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1 Introduction

We consider a network of conductors Ω, with set of nodes denoted
by Ωn, set of boundary nodes denoted by Ωb, and set of interior
nodes denoted by Ωi, so that

Ωn = Ωb ∪ Ωi.

For such a network, the Kirchoff matrix, the Λ map, and the Φ map
are defined (for background and definitions see [1]).

We will divide a network into levels. The set of nodes for each
level is denoted Li, where i is a positive integer indicating the number
of level. N(Li) will denote cardinality of Li. Let the first level be the
boundary nodes. Let a node belong to level Li+1 if it is connected
to a node in level Li, and if it has not yet been assigned a level.

We will number nodes of a network Ω so that nodes of the first
level go first, nodes of the second level go second, and so on. Now
we can write K(Ω) and Φ(Ω) in the following block form:

K ′ BT 0 I

K(Ω) = B C DT and Φ(Ω) = P

0 D A X
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where P contains information about potentials on the second level,
and X contains information about potentials on the rest of the inte-
rior nodes. Using Kirchoff’s and Ohm’s Laws we obtain the following
matrix equation:

K ′ BT 0 I Λ(Ω)

B C DT P = 0

0 D A X 0

(1)

where 0 is the zero matrix.
In this paper we will look at networks with the following proper-

ties:

1. If level Li is not the last level, it contains at least four nodes.

2. For each node in level Li there is a node in level Li to which it
is not connected.

3. Each node in Li is connected to exactly one node in Li+1.

4. For every two nodes in Li there has to be a path between them
that doesn’t go through outer levels.

We will call any network that has these properties a well-leveled
network. We will show that any well-leveled network is recoverable
from given Λ(Ω) and Φ(Ω) maps.

2 Recovery of The First Level

¿From Equation (1) we have:

K ′I +BTP + 0X = K ′ +BTP = Λ.

Property 3 of well-leveled networks tells us that matrix BT contains
exactly one non-zero element in each row. Let bi,g be the non-zero
element in the ith row of BT . Property 2 says that in each row of
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K ′ there is at least one zero. In other words, for each fixed i there
is such j that

K ′
i,j = 0, bgPg,j = Λi,j .

Thus, we are able to find BT , and then

K ′ = Λ−BTP.

3 Potentials on The Second Level

Let p be a node in Li+1, and let Q(p) be the set of nodes in Li

that are connected to p. We will have N(Li+1) such sets, every set
containing at least one element. We will pick one element from each
of these sets, and let these chosen elements form another set Wi ∈
Li.

Claim: If we put zero potentials on every node d ∈ Li\Wi, then
any desired combination of potentials on Li+1 uniquely determines
the potentials on Wi.

Proof: When numbering nodes of Li, we will first number the
nodes in Wi. We now rewrite Equation (1):

K ′
1 K ′T

3 BT
1 0 I * Λ1 *

K ′
3 K ′

2 BT
2 0 0 * = Λ2 *

B1 B2 C DT P1 * 0 *

0 0 D A X1 * 0 *

(2)

Here * indicates that this information is not useful and can be ig-
nored. Also, P = P1 * , where P1 is a square matrix. We
partition K ′ and B to make B1 of the same size as P1. Then B1
represents the connections from W1 to L2. From this we obtain the
following equations:
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B1I +B20 + CP1 +DTX1 = B1 + CP1 +DTX1 = 0 (3)

0 I + 0 +DP1 + AX1 = DP1 + AX1 = 0 (4)

Notice that the second terms in (3) and (4) are eliminated because
of multiplication by zero. If N(L1) = N(L2), then those terms don’t
even exist, because in that case P1 = P . Either way, we get the
same equations. Now we rewrite (4)

X1 = −A−1DP1,

and substituting X1 into (3), and rewriting (3), we have:

(C −DTA−1D)P1 = −B1.

Because every node in W is connected to exactly one node in L2,
matrix B1 has exactly one element in each row and each column,
and, therefore, it is non-singular. This makes P1 a non-singular
matrix. — Q.E.D.

Let Ω′ be the subnetwork of Ω such that

Ω′ = Ω\L1, and Ω′b = L2.

Clearly, Ω′ is a well-leveled network. We would like to compute
Φ(Ω′). Consider the following matrix product:

I P−11

Φ(Ω) · P−11 = 0 P−11 = 0

P1 I

X1 X1P
−1
1
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From this we can see that

Φ(Ω′) = I

X1P
−1
1

and

P−11

0

is what what we need to put on L1 in order to get I on L2.

