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1. Introduction.
We are interested in looking at transformations between electrical resistor networks and probabilistic net-
works (Markovian systems).

An electrical network consists of an graph Ω with non-negative edge conductances Γ = [γij ], and a set
∂Ω of nodes which are to be considered boundary nodes. We consider Ω to be a complete graph, that is, for
any nodes i and j, �ij ∈ Ω; and when we speak of circuits and paths in Ω we really mean circuits and paths
through edges of non-zero weight; and in the discussion Ω will play little rôle, since all of the connectivity
information is contained in Γ. For the purposes of this paper it will be assumed that the graph is connected
(in the weighted sense), although it is easy to generalize the statements made here to appropriate statements
for non-connected networks.

A probability network consists of a digraph Ω̃ with transition probabilities P = [pij ], and a set ∂Ω̃
of nodes which are to be considered boundary nodes. As with the electrical network, we consider Ω̃ to be
complete; and again we assume that the digraph is connected.

In the case of an electrical network, we can assign voltage potentials to produce current in each edge,
using Kirkhoff’s and Ohm’s laws; in the case of probabilistic networks, we have particles, moving about
the network according to the transition probabilities. The question, then, is this: is it possible, given an
electrical network Γ, to produce a probabilistic network P , with interpretations of potential and current on
P that match those on Γ? Or, if the probabilistic currents and potentials are not equal to their electrical
counterparts, at least related by a 1–1 correspondence?

2. Definition of pji, ui, and ixy.
The obvious approach is to take pji, the probability that a particle at node i will travel to node j, equal to
γij/

∑
k 6=i γik, at both boundary and interior nodes; this gives

∑
j pji = 1, and would seem, at least on first

inspection, to be reasonable: a particle at node i is more likely to travel down a path of lesser resistance than
down one of greater resistance. Now we can construct the transition matrix P = [pij ], which is analogous to
the conductivity matrix Γ of the electrical network. Lacking, so far, are interpretations of voltage potential,
current, and Kirkhoff’s and Ohm’s laws that relate the two.

In an electrical network, a potential function ~v defined on Ω is said to be γ-harmonic on the interior of
Ω, i.e. it is true that for any interior node i, it obeys Kirkhoff’s law:∑

j 6=i

(vj − vi)γij = 0 (1)

We take as our probabilistic voltage ui = viσi, where σi =
∑

j 6=i γij ; this gives us a probabilistic
Kirkhoff’s law: ∑

j 6=i

(
ui

σi
− uj

σj
)γij = 0

i.e., ∑
j 6=i

(uipji − ujpji) = 0

or ∑
j 6=i

(ujpji) = ui (2)
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(Note that if P~u = ~u, then (2) is satisfied.)
Next we need an interpretation of current. As we used Kirkhoff’s law above to produce a probabilistic

voltage potential, likewise now we use Ohm’s law to produce a probabilistic current flow.
Ohm’s law states that iij = (vi − vj)γij , that the current flowing between two adjacent nodes is propor-

tional to the voltage drop between those nodes, and that the proportion is exactly the conductance of the
conductor joining them. Using our definitions of ui and pji, we have the following:

iij = (vi − vj)γij (3)

iij = (
ui

σi
− uj

σj
)γij

iij = (
uiγij

σi
− ujγij

σj
)

iij = (uipji − ujpij) (4)

which gives us a probabilistic Ohm’s law.

4. “Physical” interpretation of potential and current

In addition to simply being appropriate numbers for probabilistic networks, these u’s and i’s do have some
physical meaning. The potential ui represents the number of particles at point i at any given time, and the
current iij represents the (net) number of particles moving from state i to state j at any given time. Note
that these quantities depend on time, but in the long run they average out to a steady state where ui no
longer depends on time, and iij = 0 for all i, j in the network.

5.1. Recovering Γ from P : Algorithm 1

This algorithm is due to Snell[1984].
Now suppose we were given the matrix P , knowing that P came from an electrical network, and were

asked to find the conductances Γ.
If we had a vector, ~w, such that wi = σi/σ, where σ =

∑
i σi, this vector would have two interesting

properties. First,
∑

j wjpji = wi, since

∑
j

wjpji =
∑

j

σj

σ

γij

σj
=

∑
j

γij

σ
=

∑
j γij

σ
=

σi

σ
= wi (5)

Second, since we have defined wi = σi/σ, we have∑
i

wi =
∑

i

σi

σ
=

∑
i σi

σ
=

σ

σ
= 1 (6)

It turns out that (5) is equivalent to the statement ~wP = ~w, or ~w(I − P ) = 0; since the sum of the
elements in each row of (I − P ) is equal to

∑
i pji − 1 = 0, |I − P | = 0, and so some ~w exists such that

~w(I − P ) = 0, or ~wP = ~w. It is proved in Chung[1974] that any ~x such that ~xP = ~x, where P has column
sums equal to one, is a constant multiple of any other solution; therefore, there exists a unique ~w satisfying
(5) and (6).

