC5,6γ

2

1
γ2ω + 2iC4,5γ1γ

2

2
ω + 2iC5,6γ1γ

2

2
ω − 3C4,5C5,6γ1γ2ω

2))
(17)

While this ratio is only quadratic in ω, it is not a very simple expression. It
is theoretically possible that if given one Lambda matrix of a 2-layer network,
a form like the one above could be used for the λi,j(ω)’s to calculate the
network’s constituent conductors and capacitors. This is not necessary, given
that an alternate method exists.

This method, soon to be described, takes advantage of the fact that Λ is

11



dependent on ω. Since the entries of Λ depend on ω, it is reasonable to think
that there may be some values of ω that provide useful results.

The key aspect of the algorithm is that it manipulates these useful fre-
quencies to solve for a network’s components. Specifically, it involves taking
the limits of Λ(ω) as ω goes to zero and infinity to find the admittances of a
2-layer network of known shape and unknown composition. The steps of the
algorithm, as applied to Ω2, are summarized as follows:

1. Compute Λ(∞). From this, γ1 can be determined.

2. Look at Λ(0). From this, γ2 can be determined.

3. Calculate C4,5 and C5,6 from known potentials at Ω’s interior nodes
(solved from the known conductors).

Each step will now be considered in detail:

4.1. Inspection of Equation 17 reveals that as ω goes to infinity, λ1,2(ω)
of Ω2 looks like:

λ1,2(ω) =
−3C4,5C5,6γ

2
1
γ2

9C4,5C5,6γ1γ2

(18)

which, after canceling terms, leaves:

γ1 = −3λ1,2(ω) (19)

(as ω approaches ∞).

Physically, what is occurring in Ω2 as ω approaches infinity is that the
two capacitors are short circuiting, and the network takes the form and has
the same properties as the tripod networks with three conductors discussed
earlier.

In fact, each non-diagonal entry of Λ(∞) can be used to compute γ1. For
any n-prong, 2-layer network with only two types of conductor, one in the
top layer and one in the lower, as ω goes to infinity:
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γ1 = −nλi,j(ω) (20)

with i 6= j.

For a network like Ω2, with three different conductors in the top layer, a
situation would occur similar to that of the tripod network previously solved.
That is, some algebraic manipulation would still need to be performed to
isolate the three top layer conductors from Λ.

The problem with this method is that it is a physical impossibility to ac-
tually have ω approach infinity. Therefore, an alternate approach is required.
Since Equation 17 is quadratic in ω, it can be expressed in the form:

λ1,2(ω) = p(ω) =
1 + bω + cω2

α + βω + γω2
(21)

with b, c, α, β, and γ being five undetermined coefficients. For an n-prong,
2-layer network in general, λi,j(ω) is a ratio of polynomials of degree n − 1
with 2n − 1 coefficients. If, in the case of Ω2, c and γ could be determined
from other data, p(ω) would be known and the λ1,2(ω) (for ω = ∞) would
be found as the ratio c/γ.

The values p(ωi) for five different frequencies will yield a system of five
linear equations in the five unknowns b, c, α, β, and γ. (In the case of the
general 2-layer network, 2n− 1 different values of ω would be needed.) That
system is:

1 + bωi + cω2

i = p(ωi)(α+ βωi + γω2

i ) i = 1, · · · , 5 (22)

Let:

M =

Fig. 15

Unique solutions for b,c,α,β, and γ can be found if the determinant of M
does not equal zero.
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The ratio of quadratic expressions p(ωi) can be rewritten as:

p(ωi) = tq(ωi) =
t(ωi − δ1)(ωi − δ2)

(ωi − ε1)(ωi − ε2)
(23)

(with some non-zero constant t).