We can also find Λ(Ω′). Let i be a node in L2, and let j be another
node in L2. We will put potential of 1 on node i, and zeros on other
nodes of L2. Remember that L2 = Ω′b. Then the boundary current
at node j due to this combination of potentials is the current flowing
through the conductors connecting j and L1. Therefore, the matrix
BT
1 P

−1
1 differs from Λ(Ω′) only on the diagonal. Since each diagonal

entry in a Λ matrix is the opposite of the sum of other entries in the
same row, Λ(Ω′) can be easily found.

Thus, we can use the same technique and recover the first level
of Ω′, and then consider its subnetwork, and so on, eventually re-
covering the entire original network.

4 An Example of Recovering A Well-Leveled

Network

In the following example we will show how in a well-leveled network
we can recover conductors between the nodes of the first and second
levels, and between the nodes of the first level. Figure 1 shows part
of a simple well-leveled network Ω.
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Figure 1

Nodes 1, 2, 3 and 4 are boundary nodes. Therefore, they form
the first level L1. Nodes in L1 are connected to nodes 5, 6, 7 and
8, which in turn form L2. We do not care about other levels of the
network at this point. Let conductor (i,j) denote the conductor that
connects nodes i and j.

We put potential of 1 on node 1, and zeros on other nodes of L1.
Then the current at node 3 is Λ3,1, and it is flowing only through the
conductor (3, 7). Since nodes 1 and 3 are not connected, K3,1 = 0,
thus

γ3,7 = −K3,7 = −
Λ3,1
Φ7,1

Similarly, we can find γ1,5, γ2,6, and γ4,8.
Now, we will put potential of 1 on node 1, and zeros on other

nodes of L1. The current in node 2 will be flowing through the
conductors (2,1) and (2,6). We already know K2,6, so

γ2,1 = −K2,1 = −(Λ2,1 −K2,6Φ6,1).

Again, similarly we can find other boundary connections. Then we
can find Λ(Ω′) and Φ(Ω′) as described in the previous section, and
recover the first level of Ω′ in a similar fashion.
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5 Relationships Between Elements of Λ and Φ
matrices

A well-leveled network contains fewer conductors than there are el-
ements in Λ and Φ maps. Therefore, there must exist certain rela-
tionships between these pieces of information.

Consider a network Ω. Put potentials of 1 on every boundary
node. Then potentials on the interior nodes will be 1. This means
that the sum of every row of Φ(Ω) matrix is 1. Notice that this is
true for any network.

Now, consider the well-leveled network Ω shown in Figure 2.
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Figure 2

Nodes 1, 2, 3 and 4 are boundary. We will have the following
matrix equation:















∗ −γ1,2 0 −γ1,4 −γ1,5
−γ2,1 ∗ −γ2,3 0 −γ2,5
0 −γ3,2 ∗ −γ3,4 −γ3,5

−γ4,1 0 −γ4,3 ∗ −γ4,5
∗ ∗ ∗ ∗ Σ





























1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
v1 v2 v3 v4















=











∗ −γ1,2 − γ1,5v2 −γ1,5v3 −γ1,4 − γ1,5v4
∗ ∗ −γ2,3 − γ2,5v3 −γ2,5v4
∗ ∗ ∗ −γ3,4 − γ3,5v4
∗ ∗ ∗ ∗











,

where * indicates any entry that is dependent on others and can be
ignored. Also, Σ = (−γ1,5 − γ2,5 − γ3,5 − γ4,5). Since the potential
inside is the weighted average of boundary potentials,
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v1 =
γ1,5

Σ
,

v2 =
γ2,5

Σ
,

v3 =
γ3,5

Σ
,

v4 =
γ4,5

Σ
.

Now,
v1v3

v2v4
=

γ1,5γ3,5

Σ2

γ2,5γ4,5

Σ2

=
γ1,5γ3,5

γ2,5γ4,5
,

and
λ1,3

λ2,4
=

−γ1,5γ3,5

Σ
−γ2,5γ4,5

Σ

=
γ1,5γ3,5

γ2,5γ4,5
.

Thus,
v1v3

v2v4
=
λ1,3

λ2,4
.

Out of 10 seemingly independent pieces of information we are left
with only 8, since we found two relationships. This is equal to the
number of conductors in the network.

It appears that when searching for similar dependencies in larger
well-leveled networks, we should examine entries Λi,j such that
Ki,j = 0.
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