Once we have this ~w, then, it is easy to recover Γ, at least up to a constant scale factor:

wipji =
σi

σ

γij

σi
=

γij

σ

and depending on our choice of σ, we have determined Γ. It is then a simple matter to recover ~v, the
electrical potential function on Ω corresponding to ~u, the probabilistic potential function on Ω̃: we simply
use the definition of ~u: vi = ui/σi. Likewise we see that the current, as we have defined it, is equal, by
reading backwards from (4) to (3).
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Note that none of the above requires the assumption that P come from an electrical network; the fixed
vector ~w exists for any probability network, and from ~w we can come up with a set of conductances that
satisfies our definition of P . The additional restriction is that the conductances must be symmetric, that
is, γij = γji; and there is no guarantee that this is the case for the conductances that we find using this
method. We can check whether the matrix PI~w is symmetric; if it is, then the entries wipji are exactly the
conductances of an electrical network that will generate P . If the matrix is not symmetric, nevertheless the
definition of pij will give P back from the asymmetric Γ.

This notion of asymmetric conductances leads to the question: is the mapping one-to-one? Obviously
this algorithm gives only one solution, but are there other Γ’s that would also generate the same P?

This method is not well-equipped to answer this question.

5.2. Algorithm 2: Network Traversal

Suppose we were given a connected probabilistic network that is known to have come from an electrical
network, and we are given the resistance of one resistor. From the construction of the pji’s we can see that
for any three nodes i, j, and k in the network, pji/pki = γij/γik; so, given the conductance of any edge
adjoining a node i, we can find the conductance of any other conductor adjoining the same node simply by
applying the above ratio. Given one conductance, then, it will be possible to traverse the network (since it is
connected) finding each conductance in turn until all are known. Note that if we are not given a conductance
to start out with, we can pick any conductor ij where pji 6= 0 and assign it conductance 1; since in general
we can only find Γ up to a scalar.

Now suppose that we are given a connected probabilistic network P , without the knowledge that P came
from an electrical network. The same questions arise as in the end of section 5.1: how can we tell whether P
is associated with a set of symmetric conductances? If not, is the set of asymmetric conductances unique?

The only way that we could fail to derive symmetric conductances from P is by running into inconsis-
tencies: if, while traversing the network, we arrive at a conductor of known conductance, compute its value
anew, and get a different answer. This is possible whenever the graph contains a circuit; and the question
of whether reaching a particular edge by different paths gives the same value is the same as the question of
whether going around any circuit gives the same value for the starting edge.

The condition, then, can be stated as follows: If i1, i2, . . . , ik are k nodes in a probability network P
which was derived from an electrical network, then

k∏
j=1

pijij+1

pij+1ij

= 1 (7)

Theorem 5.1. Suppose that we are given a connected probability network P . Then a unique (up to a
constant scale factor) electrical network Γ exists corresponding to P if, and only if, P satisfies (7).

Proof. If: Take one conductor to have conductance 1. For each of its neighbors, take γij =
γik(pji/pki; and do the same for all of the neighbors’ neighbors, and so on. Since the network is
connected, eventually all conductances will have been assigned; and because P satisfies (7), Γ is
well-defined on Ω.

Only if: Suppose P fails to satisfy (7) on some cycle C. Choose an edge A ∈ C; we have then
that γA = γA

∏
�ij∈C pji/pij , from the definition of P . Since

∏
�ij∈C pji/pij 6= 1, the only solution to

this equation is γA = 0; but then C is not a cycle.

Theorem 5.2. Suppose we are given a connected probability network P , where (7) fails for some cycle
C ⊂ P . Then the resultant Γ is not uniquely determined by P .

Proof. Let S be a tree spanning P . Since S contains no cycles, we can define a ΓS that is symmetric
on the tree S; and we can define an asymmetric conductance on some edge e ∈ A = C \ S. Let T
be a tree spanning P which contains e. Then we can define a symmetric ΓT corresponding to the
tree T , and an asymmetric ΓT on S\T and A\T . But in ΓS , the conductance γS(e) is asymmetric,
whereas in ΓT , γT (e) is symmetric.