M can therefore be written as:

M =

Fig. 16

The determinant of M can be shown to be:

t3
Πi>j(ωi − ωj)Π

2
i=1

Π2
j=1

(δi − εj)

Π5
i=1Π

2
j=1(ωi − εj)

(24)

If ωi 6= εj, δi 6= εj, and ωi 6= ωj, for all i, j, det(M)6=0. Therefore, as long
as these conditions hold, b, c, α, β, and γ can be determined. This allows
the limit of λ1,2 as ω approaches infinity to be calculated. Equation 19 then
allows γ1 to be computed.

In the general case of the n-prong, 2-layer network (where all conductors
are different), each entry of Λ(ω) would have a different form, and consist of
a ratio of different polynomials. Here, enough coefficients (such as b,c,α, β,
and γ) would have to be found to find each entry. From this point, the
conductor in the network’s top layer can be recovered in a similar way to
those of the earlier tripod example.

4.2. Another look at Equation 17 shows that the limit of λ1,2(ω) as ω
approaches zero will be:

λ1,2(0) =
−γ2

1
(γ1γ

2
2
+ γ3

2
)

3(γ3
1γ2 + 2γ2

1γ
2
2 + γ1γ3

2)
(25)

This reduces to:
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λ1,2(0) =
−γ1γ2

3(γ1 + γ2)
(26)

This equation can be solved for γ2:

γ2 =
−3λ1,2(0)γ1

γ1 + 3λ1,2(0)
(27)

Taking the limit of Λ as ω goes to zero is not a physical impossibility–
this is the equivalent of applying direct current to the network. Therefore
λ1,2(0) can be found much easier than Λ(∞). As long as we have Λ(0), γ2 is
found simply by solving Equation 27, using the previously obtained γ1. (In
the case where not all lower layer conductors are the same, a substitution
method similar to that used for solving T1 (Figure 3) will have to be used to
arrive at an equation like Equation 27.)

A more general form exists for γ2 in the n-prong, 2-layer network with all
top-layer conductors the same and all lower-layer conductors the same:

γ2 =
−nλi,j(0)γ1

γ1 + nλi,j(0)
(28)

with i 6= j.

At this point, the algorithm has recovered γ1 and γ2. Therefore, we know
all of the conductors in the network. All that remains to be done is to find
the capacitances.

4.3. All of the conductors in Ω2, shown in Figure 9, are known. The
same is true for the ω-dependent boundary currents, by the nature of inverse
problems. Ohm’s Law can now be used to find interior potentials throughout
the network. With the potentials at each node known, the currents across
each conductor are also known, again via Ohm’s Law.

To solve for C4,5, consider the current from node 1 to node 4, I1,4. Then
consider the current from node 4 to node 7, I4,7. The difference between I1,4

and I4,7 must go across C4,5 (by Kirkhoff’s Law). With this, and knowing the
potential difference across nodes 4 and 5, Ohm’s Law will give the admittance
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between nodes 4 and 5. This then allows C4,5 to be calculated from a = iωC,
with any positive, finite ω. The same method is used to find C5,6, and is also
used to find the capacitances of a more general network such as Ω1 once all
of its conductors are known.

This completes the reconstruction algorithm for n-prong, 2-layer net-
works.

5. Commentary. This reconstruction algorithm works only for 2-layer
networks. The inverse problem for a 3-layer (or more) network, with an
extra layer (or more) of conductors and one additional row (or more) of
capacitors, can not be solved this way. The limits of Λ as ω approaches
zero and infinity provide only enough information to solve for the conductors
in the top layer, and a combined conductivity for each pair of connected
conductors in the bottom two layers–the same problem facing the original
tripod with 2 conductors on each spoke.

It may be that knowing Λ(ω) for more values of ω allows the inverse
problems of such networks to be solved. However, it is beyond the scope of
this article to examine this possibility2.

2For a more detailed look at the inverse resistor problem, see Finding the Conductors in

Circular Networks From Boundary Measurements by Edward Curtis and James Morrow,

published in the SIAM Journal of Applied Mathematics, vol. 50, no. 3, pp. 918-930, June

1990.
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