Therefore ΓS 6= ΓT .
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6. Calculating u and i from φ and P

Suppose that, instead of looking at a network from which no particle ever leaves, we want to look at networks
which have a definite boundary, where we put particles (currents) and from which particles (currents) emerge.
This is the point at which the boundary becomes special: the probability that a particle will leave a boundary
node, once it has reached it, is zero; they “leave the network”, never to return. On the other hand, we want
to be able to put particles (current) in at the boundary.

The solution that I have adopted is to bifurcate the boundary nodes; this gives us a set of input nodes
where we can place particles, and a set of output nodes whence we can take them. The probability that a
particle at an interior node moves to an input node is zero; and the probability that a particle at an output
node remains there is one. We have constructed, then, a matrix P , with the following canonical form:

P̄ =


output input int

output I S R
input 0 0 0
int 0 T Q


With the nodes arranged in the same way, P has the form:

P =


output input int

output 0 S R
input I 0 0
int 0 T Q


which in essence identifies and insulates each pair of boundary nodes.

We are interested in looking at limn→∞ P̄n~ϕ, where ~ϕ is a vector corresponding to placing a particle at
one of the input nodes, i.e., ~ϕ = ej , for j ∈ Ω̃◦. P̄n has the form

P̄n =


output input int

output I S + R(
∑n−1

i=0 Qi)T R
∑n

i=0 Qi

input 0 0 0
int 0 Qn−1T Qn


so, because ϕj = 0 when j /∈ int(Ω̃), P̄n~ϕ has the form

P̄n~ϕ =

 S + R(
∑n−1

i=1 Qi)T
0

Qn−1T

 ~ϕ

Since |Q| < 1, we can define a matrix N = (I −Q)−1 =
∑n−1

i=1 Qi, and

lim
n→∞

P̄n~ϕ =

 S + RNT
0
0

 ~ϕ

I claim that the top part of this matrix, B = S +RNT , gives a map from current flow in at input nodes
to current flow out at output nodes. The matrix A = NT will give a map from current flow in at the input
nodes to interior potentials.

Whether B and A actually do what I’ve claimed depends on whether the vector B~ϕ
~ϕ

A~ϕ


is γ-harmonic on Ω̃◦. This, however, is obviously true, since
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 0 S R
I 0 0
0 T Q

  S + RNT
I

NT

 =

 S + RNT
S + RNT
T + QNT

 =

 S + RNT
S + RNT

NT


since T + QNT = T + (QT + Q2T + Q3T + . . .) = NT . So, using these matrices B and A, we can relate
(gross) input currents to (gross) output currents and interior potentials.

What we’re really interested in, though, is not a neumann-to-neumann map, but a dirichlet-to-neumann
map—and it follows from the definition of probabalistic Ohm’s law that imposing current ~ϕ at the input
nodes is the same as inposing potential ~ϕ at those nodes: since

iij = uipji − ujpji

iij = ui · 1− uj · 0

iij = ui

Therefore, to find the (net) current flow out of the boundary nodes due to potentials imposed on the
boundary, we must take the difference between the input currents ~ϕ and the output currents B~ϕ: the map,
then, is given by L = I −B. And, due to our definition of probabilistic potential ui, we now have that

L


σ1

σ2

. . .
σn

 = cΛ

for some c > 0.
Also, since we know that Λ is symmetric, we have all the information necessary to convert L to Λ, up

to the scale factor c: simply take σi = li,1/l1,i.

Theorem 6.1. Suppose that we are given a probabilistic dirichlet-to-neumann map L. An associated
electrical dirichlet-to-neumann map exists if and only if the matrix

Λ = L


1

l21/l12
. . .

ln1/l1n


is symmetric.

Proof. Because all of the off-diagonal lij ’s are negative, their quotients are positive; and so the sign
of each entry in Λ is the same as that in L. Thus Λ is a symmetric matrix whose columns sum to
0, and which has positive diagonal entries and negative off-diagonal entries. Therefore Λ ∈ K, the
set of dirichlet-to-neumann maps for electrical networks.

While it is relatively easy to convert from L to Λ, it is not very easy to convert from Λ to L: indeed,
if we could do this, then we could solve for boundary conductors from Λ, which is not always possible. The
convertability, if you will, of electrical and probability networks looks like this:

{γij} → Λ
↑↓ ↑

{pij} → L
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